Top Banner
On the computation of the GCD (LCM) of 2-d polynomials N. P. Karampetakis Department of Mathematics Aristotle University of Thessaloniki Thessaloniki 54006, Greece Email : [email protected] P. Tzekis and H. K. Terzidis Technological Educational Institution of Thessaloniki School of Sciences Department of Mathematics P.O. Box 14561 Thessaloniki 54101, Greece
33

On the computation of the GCD (LCM) of 2-d polynomials N. P. Karampetakis Department of Mathematics Aristotle University of Thessaloniki Thessaloniki 54006,

Dec 22, 2015

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: On the computation of the GCD (LCM) of 2-d polynomials N. P. Karampetakis Department of Mathematics Aristotle University of Thessaloniki Thessaloniki 54006,

On the computation of the GCD (LCM) of 2-d

polynomials

N. P. KarampetakisDepartment of MathematicsAristotle University of ThessalonikiThessaloniki 54006, GreeceEmail : [email protected]

P. Tzekis and H. K. TerzidisTechnological Educational Institution of ThessalonikiSchool of SciencesDepartment of MathematicsP.O. Box 14561Thessaloniki 54101, Greece

Page 2: On the computation of the GCD (LCM) of 2-d polynomials N. P. Karampetakis Department of Mathematics Aristotle University of Thessaloniki Thessaloniki 54006,

Contents

• Goals• Computation of GCD-LCM of 1-d

polynomials.• Interpolation methods.• 2-D DFT• Computation of GCD-LCM of 2-d

polynomials by using 2-D DFT techniques.• Some special cases.• Conclusions and further work.

Page 3: On the computation of the GCD (LCM) of 2-d polynomials N. P. Karampetakis Department of Mathematics Aristotle University of Thessaloniki Thessaloniki 54006,

Goals

• Computation of the Greatest Common Divisor (GCD) of 2-d polynomials.– It is linked with the computation of zeros of

system representations,– Solution of polynomial (matrix) diophantine

equations and applications to control design problems i.e. computation of stabilizing controllers.

– Network theory, Communications, Computer Aided Design, Image restoration.

• Computation of the Least Common Multiple (LCM) of 2-d polynomials.– Integral part of algebraic synthesis

methods in control theory (connected with the derivation of minimal fractional representations of rational models, which are essential for the study of a variety of algebraic design problems (Kucera)).

Page 4: On the computation of the GCD (LCM) of 2-d polynomials N. P. Karampetakis Department of Mathematics Aristotle University of Thessaloniki Thessaloniki 54006,

How to compute the GCD of 1-d polynomials;

• Euclidean algorithm.• Numerical methods based on

– Euclidean Algorithm (Fryer, Weinstock),– Generalized resultant test (Barnett, Vardulakis &

Stoyle)– Matrix based methods (Blankinship, Barnett,

Karcanias and Mitrouli) (see Pace and Barnett)). The computation of the GCD is a numerical ill-possed problem(If GCD(u(x),v(x))=v(x), where v(x) a divisor of u(x) , then GCD(u(x)+d,v(x))=1).

• Approximate GCD (Karmarkar & Lakshman, Corless, Emiris, Karcanias, Mitrouli e.t.c.).

Page 5: On the computation of the GCD (LCM) of 2-d polynomials N. P. Karampetakis Department of Mathematics Aristotle University of Thessaloniki Thessaloniki 54006,

What about the GCD of 2-d polynomials;

• Needs modification of the Euclidean algorithm, as the ring R[z,w] is not Euclidean (Sebek 1994).

• Symbolic methods (Johnson, Pugh and Hayton 1995)• Other methods

– Euclidean Algorithm (problem of coefficient growth),– Polynomial remainder sequence (Sasaki et. al.1997)– Generalized subresultant method (Ochi et.al.1991)– Hensel lifting strategy (Zhi Li and Noda 2000 & 2001)– Sylvester-like resultant method (Phillai and Liang

1999). – Blackbox type algorithm (Zeng, Dayton 2004)– Modular algorithm (Corless et.al.1995) (the problem is

reduced to univariate problem by using evaluation homomorphisms to eliminate variables, and reconstruct to GCD of the original inputs from these “images” using interpolations (dense and sparse method).

• Approximate GCD of multivariate polynomials (Zhi and Noda 2000, Zhi, Li and Noda 2001 e.t.c).

Page 6: On the computation of the GCD (LCM) of 2-d polynomials N. P. Karampetakis Department of Mathematics Aristotle University of Thessaloniki Thessaloniki 54006,

How to compute the LCM of 1-d polynomials;

Existing procedures for LCM rely on:• the standard factorisation of

polynomials, • computation of a minimal basis of a

special polynomial matrix (Beelen & Van Dooren) and use of algebraic identities,

• GCD algorithms and numerical factorisation of polynomials (Karcanias and Mitrouli),

• Standard system theoretic concepts (Karcanias and Mitrouli)

Page 7: On the computation of the GCD (LCM) of 2-d polynomials N. P. Karampetakis Department of Mathematics Aristotle University of Thessaloniki Thessaloniki 54006,

Why we use interpolation methods ;

• Kurth (1967), Computation of the determinant of a polynomial matrix.

• Paccagnella & Pierobon (1976), use specific points for the interpolation (FFT technique).

• Schuster & Hippe (1992), Computation of the ordinary inverse of a polynomial matrix (Newton’s interpolation method).

• Karampetakis & Vologiannidis (2002), DFT calculation of the generalized and drazin inverse of a polynomial matrix (DFT technique).

• Petkovic & Stanimirovic (2006, 2007), Computation of the Drazin and generalized inverse of a polynomial matrix (Newton’s interpolation method).

• Direct approach using Vandermonde’s matrix,• Newton’s interpolation method,• Lagrange’s interpolation,• DFT techniques (multipoint evaluation-interpolation

method).

Page 8: On the computation of the GCD (LCM) of 2-d polynomials N. P. Karampetakis Department of Mathematics Aristotle University of Thessaloniki Thessaloniki 54006,

FFT algorithms make the difference in speed

Very fast algorithms for computing the DFT (use properties of specific interpolation points)

Advantages• The speed of interpolation algorithms

can be increased.• Greatly benefited by the existence of a

parallel environment (through symmetric multiprocessing or other techniques).

• Efficient algorithms available both in software and hardware.

Page 9: On the computation of the GCD (LCM) of 2-d polynomials N. P. Karampetakis Department of Mathematics Aristotle University of Thessaloniki Thessaloniki 54006,

What we call Discrete Fourier Transform;

Definition. Consider the finite sequence 1 2( , )X k k and 1 2( , )X r r ,

, 0,1,..,i i ik r M . In order for the sequence 1 2( , )X k k and 1 2( , )X r r to constitute a Discrete Fourier Transform (DFT) pair the following relations should hold :

1 2

1 1 2 2

1 2

1 2 1 2 1 20 0

( , ) ( , )M M

k r k r

k k

X r r X k k W W

(forward DFT) (1)

1 2

1 1 2 2

1 2

1 2 1 2 1 20 0

1( , ) ( , )

M Mk r k r

r r

X k k X r r W WR

(inverse DFT) (2)

where 2

1 , 1,2j

MiiW e i

and 1 21 1R M M .

Evaluation-Interpolation method 21 2

11 2

1 2

1 2 1 2 1 20 0

( , ) ( , ) , , 1,2, 1,2,...,jri

Mi i

M Mrk k

i i i ik k

X r r X k k s s s W e i r M

Page 10: On the computation of the GCD (LCM) of 2-d polynomials N. P. Karampetakis Department of Mathematics Aristotle University of Thessaloniki Thessaloniki 54006,

Which is the complexity of the 2-D DFT/FFT ;

Computational Complexity of 2-D DFT : 1 2 1 21 1 2M M M M

Comput. Compl. of 2-D FFT : 1 2

2 1 2

1 1log 1 1

2

M MM M

Page 11: On the computation of the GCD (LCM) of 2-d polynomials N. P. Karampetakis Department of Mathematics Aristotle University of Thessaloniki Thessaloniki 54006,

Computation of the GCD of 2-d polynomials

Consider n polynomials of the form 1 2

, ,0 0

( , ) [ , ], 1,2,..., 1M M

m jk k m j

m j

A x y A x y R x y k n

where 1M (resp. 2M is the greatest power of x (resp. y ) in ,kA x y .

Let the CGD ( , )p x y of ,kA x y be

where the greatest powers of the variables ,x y in ( , )p x y are

Problem. Determine the coefficients 0 1, , 0,1,...,k k i ip k b .

0 1

0 1

0

1

1

0

,0 0

( , ) k kk k

k k

b b

p x y p x y

0, 1,..., 1

0, 11

,... 1

0

,

deg ( , ) : min deg ( , )

deg ( , ) : min deg ( , )

x x kk n

y y kk n

p x y A x y

p x y A x y

b

b

Page 12: On the computation of the GCD (LCM) of 2-d polynomials N. P. Karampetakis Department of Mathematics Aristotle University of Thessaloniki Thessaloniki 54006,

Computation of the GCD of 2-d polynomials

0 1

0 1

0 1

0 1

,0 0

( , )b b

k kk k

k k

p x y p x y

Consider the following 1R interpolation points

21( ) ; 0,1 and 0,1,...,j j

bj i

rr

i j i j iu r W e i r b

where 1 0 1( 1)( 1)R b b .

Evaluate the coefficients 0 1,k kp in three steps :

1. Find the GCD 1, 1 1, ( )x rp p x u r of 1 1,kA x u r .

2. By applying 0 0( )x u r in the above polynomial, we get

0 1, 0 0 1 1( ), ( )r rp p u r u r .

3. Since 0 1

0 0 1 1

0 1 0 1

0 1

, , 0 10 0

b br k r k

r r k kk k

p p W W

, 0 1,[ ]k kp and

0 1,[ ]r rp form a

DFT pair and thus using the inverse DFT we derive the coefficients

0 1,[ ]k kp i.e. 0 1

0 0 1 1

0 1 0 1

0 1

, , 0 10 01

1 b br k r k

k k r rr r

p p W WR

, 0,1, ,i ik b

Page 13: On the computation of the GCD (LCM) of 2-d polynomials N. P. Karampetakis Department of Mathematics Aristotle University of Thessaloniki Thessaloniki 54006,

Example 1.Consider two polynomials

2, 3 3A x y x y xy x and 2, 3 3B x y xy xy y

Step 1. Calculate the number of interpolation points ib .

0

1

min deg ( , ), deg ( , ) min 2,1 1

min deg ( , ), deg ( , ) min 1,2 1

x x

y y

b A x y B x y

b A x y B x y

Step 2. Compute the 1

10

( 1) 4ii

R b

interpolation points :

21( ) , , 0,1j

bj ir

i j i iu r W W e i and 0,1,...,j ir b

21 1

21 1

10 1

0 0 0 0

10 1

1 0 1 1

0 1, 1 1

0 1, 1 1

j

j

j

j

u W u W e e

u W u W e e

Page 14: On the computation of the GCD (LCM) of 2-d polynomials N. P. Karampetakis Department of Mathematics Aristotle University of Thessaloniki Thessaloniki 54006,

Example 1.Step 3. Determine the GCD of 1 1, ( )A x u r , 1 1, ( )B x u r .

21

21

, 0 ,1 gcd 3 4,4 4 1

, 1 , 1 gcd 2 2, 2 2 1

p x u p x x x x x

p x u p x x x x x

Step 4. Apply 0 0( )x u r in the above polynomials, in order to take

0 1, 0 0 1 1( ), ( )r rp p u r u r .

0,0 0 1 1

1,0 0 1 1

0 , 0 1 2

1 , 0 1 0

x

x

p p u u x

p p u u x

0,1 0 1 1

1,1 0 1 1

0 , 1 1 0

1 , 1 1 2

x

x

p p u u x

p p u u x

Page 15: On the computation of the GCD (LCM) of 2-d polynomials N. P. Karampetakis Department of Mathematics Aristotle University of Thessaloniki Thessaloniki 54006,

Example 1.Step 5. Using the inverse DFT for the points

0 1,r rp we construct the

values 0 0 1 1

0 10 1 0 1

1 110 0, , 0 14

r k r kr rk k r rp p W W .

0,0 0,1 1,0 1,11, 0, 0, 1p p p p

Thus the GCD is , 1p x y xy

, 3 1A x y x xy and , 3 1B x y y xy

Page 16: On the computation of the GCD (LCM) of 2-d polynomials N. P. Karampetakis Department of Mathematics Aristotle University of Thessaloniki Thessaloniki 54006,

Computation of the LCM of 2-d polynomials

Consider n polynomials of the form 1 2

, ,0 0

( , ) [ , ], 1,2,..., 1M M

m jk k m j

m j

A x y A x y R x y k n

where 1M (resp. 2M is the greatest power of x (resp. y ) in ,kA x y .

0 1

0 1

0 1

0 1

,0 0

( , )b b

k kk k

k k

p x y p x y

where the greatest powers of the variables ,x y in ( , )p x y are

Problem. Determine the coefficients 0 1, , 0,1,...,k k i ip k b .

Let the LCM ( , )p x y of ,kA x y be

100

101

deg ( , ) : deg ( , )

deg ( , ) : deg ( , )

nkx x k

nky y k

p x y b A x y

p x y b A x y

Page 17: On the computation of the GCD (LCM) of 2-d polynomials N. P. Karampetakis Department of Mathematics Aristotle University of Thessaloniki Thessaloniki 54006,

Computation of the LCM of 2-d polynomials

0 1

0 1

0 1

0 1

,0 0

( , )b b

k kk k

k k

p x y p x y

Consider the following 1R interpolation points

21( ) ; 0,1 and 0,1,...,j j

bj i

rr

i j i j iu r W e i r b

where 1 0 1( 1)( 1)R b b .

Evaluate the coefficients 0 1,k kp in three steps :

2. By applying 0 0( )x u r in the above polynomial, we get

0 1, 0 0 1 1( ), ( )r rp p u r u r .

3. Since 0 1

0 0 1 1

0 1 0 1

0 1

, , 0 10 0

b br k r k

r r k kk k

p p W W

, 0 1,[ ]k kp and

0 1,[ ]r rp form a

DFT pair and thus using the inverse DFT we derive the coefficients

0 1,[ ]k kp i.e. 0 1

0 0 1 1

0 1 0 1

0 1

, , 0 10 01

1 b br k r k

k k r rr r

p p W WR

, 0,1, ,i ik b

1. Find the LCM 1, 1 1, ( )x rp p x u r of 1 1,kA x u r .

Page 18: On the computation of the GCD (LCM) of 2-d polynomials N. P. Karampetakis Department of Mathematics Aristotle University of Thessaloniki Thessaloniki 54006,

What happens when the interpolation points add extra divisors ;

Step 1. Calculate the number of interpolation points , 0,1ib i .

2

0

21

min deg 1 , deg 1 1 2

min deg 1 , deg 1 1 1

x x

y y

b y xy x xy x

b y xy x xy x

Step 2. Compute the 1

10

( 1) 6ii

R b

interpolation points

00 0

221 32 1

0 0

4222 32 1

0 0

0 1

1

2

jj

jj

u W

u W e e

u W e e

01 1

2 21 1 1 2

1 1

0 1

1 1j j

u W

u W e e

Consider two polynomials , 1A x y x yy x and 1, 1xyB x y x

where gcd 1 , 1 1 1y x x y xy x x

Page 19: On the computation of the GCD (LCM) of 2-d polynomials N. P. Karampetakis Department of Mathematics Aristotle University of Thessaloniki Thessaloniki 54006,

Step 3. Determine the GCD of 1 1, ( )A x u r and 1 1, ( )B x u r

2 2 2

1

1

, 0 ,1 gcd 1 , 1 1

, 1 , 1 1 1

p x u p x x x x

p x u p x x x

Step 4. Apply 0 0 00 , 1 , 2x u x u x u in the above polynomials,

in order to take 0 1, 0 0 1 1( ), ( )r rp p u r u r .

Step 5. Using the inverse DFT for the points 0 1,r rp we construct the

values 0 0 1 1

0 10 1 0 1

2 110 0, , 0 16

r k r kr rk k r rp p W W .

0,0 1,0 2,0 0,1 1,1 2,11, 1, 0, 0, 1, 1p p p p p p

Thus the GCD is 2, 1 1 1p x y x y xy x xy x instead of 1x

Page 20: On the computation of the GCD (LCM) of 2-d polynomials N. P. Karampetakis Department of Mathematics Aristotle University of Thessaloniki Thessaloniki 54006,

Solution of this problem – Expand the circle where the interpolation points stands

-2 -1 1 2

-2

-1

1

2

1 , 0,1,...,5iW i

-1 -0.5 0.5 1

-1

-0.5

0.5

1

12 , 0,1,...,5iW i

To solve this problem, we can just determine two random real numbers 1 2,c c

and multiply the points 2

1 , 0,1j

biiW e i

and 0,1,..., ij b with 1c and 2c

respectively and thus we have

1 , 0,1 0,1,....,j ji i iW cW i j b

Page 21: On the computation of the GCD (LCM) of 2-d polynomials N. P. Karampetakis Department of Mathematics Aristotle University of Thessaloniki Thessaloniki 54006,

Consider two polynomials , 1A x y y x x y and , 1 1B x y xy x

where gcd 1 , 1 1 1y x x y xy x x

Step 3. Determine the GCD of 1 1, ( )A x u r , 1 1, ( )B x u r

Let 1 2 1.55c c . Then the interpolation points will be

00 0

21 3

0 0

42 3

0 0

1.55 1.55

1.55 1.55

1.5

0

1

5 1.552

j

j

u W

u W e

u W e

01 1

21 2

1 1

1.55 1.55

1.55 1.55 1.55

0

1j

u W

u W e

1

1

1.55

1.55

, 0 , 1

, 1 , 1

p x u p x x

p x u p x x

Page 22: On the computation of the GCD (LCM) of 2-d polynomials N. P. Karampetakis Department of Mathematics Aristotle University of Thessaloniki Thessaloniki 54006,

Step 4. Determine the values at 0 0( )u r of each polynomial

0, 0 1, 0 2, 0

0, 1 1, 1 2, 1

2.55, 0.225 1.34234 , 0.225 1.34234

2.55, 0.225 1.34234 , 0.225 1.34234

p p j p j

p p j p j

Step 5. Use the inverse DFT for the points 0 1,r rp in order to construct the

values 0 0 1 1

0 10 1 0 1

2 110 10 0, ,6

r l r l

r rl l r rp p W W .

0,0 0,1

1,0 1,1

2,0 2,1

1, 0

1, 0

0, 0

p p

p p

p p

and thus the GCD is , 1p x y x

Page 23: On the computation of the GCD (LCM) of 2-d polynomials N. P. Karampetakis Department of Mathematics Aristotle University of Thessaloniki Thessaloniki 54006,

What happens when we have univariate factors in the GCD ;

Step 1. Calculate the number of interpolation points , 0,1ib i .

Step 2. Compute the 1

10

( 1) 6ii

R b

interpolation points

Consider two polynomials , 1A x y x y y and , 1 1B x y xy y

where gcd 1 , 1 1 1x y y xy y y

0

1

min deg 1 , deg 1 1 1

min deg 1 , deg 1 1 2

x x

y y

b x y y xy y

b x y y xy y

00 1

2 21 1 1 2

0 1

0 1

1 1j j

u W

u W e e

01 0

221 32 1

1 0

4222 32 1

1 0

0 1

1

2

jj

jj

u W

u W e e

u W e e

Page 24: On the computation of the GCD (LCM) of 2-d polynomials N. P. Karampetakis Department of Mathematics Aristotle University of Thessaloniki Thessaloniki 54006,

Step 3. Determine the GCD of 1 1, ( )A x u r and 1 1, ( )B x u r

Step 5. Using the inverse DFT for the points 0 1,r rp we construct the

values 0 0 1 1

0 10 1 0 1

2 110 0, , 0 16

r k r kr rk k r rp p W W .

Step 4. Apply 0 0 1x u and 0 1 1x u in the above polynomials

0,0 1,0 0,1 1,1 0,2 1,22, 0, 1p p p p p p

0,0 0,1 0,2

1,0 1,1 1,2

1, 0, 0

1 1 1, ,

3 3 3

p p p

p p p

1

1 1

, 0 ,1 gcd 2 1 ,2 1 1

, 1 , ,1 12

p x u p x x x x

p x u p x u

and thus the GCD is 21 1 1, 1

3 3 3p x y xy xy x .

Page 25: On the computation of the GCD (LCM) of 2-d polynomials N. P. Karampetakis Department of Mathematics Aristotle University of Thessaloniki Thessaloniki 54006,

Solution of this problemLet now say that we have n polynomials ( , ) [ , ]ip x y R x y

0,1,..., 1i n . These polynomials can be rewritten as

, , , ,( ) ( , ) ( )

, , , , ,, ( ) ( ) ( , ) ( , ) ( ) ( ), 0, 1,..., 1

i x i x y i yp x p x y p y

i i x x i x y x y i y yp x y p x g x p x y g x y p y g y i n

where , ( ) [ ]i xp x R x are prime each other, , ( ) [ ]i yp y R y are prime each

other, , , ( , ) [ , ]i x yp x y R x y are prime each other with no factors only of x

or y , ( )xg x is the gcd of , ( ),i xp x ( )yg y is the gcd of , ( )i yp y and

, ( , )x yg x y is the gcd of , , ( , ).i x yp x y

Page 26: On the computation of the GCD (LCM) of 2-d polynomials N. P. Karampetakis Department of Mathematics Aristotle University of Thessaloniki Thessaloniki 54006,

Solution of this problem

1

1 , ,0

( , ) ( ) ( , ) ( )n

x x y i yi

Q x y g x g x y p y

If we do the same for the variable y , we will take the polynomial 1

2 , ,0

( , ) ( ) ( , ) ( )n

y x y i xi

Q x y g y g x y p x

The gcd will be

We use the previous algorithm with one difference: “when we calculate the GCD in variable x (in 1-d case) we take also the product of highest order coefficients of x in 1 1,ip x u r ”

So, when we are using the inverse DFT, we take as result the polynomial

1 2

2 12 1

( , ) ( , )( , ) ( , ) ( , )

( , ) ( , )

Q x c Q c yG x y Q x y Q x y

Q x c Q c y

Page 27: On the computation of the GCD (LCM) of 2-d polynomials N. P. Karampetakis Department of Mathematics Aristotle University of Thessaloniki Thessaloniki 54006,

Algorithm (GCD of 2-d polynomials)

Algorithm. (DFT computation of the gcd of 2-d polynomials)

Consider two polynomials

, 1 1 ( )A x y x x x y y and , 1 ( 2)B x y x x x y y

Page 28: On the computation of the GCD (LCM) of 2-d polynomials N. P. Karampetakis Department of Mathematics Aristotle University of Thessaloniki Thessaloniki 54006,

, 1 1 ( )A x y x x x y y and , 1 ( 2)B x y x x x y y

21( , ) 1Q x y x x y y

GCD GCD *

Step 1. Compute the 1

1 , ,0

( , ) ( ) ( , ) ( )n

x x y i yi

Q x y g x g x y p y

by (DFT algorithm)

with the interpolation points multiplied by arbitrary real numbers 1c and 2c , first by the variable y .

Page 29: On the computation of the GCD (LCM) of 2-d polynomials N. P. Karampetakis Department of Mathematics Aristotle University of Thessaloniki Thessaloniki 54006,

Computation of Q1(x,y)

Let 1 2 5c c . Then we will have

Step 1. Calculate the interpolation points.

1

0

2

2min deg ( 1) ( ) ,deg ( 1)( 2)( ) min 3,3

deg ( 1) ( ) deg ( 1)( 2)( ) 2 2 4

3

y

x x

yb x x y y x x x y y

b x x y y x x x y y

1

10

( 1) (3 1)(4 1) 20ii

R b

00 0

21 4

0 0

42 4

0 0

63 4

0 0

(0) 5 5

(1) 5 5

(2) 5 5

(3) 5 5

j

j

j

u W

u W e

u W e

u W e

1

21 5

1 1

42 5

1 1

63 5

1 1

84 5

1 1

(0) 5

(1) 5 5

(2) 5 5

(3) 5 5

(4) 5 5

j

j

j

j

u

u W e

u W e

u W e

u W e

Page 30: On the computation of the GCD (LCM) of 2-d polynomials N. P. Karampetakis Department of Mathematics Aristotle University of Thessaloniki Thessaloniki 54006,

Computation of Q1(x,y)Step 2. Determine the GCD of the polynomials 0 0( ),A u r y , 0 0( ),B u r y

multiplied by the highest order coefficients of 0 0( ),A u r y , 0 0( ),B u r y .

2,5 1 ( 5), ,5 1 ( 2) 5

,5 1 )5 (

5

55

5A x x x B x x x x

p x x x

Page 31: On the computation of the GCD (LCM) of 2-d polynomials N. P. Karampetakis Department of Mathematics Aristotle University of Thessaloniki Thessaloniki 54006,

, 1 1 ( )A x y x x x y y and , 1 ( 2)B x y x x x y y

* GCD3

2 ( , ) ( 1) ( 2)( )Q x y x x x y y GCD

Step 2. Compute the 1

2 , ,0

( , ) ( ) ( , ) ( )n

y x y i xi

Q x y g y g x y p x

by (DFT algorithm)

with the interpolation points multiplied by arbitrary real numbers 1c and 2c , first by the variable x .

Page 32: On the computation of the GCD (LCM) of 2-d polynomials N. P. Karampetakis Department of Mathematics Aristotle University of Thessaloniki Thessaloniki 54006,

Algorithm (GCD of 2-d polynomials)

Step 4. The CGD is 1 2

2 1

( , ) ( , )2 1( , ) ( , ), ( , ) ( , )Q x c Q c y

Q x c Q c yG x y Q x y Q x y

Step 3. Compute the 1-d polynomials 1( , )Q x c and 2 ( , )Q x c

1

32

( ,1.27) 1.6129( 1)( 1.27)

( ,1.27) 1.27( 1) ( 2)( 1.27)

Q x x x

Q x x x x

12

2

33

( ,1.27)( , ) ( , )

( ,1.27)

1.6129( 1)( 1.27)( 1) ( 2)( )

1.27( 1) ( 2)( 1.27)

1.27( 1)( )

Q xG x y Q x y

Q x

x xx x x y y

x x x

x x y y

Page 33: On the computation of the GCD (LCM) of 2-d polynomials N. P. Karampetakis Department of Mathematics Aristotle University of Thessaloniki Thessaloniki 54006,

Conclusions• An algorithm for the computation of the GCD and

LCM of two-variable polynomials has been developed, based on DFT techniques.

• Main advantages : a) speed and b) robustness, that all DFT techniques have.

• The proposed algorithm has been implemented in the Mathematica computer programming language.

Further work• Approximate GCD-LCM of 2-d polynomials.• Use of other interpolation techniques and packages

for the solution of the same problem and compare the computation complexity.

• Computational complexity and numerical accuracy.• GCD-LCM of 2-d polynomial matrices by using either

GCD Euclidean division algorithms of 1-D polynomial matrices (McDuffee, Wolovich), or algorithms based on real matrix operations (Emre and Silverman, Kung et. Al., Anderson et. Al.), or system theoretic approach (Silverman and Van Dooren)