Top Banner
On Nuclear Modification On Nuclear Modification of Bound Nucleons of Bound Nucleons G. Musulmanbekov JINR, Dubna, Russia e-mail:[email protected] Contents •Introduction •Strongly Correlated Quark Model •Quark Arrangement inside Nuclei •EMC – effect •Color Transparency •Conclusions
40

On Nuclear Modification of Bound Nucleons On Nuclear Modification of Bound Nucleons G. Musulmanbekov JINR, Dubna, Russia e-mail:[email protected] Contents.

Dec 31, 2015

Download

Documents

Gervais Webster
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: On Nuclear Modification of Bound Nucleons On Nuclear Modification of Bound Nucleons G. Musulmanbekov JINR, Dubna, Russia e-mail:genis@jinr.ru Contents.

On Nuclear Modification of Bound On Nuclear Modification of Bound NucleonsNucleons

G. Musulmanbekov JINR, Dubna, Russiae-mail:[email protected]

Contents•Introduction•Strongly Correlated Quark Model•Quark Arrangement inside Nuclei•EMC – effect •Color Transparency•Conclusions

Page 2: On Nuclear Modification of Bound Nucleons On Nuclear Modification of Bound Nucleons G. Musulmanbekov JINR, Dubna, Russia e-mail:genis@jinr.ru Contents.

Introduction

1. EMC – effect F₂A(x)/F₂D(x)

Regions of the effect * Shadowing * Antishadowing * EMC – effect * Fermi motion

Page 3: On Nuclear Modification of Bound Nucleons On Nuclear Modification of Bound Nucleons G. Musulmanbekov JINR, Dubna, Russia e-mail:genis@jinr.ru Contents.

Introduction

2. Color Transparency Quasielastic scattering

p+A pp+X at θcm=900

Observable:

T = σA/(Z σN)

4 6 8 10 12 14 160,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

Tra

nspa

renc

y

Beam Momentum, GeV/c

Page 4: On Nuclear Modification of Bound Nucleons On Nuclear Modification of Bound Nucleons G. Musulmanbekov JINR, Dubna, Russia e-mail:genis@jinr.ru Contents.

Introduction

2. Color Transparency Quasielastic scattering

e+A e`p+X

Observable:

T = σA/ σPWIA

Page 5: On Nuclear Modification of Bound Nucleons On Nuclear Modification of Bound Nucleons G. Musulmanbekov JINR, Dubna, Russia e-mail:genis@jinr.ru Contents.

Introduction

2. Color Transparency

Exclusive electroproduction of ρ0 in µA scattering

Observable: T = σA/(Aσ0)

Fit for specified Q2 region: σA = σ0Aα

Then T = Aα-1

Page 6: On Nuclear Modification of Bound Nucleons On Nuclear Modification of Bound Nucleons G. Musulmanbekov JINR, Dubna, Russia e-mail:genis@jinr.ru Contents.

Introduction

QCDQCD

Hadrons

Nuclei

Constituent Quarks Current Quarks

Chiral Symmetry BreakingChiral Symmetry Breaking

Quark ModelsQuark Models

Strongly Correlated Quark ModelG.Musulmanbekov, 1995

Page 7: On Nuclear Modification of Bound Nucleons On Nuclear Modification of Bound Nucleons G. Musulmanbekov JINR, Dubna, Russia e-mail:genis@jinr.ru Contents.

What is Chiral Symmetry and its Breaking?

• Chiral Symmetry

SU(3)L × SU(3)R for ψL,R = u, d, s

• The order parameter for symmetry breaking is quark or chiral condensate:

<ψψ> - (250 MeV)³, ψ = ≃ u,d,s.

• As a consequence massless valence quarks (u, d, s) acquie dynamical masses which we call constituent quarks

MC ≈ 350 – 400 MeV

Page 8: On Nuclear Modification of Bound Nucleons On Nuclear Modification of Bound Nucleons G. Musulmanbekov JINR, Dubna, Russia e-mail:genis@jinr.ru Contents.

Strongly Correlated Quark Model

(SCQM)

Attractive Force

Attractive Force

Vacuum polarization around single quark

Quark and Gluon Condensate

Vacuum fluctuations(radiation) pressure

Vacuum fluctuations(radiation) pressure

(x)

Page 9: On Nuclear Modification of Bound Nucleons On Nuclear Modification of Bound Nucleons G. Musulmanbekov JINR, Dubna, Russia e-mail:genis@jinr.ru Contents.

Interplay Between Current and Constituent Quarks Chiral Symmetry Breaking and Restoration Dynamical Constituent Mass Generation

2 0 21

0

1

x, fermi

Po

lari

zati

on

Fie

ld

2 0 20

0.5

1

x, fermi

Had

ron

ic M

att

er

Dis

trib

uti

on

d=0.64

t = 0

2 0 21

0

1

x, fermi

Po

lari

zati

on

Fie

ld

2 0 20

0.5

1

x, fermi

Had

ron

ic M

att

er

Dis

trib

uti

on

d=0.20

2 0 21

0

1

x, fermi

Po

lari

zati

on

Fie

ld

2 0 20

0.5

1

x, fermi

Had

ron

ic M

att

er

Dis

trib

uti

on

d=0.05

2 0 21

0

1

x, fermi

Po

lari

zati

on

Fie

ld

2 0 20

0.5

1

x, fermi

Had

ron

ic M

att

er

Dis

trib

uti

on

d=0.05

t = T/4

2 0 21

0

1

x, fermi

Po

lari

zati

on

Fie

ld

2 0 20

0.5

1

x, fermi

Had

ron

ic M

att

er

Dis

trib

uti

on

d=0.64 t = T/2

2 0 21

0

1

x, fermi

Po

lari

zati

on

Fie

ld

2 0 20

0.5

1

x, fermi

Had

ron

ic M

att

er

Dis

trib

uti

on

d=0.20

Page 10: On Nuclear Modification of Bound Nucleons On Nuclear Modification of Bound Nucleons G. Musulmanbekov JINR, Dubna, Russia e-mail:genis@jinr.ru Contents.

The Strongly Correlated Quark Model

Hamiltonian of the Quark – AntiQuark System

)2()1()1( 2/122/12 xV

mmH

qqq

q

q

q

, are the current masses of quarks, = (x) – the velocity of the quark (antiquark), is the quark–antiquark potential.

qm qm

qqV

)(

)1()(

)1( 2/122/12 xUm

xUm

Hq

q

q

q

)2(2

1)( xVxU

qq is the potential energy of the

quark.

Page 11: On Nuclear Modification of Bound Nucleons On Nuclear Modification of Bound Nucleons G. Musulmanbekov JINR, Dubna, Russia e-mail:genis@jinr.ru Contents.

Conjecture:

),(2),()(2 xMrxxdydzdxU Q

where is the dynamical mass of the constituent quark and

)()(

xMQQ

),,(),,(

),(),(

zyxxzyxxC

rxCrx

QQ

QQ

For simplicity

XAXA

rT

exp)(det

)(2/3

2/1

Page 12: On Nuclear Modification of Bound Nucleons On Nuclear Modification of Bound Nucleons G. Musulmanbekov JINR, Dubna, Russia e-mail:genis@jinr.ru Contents.

Quark Potential

I

II

U(x) > I – constituent quarksU(x) < II – current(relativistic) quarks

Page 13: On Nuclear Modification of Bound Nucleons On Nuclear Modification of Bound Nucleons G. Musulmanbekov JINR, Dubna, Russia e-mail:genis@jinr.ru Contents.

Generalization to the 3 – quark system (baryons)

ColorSU )3(

3 RGB,

_ 3 CMY

qq 1 33-

qqq 3 3

3

3

3

31- -

-

_ ( 3)Color

qq

Page 14: On Nuclear Modification of Bound Nucleons On Nuclear Modification of Bound Nucleons G. Musulmanbekov JINR, Dubna, Russia e-mail:genis@jinr.ru Contents.

The Proton

Page 15: On Nuclear Modification of Bound Nucleons On Nuclear Modification of Bound Nucleons G. Musulmanbekov JINR, Dubna, Russia e-mail:genis@jinr.ru Contents.

SCQM Chiral Symmerty Breaking

Consituent Current Quarks Consituent Quarks Asymptotic Freedom Quarks

t = 0x = xmax

t = T/4x = 0

t = T/2x = xmax

During the valence quarks oscillations:

...321332123211 gqqqcqqqqqcqqqcB

Page 16: On Nuclear Modification of Bound Nucleons On Nuclear Modification of Bound Nucleons G. Musulmanbekov JINR, Dubna, Russia e-mail:genis@jinr.ru Contents.

SCQM The Local Gauge

Invariance Principle  

Destructive Interference of color fields Phase rotation of the quark w.f. in color space:

Colorxig

Color xex )()( )(

Phase rotation in color space dressing (undressing) of the quark the gauge transformation );()()( xxAxA here

)0,0,0,( A

Page 17: On Nuclear Modification of Bound Nucleons On Nuclear Modification of Bound Nucleons G. Musulmanbekov JINR, Dubna, Russia e-mail:genis@jinr.ru Contents.

Parameters of SCQM for Proton

tot pp_

2.Amplitude of VQs oscillations : xmax=0.64 fm,

3.Constituent quark sizes (parameters of gaussian distribution): x,y=0.24 fm, z =0.12 fm

,36023

1)( max)(

MeVmm

xM NQQ

Parameters 2 and 3 are derived from the calculations of Inelastic Overlap Function (IOF) and in and pp – collisions.

1.Mass of Consituent Quark

Page 18: On Nuclear Modification of Bound Nucleons On Nuclear Modification of Bound Nucleons G. Musulmanbekov JINR, Dubna, Russia e-mail:genis@jinr.ru Contents.

Constituent Quarks – Solitons SCQM Breather Solution of Sine- Gordon

equation 0),(sin),( txtx

Breather – oscillating soliton-antisoliton pair, the periodic solution of SG:

2

21

1/cosh

1/sinhtan4),(

uxu

uuttx ass

The evolution of density profile of the soliton-antisoliton pair (breather)

x

txtx ass

ass

),(),(

is identical to that one of our quark-antiquark system.

Page 19: On Nuclear Modification of Bound Nucleons On Nuclear Modification of Bound Nucleons G. Musulmanbekov JINR, Dubna, Russia e-mail:genis@jinr.ru Contents.

Breather (soliton –antisoliton) solution of SG equation

Soliton – antisoliton potential

)(tanh2)( 2 mxMxV

Here M is the soliton mass

Page 20: On Nuclear Modification of Bound Nucleons On Nuclear Modification of Bound Nucleons G. Musulmanbekov JINR, Dubna, Russia e-mail:genis@jinr.ru Contents.

Quark PotentialQuark Potential

Uq xUq = 0.36tanh2(m0x)

Page 21: On Nuclear Modification of Bound Nucleons On Nuclear Modification of Bound Nucleons G. Musulmanbekov JINR, Dubna, Russia e-mail:genis@jinr.ru Contents.

Structure Function of Valence Quark in Proton

Page 22: On Nuclear Modification of Bound Nucleons On Nuclear Modification of Bound Nucleons G. Musulmanbekov JINR, Dubna, Russia e-mail:genis@jinr.ru Contents.

Summary on Quarks in Hadrons

  

• Quarks and gluons inside hadrons are strongly correlated;

• Hadronic matter distribution inside hadrons is fluctuating quantity;

• There are no strings stretching between quarks inside hadrons;

• Strong interactions between quarks are nonlocal: they emerge as the vacuum response on violation of vacuum homogeneity by embedded quarks;

• Maximal displacement of quarks in hadrons x 0.64f

• Sizes of the constituent quark: x,y 0.24f, z

0.12f

• Constituent quarks are identical to solitons.

Page 23: On Nuclear Modification of Bound Nucleons On Nuclear Modification of Bound Nucleons G. Musulmanbekov JINR, Dubna, Russia e-mail:genis@jinr.ru Contents.

Quark Arrangement inside Nuclei

QCDQCD

Hadrons Nuclei

Nuclear Models

Shell Models

Liquid Drop Model

Crystalline Models of Nuclei

Cluster Models

Page 24: On Nuclear Modification of Bound Nucleons On Nuclear Modification of Bound Nucleons G. Musulmanbekov JINR, Dubna, Russia e-mail:genis@jinr.ru Contents.

Two Nucleon System in SCQM

Quark Potential Inside Nuclei

Page 25: On Nuclear Modification of Bound Nucleons On Nuclear Modification of Bound Nucleons G. Musulmanbekov JINR, Dubna, Russia e-mail:genis@jinr.ru Contents.

Deutron

Spin Flip l = 2

qcNcNcD 622 3*

21

Page 26: On Nuclear Modification of Bound Nucleons On Nuclear Modification of Bound Nucleons G. Musulmanbekov JINR, Dubna, Russia e-mail:genis@jinr.ru Contents.

Three Nucleon Systems in SCQM

3H

3He

Page 27: On Nuclear Modification of Bound Nucleons On Nuclear Modification of Bound Nucleons G. Musulmanbekov JINR, Dubna, Russia e-mail:genis@jinr.ru Contents.

The closed shell n = 0, nucleus 4He

pp

n

d

d uu

u

u

d u

d

1

2 3

3He

4 5

6

n

u

d d

1

2 3

n

3He + neutron or 3H + proton

p n

n

u

du

u

u d

u

d

u

udd

12

3

6 5

4

pd

pd

u

ud

du

u

u

d u

d

u

5

6

2

13

dn

p

n

Connections 1 1 2 2 3 3

Page 28: On Nuclear Modification of Bound Nucleons On Nuclear Modification of Bound Nucleons G. Musulmanbekov JINR, Dubna, Russia e-mail:genis@jinr.ru Contents.

Binding Energy and Sizes of Nuclei

Nucleus EB, MeV < r2 >1/2, fm

deuteron 2.22 2.4

3H 8.48 1.7

3He 7.72 1.88

4He 28.29 1.67

6He 29.27

Page 29: On Nuclear Modification of Bound Nucleons On Nuclear Modification of Bound Nucleons G. Musulmanbekov JINR, Dubna, Russia e-mail:genis@jinr.ru Contents.

Hidden Color in Nuclei

Deuteron|6q> = c1|SS> + c2|CC>

c1 c2

deuteron

(6q)

15% 85%

triton

(9q)

9% 91%

4He

(12q)

2% 98%

Page 30: On Nuclear Modification of Bound Nucleons On Nuclear Modification of Bound Nucleons G. Musulmanbekov JINR, Dubna, Russia e-mail:genis@jinr.ru Contents.

The closed shell n = 1, 16O

6

1

3He

ndd

u

pd

u

up

u d

u

3He

p

d

uu

pu

u

d

u

nd d

n

d

dup

u d

u

n

d

du

3H

54

32

d un

d

up

d

u

n

d

du

3H

1

32

Page 31: On Nuclear Modification of Bound Nucleons On Nuclear Modification of Bound Nucleons G. Musulmanbekov JINR, Dubna, Russia e-mail:genis@jinr.ru Contents.

The closed shell n = 1, 16O

3

6

5

2

4

Page 32: On Nuclear Modification of Bound Nucleons On Nuclear Modification of Bound Nucleons G. Musulmanbekov JINR, Dubna, Russia e-mail:genis@jinr.ru Contents.

Face – Centered – Cubic Lattice Model (FCC) (N. Cook, 1987)

Page 33: On Nuclear Modification of Bound Nucleons On Nuclear Modification of Bound Nucleons G. Musulmanbekov JINR, Dubna, Russia e-mail:genis@jinr.ru Contents.

Face – Centered – Cubic Lattice

n - value j - value m - value

s - value i - value - clusters

40Ca

n=(x + y +z – 3)/2 =(r sincos + r sin sin + r cos - 3) / 2

j = l + s = (x + y – 1) / 2 = (r sincos + r sin sin

m = x / 2 = (r sincos

Page 34: On Nuclear Modification of Bound Nucleons On Nuclear Modification of Bound Nucleons G. Musulmanbekov JINR, Dubna, Russia e-mail:genis@jinr.ru Contents.

Conjecture: Current quark states in bound nucleons are suppressed

...321332123211* gqqqcqqqqqcqqqcN

)(/)()(/)( 22 xdxdxFxF DADA

Bound Nucleon, N*

suppressed

),(/)()(/)(**

22 xdxdxFxF NNNN

Bound Nucleon, N*

Page 35: On Nuclear Modification of Bound Nucleons On Nuclear Modification of Bound Nucleons G. Musulmanbekov JINR, Dubna, Russia e-mail:genis@jinr.ru Contents.

Method: Monte–Carlo Simulation

1. The Model of DIS: SCQM + VDM

Xpqqp

22 1

Qr qq

p

Page 36: On Nuclear Modification of Bound Nucleons On Nuclear Modification of Bound Nucleons G. Musulmanbekov JINR, Dubna, Russia e-mail:genis@jinr.ru Contents.

sxxM 212

Heisenberg inequality:

2. Calculation of cross sectons

Inelastic Overlap Function:

b2),(112)( dbsGs intot

Page 37: On Nuclear Modification of Bound Nucleons On Nuclear Modification of Bound Nucleons G. Musulmanbekov JINR, Dubna, Russia e-mail:genis@jinr.ru Contents.

Parameters of SCQM

Free Nucleon

Amplitude of VQs oscillations: xmax= 0.64 fm

Bound (distorted) nucleon:

Reduced amplitude of VQs oscillations

Displacement of the origin of VQs oscillations to the nucleon perephery

Adjusted values:xmin= 0.32 fm, xmax= 0.64 fm

Page 38: On Nuclear Modification of Bound Nucleons On Nuclear Modification of Bound Nucleons G. Musulmanbekov JINR, Dubna, Russia e-mail:genis@jinr.ru Contents.

Comparison with experiments

1. EMC – effect

)(/)( 22 xFxF DA

Page 39: On Nuclear Modification of Bound Nucleons On Nuclear Modification of Bound Nucleons G. Musulmanbekov JINR, Dubna, Russia e-mail:genis@jinr.ru Contents.

Comparison with experiments

2. Color Transparency “Breaking” in quasielastic scattering

p+A pp+X at θcm=900

Observable:

T = σA/(Z σN)

Page 40: On Nuclear Modification of Bound Nucleons On Nuclear Modification of Bound Nucleons G. Musulmanbekov JINR, Dubna, Russia e-mail:genis@jinr.ru Contents.

Conclusions

• EMC effect could be explained by valence quark momentum distribution reaggangements.

• Quasielastic proton – proton and lepton – proton scattering at high Q2 are not adequate reactions to observe Color Transparency

• Favorable reaction for CT observation is the Vector meson production in lepton – nucleus scattering at Q2