Top Banner
On Decoherence in Solid-State Qubits Josephson charge qubits Classification of noise, relaxation/decoherence Josephson qubits as noise spectrometers Decoherence of spin qubits due to spin-orbit coupling Gerd Schön Karlsruhe work with: Alexander Shnirman Karlsruhe Yuriy Makhlin Landau Institute Pablo San-José Karlsruhe Gergely Zarand Budapest and Karlsruhe Universität Karlsruhe (TH) http://www.tfp.uni-karlsruhe.de/
36

On Decoherence in Solid-State Qubits - Capri SchoolOn Decoherence in Solid-State Qubits • Josephson charge qubits • Classification of noise, relaxation/decoherence • Josephson

Mar 07, 2021

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: On Decoherence in Solid-State Qubits - Capri SchoolOn Decoherence in Solid-State Qubits • Josephson charge qubits • Classification of noise, relaxation/decoherence • Josephson

On Decoherence in Solid-State Qubits

• Josephson charge qubits• Classification of noise, relaxation/decoherence• Josephson qubits as noise spectrometers• Decoherence of spin qubits due to spin-orbit coupling

Gerd Schön Karlsruhe

work with:Alexander Shnirman Karlsruhe Yuriy Makhlin Landau InstitutePablo San-José KarlsruheGergely Zarand Budapest and Karlsruhe

UniversitätKarlsruhe (TH)

http://www.tfp.uni-karlsruhe.de/

Page 2: On Decoherence in Solid-State Qubits - Capri SchoolOn Decoherence in Solid-State Qubits • Josephson charge qubits • Classification of noise, relaxation/decoherence • Josephson

2 energy scales EC , EJcharging energy, Josephson coupling

2 degrees of freedomcharge and phase[ ]θ, n i= −

2 control fields: Vg and Φxgate voltage, flux

Vg

Φxn

tunable JE

2 states only, e.g. for EC » EJ

z xh xJgc1

2

1

2σ) ( ) σ(E EH V= − Φ−

0

g xJ

gC 2 θcos(π ) cos

eE

CH n

VE= − −

ΦΦ

2 ( )

Vgg

Φx /Φ0 Cg Vg/2e

Shnirman, G.S., Hermon (PRL 97)Makhlin, G.S., Shnirman (Nature 99)

1. Josephson charge qubits

Page 3: On Decoherence in Solid-State Qubits - Capri SchoolOn Decoherence in Solid-State Qubits • Josephson charge qubits • Classification of noise, relaxation/decoherence • Josephson

Observation of coherent oscillationsNakamura, Pashkin, and Tsai (Nature 99)

τop ≈ 100 psec, τϕ ≈ 5 nsec

z xg Jch11

2 2( )σ σE VH E= − −

( ) 0 1/ /e 0 e 1iE t iE tt a bψ − −= +h h

Qg/e

1

1

major source of decoherence:background charge fluctuations

Page 4: On Decoherence in Solid-State Qubits - Capri SchoolOn Decoherence in Solid-State Qubits • Josephson charge qubits • Classification of noise, relaxation/decoherence • Josephson

Quantronium (Saclay)

Operation at saddle point: to minimize noise effects

- voltage fluctuations couple transverse- flux fluctuations couple quadratically

2ch J

2 x0g0g x

1 1 2x z

1

2 4g xz

2δ δ V

E EV

H VEτ ττ Φ∂ ∂

∂ ∂Φ− ∆ Φ= − −

Charge-phase qubit EC ≈ EJ

0

g xJ

gC 2 θcos(π ) cos

eE

CH n

VE= − −

ΦΦ

2 ( )gate

Cg Vg/2eΦx /Φ0

Page 5: On Decoherence in Solid-State Qubits - Capri SchoolOn Decoherence in Solid-State Qubits • Josephson charge qubits • Classification of noise, relaxation/decoherence • Josephson

x y

z

x y

z

π2( )

xtd

ϕ= ∆ Eh dt

ϕ

ϕ

x y

z

ϕ

gatevoltage

time

π2( )

xσz final< > =cos

Ramsey fringes

Tool box:

1 1

2 2(cos sin )z z x yRH B t tσ ω σ ω σ= − − Ω +

1

2' xRH σ= − Ωin rotating frame

(unitary transformation)

operate at resonance zBω =

in lab frame

Free decay (Ramsey fringes)

Echo signal

π/2 π/2

π/2 π π/2

0

0

t

tt/2

τ

Echo experiment

Rabi oscillations

Page 6: On Decoherence in Solid-State Qubits - Capri SchoolOn Decoherence in Solid-State Qubits • Josephson charge qubits • Classification of noise, relaxation/decoherence • Josephson

0 200 400 600 800

25

30

35

40

45

50

55detuning=50MHz

T2 = 300 ns

switc

hing

pro

babi

lity

(%)

Delay between π/2 pulses (ns)

Decay of Ramsey fringes at optimal point

π/2 π/2

Vion et al. (Science 02)

Page 7: On Decoherence in Solid-State Qubits - Capri SchoolOn Decoherence in Solid-State Qubits • Josephson charge qubits • Classification of noise, relaxation/decoherence • Josephson

Experiments Vion et al.

Gaussian noiseSδ

ω1/ω

4MHz

SNg

ω

1/ω

0.5MHz

-0.3 -0.2 -0.1 0.0

10

100

500

Coh

eren

ce ti

mes

(ns)

Φx/Φ0

0.05 0.10

10

100

500Free decaySpin echo

|Ng-1/2|

Page 8: On Decoherence in Solid-State Qubits - Capri SchoolOn Decoherence in Solid-State Qubits • Josephson charge qubits • Classification of noise, relaxation/decoherence • Josephson

Sources of noise- noise from control and measurement circuit, Z(ω)- background charge fluctuations- …

Properties of noise- spectrum: Ohmic (white), 1/f, ….- Gaussian or non-Gaussian

coupling:

longitudinal – transverse – quadratic (longitudinal) …

zz bathxz22

11 11

2 422 = H E XX HX ττ ττ ⊥− ∆ − − − +

B

1

2

1

( ) ( ), (0)

coth , / , ...2

Xi tS dt X t X

k T

e ωω

ωω ω

+=

∫h

2. Noise and Decoherence

Page 9: On Decoherence in Solid-State Qubits - Capri SchoolOn Decoherence in Solid-State Qubits • Josephson charge qubits • Classification of noise, relaxation/decoherence • Josephson

Ohmic

Spin bath

1/f(Gaussian)

model

noise

Bosonic bath

Quantum Baths

Page 10: On Decoherence in Solid-State Qubits - Capri SchoolOn Decoherence in Solid-State Qubits • Josephson charge qubits • Classification of noise, relaxation/decoherence • Josephson

Bloch equations, relaxation (Γrel = 1/T1) and dephasing (Γϕ = 1/τϕ =1/T2)

( )1 2

01 1 ( )z z x x y y

d M M M Mdt T T

= × − − − +M B M e e eBloch (46,57)Redfield (57)

[ ]Trσ σρ= =M

00 01

10 11

ρ ρρ

ρ ρ

=

00 00 11

11 00 11

01 01 01zBi ϕ

ρ ρ ρρ ρ ρρ ρ ρ

↑ ↓

↑ ↓

= −Γ +Γ

= Γ −Γ

= − −Γ

&

&

&

0

rel ( ) /( )M

↑ ↓

↓ ↑ ↑ ↓

Γ = Γ + Γ

= Γ − Γ Γ + Γ

Relaxation (T1) and Dephasing (T2)

2-level system: relaxation of density matrix

↓Γ0

1

Relaxation

2

2

00 + 1

1a

b

p aa b

p b

=

=→

probability

ϕΓ

Dephasing

Page 11: On Decoherence in Solid-State Qubits - Capri SchoolOn Decoherence in Solid-State Qubits • Josephson charge qubits • Classification of noise, relaxation/decoherence • Josephson

Transverse coupling ⇒ relaxation

1 12 2z x BathH E X Hτ τ= − ∆ − +

Golden Rule:

( )

( )

[ ]

2

,

,

2

2

2

/

/

2 1 0, | |1,4

2 1 1| | | | exp /4 2

1 | ( ) (0) | exp /4

1 ( ) (0)41 ( ) (0)

4

Bath

Bath

Bath

i fi f

i fi f

i

xii

ii

ii

E

E

i X f E E E

i X f f X i dt i E E E t

dt i X t X i i Et

X t X

X t X

ω

ω

π ρ σ δ

π ρπ

ρ

=∆

=−∆

Γ = + ∆ −

= + ∆ −

= ∆

Γ =

Γ =

∑ ∫

∑∫

h

h

h

hh h

hh

h

h

21

rel1 1 ( / )

2 XS ET

ω↑ ↓≡ Γ = Γ + Γ = = ∆ hh

compare “P(E)-theory”

Page 12: On Decoherence in Solid-State Qubits - Capri SchoolOn Decoherence in Solid-State Qubits • Josephson charge qubits • Classification of noise, relaxation/decoherence • Josephson

Longitudinal coupling ⇒ pure dephasing

1 12 2z z BathH E X Hτ τ= − ∆ − +

X(t) treated as classical, Gaussian random field

0

1 2 1 220 0

01 exp ( )1

( ) ( )2

( ) expt t tiX d d d X Xt τ τ τ τ τ τρ −

∝ = ∫ ∫ ∫

h h

2

2 2 2

1 sin ( / 2) 1exp ( ) exp ( 0)2 2 ( / 2) 2X X

d tS S tω ωω ωπ ω

= − ≈ − ≈

∫h h

2

2

sin ( / 2) 2 ( )( / 2)

t tω πδ ωω

2* 1 ( 0)

2 XSϕ ωΓ = ≈h

“Golden-rule” approximation:

0 0

01 ( ) ( )exp exp( ) 0 (0) 1t ti iH d H dt T Tτ τ τ τρ ρ− =

∫ ∫h h

off-diagonal comp. of density matrix

Page 13: On Decoherence in Solid-State Qubits - Capri SchoolOn Decoherence in Solid-State Qubits • Josephson charge qubits • Classification of noise, relaxation/decoherence • Josephson

Dephasing due to 1/f noise, T=0, nonlinear coupling, … ?

rel1

21

2s n( i1 )XS E

Tω η= Γ = = ∆

1

2

2

1 1

2 2co1 1 ( 0) sXST Tϕ ω η= Γ = + ≈

exponential decay law

pure dephasing: *ϕΓ

1 1 1

2 2 2co ss i n z z x BathH E X X Hητ τ η τ= − ∆ − − +

General linear coupling

Golden rulete−Γ∝

Example: Nyquist noise due to R(fluctuation-dissipation theorem)

( ) coth2VB

S Rk Tδωω ω=h

h

relB

2 coth/ 2R E Eh e k T

∆ ∆Γ ∝

h

* B2/k TR

h eϕΓ ∝h

Page 14: On Decoherence in Solid-State Qubits - Capri SchoolOn Decoherence in Solid-State Qubits • Josephson charge qubits • Classification of noise, relaxation/decoherence • Josephson

1

2( ) z BathH E X Hτ= − ∆ + +

Golden rule* 1

2( 0)XSϕ ωΓ = =

( )2

1/ for 0| |

fX

ES ω ω

ω= →∞ →

fails for 1/f noise,

where

2

01 20

21/ 2

1

2

sin ( / 2)( ) exp ( ) exp ( )2 ( / 2)

exp ln | |2

t

X

fir

d tt i X d S

Et t

ω ωρ τ τ ωπ ω

ωπ

= = −

= −

∫ ∫

2

2

sin ( / 2)( ) regular 2 ( )

( / 2)X

tS t

ωω π δ ω

ω⇒ = ⇒

Cottet et al. (01)

Non-exponential decay of coherence

Golden rule, exponential decay

1/f noise, longitudinal linear coupling

Page 15: On Decoherence in Solid-State Qubits - Capri SchoolOn Decoherence in Solid-State Qubits • Josephson charge qubits • Classification of noise, relaxation/decoherence • Josephson

At symmetry point: Quadratic longitudinal 1/f noise

Shnirman, Makhlin (PRL 03)

E. Paladino et al. 04D. Averin et al. 03

static noise (random distribution of value X)

long t:

1/f spectrum ‘‘quasi-static”

short t:

Page 16: On Decoherence in Solid-State Qubits - Capri SchoolOn Decoherence in Solid-State Qubits • Josephson charge qubits • Classification of noise, relaxation/decoherence • Josephson

Fitting the experiment

G. Ithier, E. Collin, P. Joyez, P.J. Meeson, D. Vion, D. Esteve, F. Chiarello, A. Shnirman, Y. Makhlin, J. Schriefl, GS, PRB 2005

Page 17: On Decoherence in Solid-State Qubits - Capri SchoolOn Decoherence in Solid-State Qubits • Josephson charge qubits • Classification of noise, relaxation/decoherence • Josephson

Longitudinal coupling: exact quantum mechanical solutionreduced density matrix

Low-Temperature Dephasing 1

2( ) z BathH E X Hτ= − ∆ + +

Factorized initial conditions:

‘Keldysh’-contour

σ = +1

σ = -1

Page 18: On Decoherence in Solid-State Qubits - Capri SchoolOn Decoherence in Solid-State Qubits • Josephson charge qubits • Classification of noise, relaxation/decoherence • Josephson

Longitudinal coupling: exact quantum mechanical solution, ctd.

• Polarized bath (bath relaxed to state with spin pointing up)

• Unpolarized bath (no interaction between spin and bath before t=0)

compare P(E) theory

Page 19: On Decoherence in Solid-State Qubits - Capri SchoolOn Decoherence in Solid-State Qubits • Josephson charge qubits • Classification of noise, relaxation/decoherence • Josephson

Longitudinal coupling: Ohmic spectrum

Page 20: On Decoherence in Solid-State Qubits - Capri SchoolOn Decoherence in Solid-State Qubits • Josephson charge qubits • Classification of noise, relaxation/decoherence • Josephson

A. Shnirman, G.S., NATO ARW "Quantum Noise in Mesoscopic Physics", Delft, 2002cond-mat/0210023

• in general no exponential decay• dephasing in finite time even at T = 0• decay may depend on cutoff ωc (due to factorization of ρ(0))

Page 21: On Decoherence in Solid-State Qubits - Capri SchoolOn Decoherence in Solid-State Qubits • Josephson charge qubits • Classification of noise, relaxation/decoherence • Josephson

( ) ( )1 1

2

1

2 2cos sinzz xtH XE X t η ττ η τ= − ∆ − −

2 2Jch ( ) ( )g xE E V E∆ = ∆ + Φ

J chtan ( ) / ( )x gE E Vη = Φ ∆eigenbasis of qubit

Josephson qubit + dominant background charge fluctuations

Jch1 1 1

2 2 2( ) ( ) ( )g xz x zH E V E X tσ σ σ= − ∆ − Φ −

3. Noise Spectroscopy via JJ Qubits

probed in exp’s

transverse componentof noise ⇒ relaxation

2

1rel

1

2

1 ( ) sinXS ET

ω η≡ Γ = = ∆

*1/*

2

1 cosfET ϕ η≡ Γ ∝

longitudinal componentof noise ⇒ dephasing

( )2

1/

| |f

X

ES ω

ω=1/f noise

21/ 2 2

01( ) exp cos ln2

fir

Et t tρ η ω

π

= −

Astafiev et al. (NEC)Martinis et al., …

Page 22: On Decoherence in Solid-State Qubits - Capri SchoolOn Decoherence in Solid-State Qubits • Josephson charge qubits • Classification of noise, relaxation/decoherence • Josephson

Relaxation (Astafiev et al. 04)2

rel1

2( ) sinXS Eω ηΓ = = ∆

data confirm expecteddependence on

22

xJ2 2

g xJch

( )sin( ) ( )E

E V Eη Φ=∆ + Φ

⇒ extract ( )XS Eωω= ∆

1 10 100

1E-8

1E-7

1E-6

1E-5

1E-4

Sq (a

rb.u

.)

f (Hz)

1/f

( )2

1/ fX

ES ω

ω=

T 2 dependence of 1/f spectrum observed earlier by F. Wellstood, J. Clarke et al.

Low-frequency noise and dephasing

0 100 200 300 400 500 600 700 800 900 10000.000

0.005

0.010

0.015 Dephasinglow frequency 1/f noise

α1/2 (e

)

T (mK)

21/

2fE a T=

*1/*

2

1fE

T ϕ≡ Γ ∝

E1/f

Page 23: On Decoherence in Solid-State Qubits - Capri SchoolOn Decoherence in Solid-State Qubits • Josephson charge qubits • Classification of noise, relaxation/decoherence • Josephson

same strength for low- and high-frequency noise

a( )BB

B

2

( ) for

o

f r

XSa

kk

T

k

T

a T

ω ωω

ωω

h

h

h

h

Astafiev et al. (PRL 04)

1 10 100107

108

109

2e2Rω/ћ

πS X

(ω)/2ћ2

(s)

ω/2π(GHz)ωc

/ћ2ωE1/f2

Relation between high- and low-frequency noise

Page 24: On Decoherence in Solid-State Qubits - Capri SchoolOn Decoherence in Solid-State Qubits • Josephson charge qubits • Classification of noise, relaxation/decoherence • Josephson

• Qubit used to probe fluctuations X(t)

• each TLS is coupled (weakly) to thermal bath Hbath.j at T and/or other TLS

⇒ weak relaxation and decoherence 2 2,rel, , j jj jj Eϕ ε→ Γ Γ << = + ∆

• Source of X(t): ensemble of ‘coherent’ two-level systems (TLS)

High- and low-frequency noise from coherent two-level systems

qubit

TLS

TLS

TLS

TLS

TLS

,rel, , jj ϕΓ Γ bath

inter-action

Page 25: On Decoherence in Solid-State Qubits - Capri SchoolOn Decoherence in Solid-State Qubits • Josephson charge qubits • Classification of noise, relaxation/decoherence • Josephson

Spectrum of noise felt by qubit

distribution of TLS-parameters, choose

exponential dependence on barrier height for 1/ffor linear ω-dependence

overall factor

• One ensemble of ‘coherent’ TLS

• Plausible distribution of parameters produces:~ ε→ Ohmic high-frequency (f) noise ~ 1/∆ → 1/f noise - both with same strength a

- strength of 1/f noise scaling as T2

- upper frequency cut-off for 1/f noise

Shnirman, GS, Martin, Makhlin (PRL 05)

low ω: random telegraph noiselarge ω: absorption and emission

Page 26: On Decoherence in Solid-State Qubits - Capri SchoolOn Decoherence in Solid-State Qubits • Josephson charge qubits • Classification of noise, relaxation/decoherence • Josephson

4. Decoherence of Spin Qubits in Quantum Dotswith Spin-Orbit Coupling

Coherent Manipulation of Coupled Electron Spins in Semiconductor Quantum DotsPetta et al., Science, 2005

Page 27: On Decoherence in Solid-State Qubits - Capri SchoolOn Decoherence in Solid-State Qubits • Josephson charge qubits • Classification of noise, relaxation/decoherence • Josephson

What is spin decoherence at ?

Spin Decoherence

Published work concerned with large ,fluctuations due to piezoelectric phononscouple via spin-orbit interaction to spin need breaking of time reversal symmetry → vanishing decoherence for

(Nazarov et al., Loss et al., Fabian et al., …)

0B =ur

Bur

0B =ur

P. San-Jose, G. Zarand, A. Shnirman, and G. Schön,Geometrical spin dephasing in quantum dots, cond-mat/0603847

The combination of two independent fluctuating field and spin-orbit interaction leads to decoherence of spin at

based on a random Berry phase.0B =

ur

Page 28: On Decoherence in Solid-State Qubits - Capri SchoolOn Decoherence in Solid-State Qubits • Josephson charge qubits • Classification of noise, relaxation/decoherence • Josephson

Model Hamiltonian

bath1 1 1 1

2 2 2 2 = ( ) ( , )z y x zH Hb ZB ZX Xµ σ ετ τ σ τ τ− ⋅ − − ⋅ − + +

rur ur ur

= strength of s-o interactiondirection depends on asymmetries

br

spin + ≥ 2 orbital states + spin-orbit couplingnoise coupling to orbital degrees of freedom

dot2 orbital

states

noise2 independent fluct. fieldscoupling to orbital degrees of freedom

spin-orbitspin

Page 29: On Decoherence in Solid-State Qubits - Capri SchoolOn Decoherence in Solid-State Qubits • Josephson charge qubits • Classification of noise, relaxation/decoherence • Josephson

dot noise1

2s-o = ( , , , ) ( , , , )x yH XB H x y p p H H x Zyµ σ− ⋅ + + +

ur ur

2 2s-o ( ) ( ) ( )y x x y x x y y x y x y x yH p p p p p p p pα σ σ β σ σ γ σ σ= − + − + + −

Rashba + Dresselhaus + cubic Dresselhaus

Specific physical system: Electron spin in double quantum dot

ε + Z(t)

X(t)

2 orbital states:

20 1

...

0

y x x yx

y

z

b

b

p p

b

i p pα β γ= − +

=

=

y1

2s-o = bH τ σ− ⋅

r ur

noise1

2( ) = ( )( )x zZ tX tH τ τ− +

• Phonons with 2 indep. polarizations

• Ohmic fluctuations due to circuit

• Charge fluctuators near quantum dot

,( () )X t Z t

FluctuationsSpectrum:

, 3s sω ≥/ ( )X ZS ω ∝ ω

1/ω

Page 30: On Decoherence in Solid-State Qubits - Capri SchoolOn Decoherence in Solid-State Qubits • Josephson charge qubits • Classification of noise, relaxation/decoherence • Josephson

1 1 1 1z x z y

2 2 2 2( = [ ( )) ] ( )Z tX t hbH tετ τ τ τ τ±± − − + ± = − ⋅

rr r

= natural quantization axis for spin br

,x

,y

,z

( ) sin ( ) co( ) s ( )( ) sin ( ) sin ( )

( ) cos (

( )

( )

( )

( ) )

h t t th

X t

Z t

t t t

h t

h th t

h t t

bθ ϕ

θ ϕ

ε θ

±

±

±

= =

= ± = ±

= + =

1 1 1z x z y

2 2 2 = ( )XH bZετ τ τ τ σ− − + − ⋅

r ur0B =

ur

For two projections ± of the spin along br

For each spin projection ±we consider orbital ground state

Ground (and excited) states 2-fold degenerate due to spin (Kramers’ degeneracy)

0 01

2( )E h t E++ −= − =

r

ϕ−ϕ

θ

x

y

z

( )h t+

r( )h t−

r

b-b

Page 31: On Decoherence in Solid-State Qubits - Capri SchoolOn Decoherence in Solid-State Qubits • Josephson charge qubits • Classification of noise, relaxation/decoherence • Josephson

ϕ−ϕ

θ

x

y

z

( )h t+

r( )h t−

r

In subspace of 2 orbital ground states for + and - spin state:

+eff

2 = cos bH i U U ϕ θ σ− = ur

hh

Instantaneous diagonalization introduces extra term in Hamiltonian

+ += H U HU i U U− h

Gives rise to Berry phase

+ eff,+12

12

1= d ( ) d cos

d cos

t H t tφ ϕ θ

ϕ θ

=

∫ ∫

∫h

, , ( ( )) Z tX tφ φ φ ϕ θ+ −∆ = − ↔ ↔

random Berry phase ⇒ dephasing

Page 32: On Decoherence in Solid-State Qubits - Capri SchoolOn Decoherence in Solid-State Qubits • Josephson charge qubits • Classification of noise, relaxation/decoherence • Josephson

( )bounded 3/ 22 2( ( )cos )bdt dt X dt t

bXZ tφ ϕ θ φ

ε ∆ = = + +

∫ ∫ ∫

X(t) and Z(t) independent⇒ effective power spectrum

and dephasing rate ( )2

32 2

2

0( ( )) ZX

Tb db

SSϕ ω ωωε

ωΓ =+

Estimate for GaMnAs quantum dot

level spacing ω0 = 1 K

T = 100 mK

• Nonvanishing dephasing for zero magnetic field• due to geometric origin (random Berry phase)

4( 0) 1...10 HzBϕΓ = =

P. San-Jose, G. Zarand, A. Shnirman, GS, cond-mat/0603847

Page 33: On Decoherence in Solid-State Qubits - Capri SchoolOn Decoherence in Solid-State Qubits • Josephson charge qubits • Classification of noise, relaxation/decoherence • Josephson

Conclusions

• Progress with solid-state qubits

Josephson junction qubitsspins in quantum dots

• Crucial: understanding and control of decoherence

optimum point strategy for JJ qubits: τϕ ≥ 1 µsec >> τop ≈ 1…10 nsecorigin and properties of noise sources (1/f, …)mechanisms for decoherence of spin qubits

• Application of Josephson qubits:

as spectrum analyzer of noise

Page 34: On Decoherence in Solid-State Qubits - Capri SchoolOn Decoherence in Solid-State Qubits • Josephson charge qubits • Classification of noise, relaxation/decoherence • Josephson

Selected References

Yu. Makhlin, G. Schön, and A. Shnirman, Quantum-state engineering with Josephson-junction devices, Rev. Mod. Phys. 73, 357 (2001)

A. Shnirman and G. Schön,Dephasing and renormalization of quantum two-state systemsin "Quantum Noise in Mesoscopic Physics", Y.V. Nazarov (ed.), p. 357, Kluwer (2003), Proceedings of NATO ARW "Quantum Noise in Mesoscopic Physics", Delft, 2002cond-mat/0210023

Yu. Makhlin and A. Shnirman, Dephasing of solid-state qubits at optimal points, Phys. Rev. Lett. 92, 178301 (2004)

A. Shnirman, G. Schön, I. Martin, and Yu. Makhlin, Low- and high-frequency noise from coherent two-level systems, Phys. Rev. Lett. 94, 127002 (2005)

P. San-Jose, G. Zarand, A. Shnirman, and G. Schön,Geometrical spin dephasing in quantum dots, cond-mat/0603847

Page 35: On Decoherence in Solid-State Qubits - Capri SchoolOn Decoherence in Solid-State Qubits • Josephson charge qubits • Classification of noise, relaxation/decoherence • Josephson

Preparation Effects Introduce frequency scale

Slow modes dephasing, fast modes renormalization

a) Initially

ground state of

b) pulse

implemented as

Slow oscillators do not reactFast oscillators follow adiabatically

BUT

Page 36: On Decoherence in Solid-State Qubits - Capri SchoolOn Decoherence in Solid-State Qubits • Josephson charge qubits • Classification of noise, relaxation/decoherence • Josephson

c) Free evolution, dephasing

d) pulse

e) Measurement of

Slow oscillators ⇒ dephasing

Fast oscillators ⇒ renormalization

Appropriate basis: renormalized (dressed) spin