Top Banner
1 On-Chip Avalanche Detectors for Deterministic Doping of Silicon Nano-Devices with sub-10 keV single ion implantation Changyi Yang 1 , David Jamieson 1 , Jessica van Donkelaar 1 , Andrew Alves 1 , Samuel Thompson 1 , Alberto Cimmino 1 , Jonathan Newnham 1 , Andrea Morello 2 and Andrew Dzurak 2 1 Centre for Quantum Computer Technology, School of Physics, University of Melbourne, Victoria 3010, Australia 2 Centre for Quantum Computer Technology, Schools of Electrical Engineering & Physics, NSW 2052, Australia Supported by the Australian Research Council Centre of Excellence Scheme Supported by the Army Research Office DAAD19-01-1-0653 1 Silicon S&T Quantum Computing 4th Annual Workshop, Albuquerque, New Mexico, August 23-24, 2010
22

On-Chip Avalanche Detectors for Deterministic Doping of ... · 1 On-Chip Avalanche Detectors for Deterministic Doping of Silicon Nano-Devices with sub-10 keV single ion implantation

Nov 01, 2019

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: On-Chip Avalanche Detectors for Deterministic Doping of ... · 1 On-Chip Avalanche Detectors for Deterministic Doping of Silicon Nano-Devices with sub-10 keV single ion implantation

1

On-Chip Avalanche Detectors for Deterministic Doping

of Silicon Nano-Devices with sub-10 keV single ion implantation

Changyi Yang1, David Jamieson1, Jessica van Donkelaar1, Andrew Alves1, Samuel Thompson1,

Alberto Cimmino1, Jonathan Newnham1, Andrea Morello2 and Andrew Dzurak2

1Centre for Quantum Computer Technology, School of Physics, University of Melbourne, Victoria 3010, Australia

2Centre for Quantum Computer Technology, Schools of Electrical Engineering & Physics, NSW 2052, Australia

Supported by the Australian Research

Council

Centre of Excellence SchemeSupported by the Army Research Office

DAAD19-01-1-0653

1Silicon S&T Quantum Computing 4th Annual Workshop,

Albuquerque, New Mexico, August 23-24, 2010

Page 2: On-Chip Avalanche Detectors for Deterministic Doping of ... · 1 On-Chip Avalanche Detectors for Deterministic Doping of Silicon Nano-Devices with sub-10 keV single ion implantation

2

Single ion implantation: bulky silicon versus epi-Si

Bulky silicon devices:

• Single ion � ionization �e-h pairs

• Charge carrier diffusing/drifting in bulky Si

• Charge trapping loss negligible

• 100% charge collection (PIN)

• >>100% charge collection (APD)

APD Geiger-mode: non-linear

Sensitivity: 1 e-h pair;

J. A. Seamons and et al., APL2008 (SNL).

Epi-Si/SiO2 , nano-device:

• Single ion � D-S current modulation

• As a method to control single ion doping

Johnson and et al.,

APL 2010 (Univ of

Melb)

A. Batra and et

al., APL 2007

(LBNL)

PIN linear charge measurement:

Jamieson and et al, APL 2005 (Univ of Mel)

Single ion induced secondary electron emission A. Persaud and et al., J. Vac. Sci. Technol. B 23, 2798 (2005). Nano Letters 2005. (LBNL).

T. Shinada and et al., Nature 2005 (Waseda Univ.)

5 nm SiO2

Si

5 nm SiO2

BOX

Epi-Si

Page 3: On-Chip Avalanche Detectors for Deterministic Doping of ... · 1 On-Chip Avalanche Detectors for Deterministic Doping of Silicon Nano-Devices with sub-10 keV single ion implantation

3

PIN detectors with different structure of surface electrodes

• Simple design

• Good performance• Acceptable detection limit:

~ 1 keV (300 e-h pairs)

• Electrodes integration• Larger capacitance

• Higher noise threshold

• Poorer detection limit:~ 1.5-2.5 keV

Page 4: On-Chip Avalanche Detectors for Deterministic Doping of ... · 1 On-Chip Avalanche Detectors for Deterministic Doping of Silicon Nano-Devices with sub-10 keV single ion implantation

4

Detector performance: simple electrodes at surface

Summary on the PIN detector performance:

• Smaller active detector area

• Small capacitance

• Easy control of leakage current

• Lower numbers of trapping defects

• Detection limit 1keV (~ 300 e-h pair charge)

Page 5: On-Chip Avalanche Detectors for Deterministic Doping of ... · 1 On-Chip Avalanche Detectors for Deterministic Doping of Silicon Nano-Devices with sub-10 keV single ion implantation

5

Control of single ion implantation and on-line detection

� Numbers of e-h pair per single 14 keV P+ ion excitation:

N=Eioniz(eV)/3.62(eV) [e-h pair] ~ 1000 [e-h pair].

� Charge carriers have a very long life time in a high quality indirect band-gap silicon.

Page 6: On-Chip Avalanche Detectors for Deterministic Doping of ... · 1 On-Chip Avalanche Detectors for Deterministic Doping of Silicon Nano-Devices with sub-10 keV single ion implantation

6

14 keV P+ implantation – single event identification

DP1-Pin17,single P+

4.7 keV

pin 17 - P1

-1

0

1

2

3

4

5

0 50 100 150 200 250 300 350 400

Time (µs)

Vo

lta

ge

(V

)

DP1-pin11,single P+

5.54 KeV

pin 11 - P2

-1

0

1

2

3

4

5

6

0 50 100 150 200 250 300 350 400

Time (µs)

Vo

lta

ge

(V

)

1. Count no any event at energy threshold 2.4 keV when beam blanked.

2. Use Gaussian pulse shape toscreen against noise events.

3. Implant 14 keV 1.5 pA P+ beam into QC devices for an average time period of 10-30 seconds for each single P+ ion.

pin 2 - P1

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

0 50 100 150 200 250 300 350 400

Time (µs)

Vo

lta

ge

(V

)

pin 11 - P1

-1

-0.5

0

0.5

1

1.52

2.5

3

3.5

4

0 50 100 150 200 250 300 350 400

Time (µs)

Vo

lta

ge

(V

)

pin 17 - P1

-1

0

1

2

3

4

5

0 50 100 150 200 250 300 350 400

Time (µs)

Vo

lta

ge

(V

)

pin 17 - P2

-1

0

1

2

3

4

5

6

7

0 50 100 150 200 250 300 350 400

Time (µs)

Vo

lta

ge

(V

)

pin 18 - P2

-1

0

1

2

3

4

5

0 50 100 150 200 250 300 350 400

Time (µs)

Vo

lta

ge

(V

)

pin 11 - P2

-1

0

1

2

3

4

5

6

0 50 100 150 200 250 300 350 400

Time (µs)

Vo

lta

ge

(V

)P+

Questionable

event:

Pile-up signals or

Cosmic-ray

P+P+

P+P+

P+ ?

• Real single P+ events can can be clearly identified.

• There is a small chanceof events pile-ups or a disturbance of cosmic-raymay introduce a P+ eventlike signals.

Page 7: On-Chip Avalanche Detectors for Deterministic Doping of ... · 1 On-Chip Avalanche Detectors for Deterministic Doping of Silicon Nano-Devices with sub-10 keV single ion implantation

7

Integrated devices with additional surface structure

N.S. Lai and et al., IEEE Nano2009

Page 8: On-Chip Avalanche Detectors for Deterministic Doping of ... · 1 On-Chip Avalanche Detectors for Deterministic Doping of Silicon Nano-Devices with sub-10 keV single ion implantation

8

IBIC (0.5 MeV He+) Optical image

New detector architecture with guard ring and channels stoppers

Page 9: On-Chip Avalanche Detectors for Deterministic Doping of ... · 1 On-Chip Avalanche Detectors for Deterministic Doping of Silicon Nano-Devices with sub-10 keV single ion implantation

9

PIN detector:

� Noise threshold: 1.0 keV � 2.5 keV

� Signal-to-noise ratio 3.5 � 1.4

� Successful application in single 14 keV

P+ ion implantation and nano-fabrication

of QC devices

Avalanche detector:

� Noise threshold: ~ far less than 1 keV

� Signal-to-noise-ratio: very high

� Improvement of the detection limit of the

ionization energy for the low-energy- heavy

ion implantation:

14 keV P+ ionization energy ~ 3.5 keV

7 keV P+ ionization energy ~1.5 keV

� Shallower depth & Improving position accuracy:

- Shallower implantation depth: 20 nm � 15 nm

- Less straggling:

14 keV P+: 10 nm uncertainty

7 keV P+: 6 nm uncertainty

PIN versus APD detector

Page 10: On-Chip Avalanche Detectors for Deterministic Doping of ... · 1 On-Chip Avalanche Detectors for Deterministic Doping of Silicon Nano-Devices with sub-10 keV single ion implantation

10

Fabrication Precision: CTAP with 7 keV P+ doping

500nm

14keV Ar+ in PMMA

56% Yield for56% Yield for56% Yield for56% Yield for7 keV 7 keV 7 keV 7 keV P:SiP:SiP:SiP:Si�

14 keV P 7 keV PSRIM Present Future

Oxide thickness 5 nm 2 nm

Beam Energy 14 keV 7 keV

Range and

straggle

22 ± 10

nm

13 ± 6 nm

Energy to

ionization

3.5 keV 1.5 keV

Noise threshold 1.1 keV < 1 keV

FutureFutureFutureFuturePresentPresentPresentPresent

Page 11: On-Chip Avalanche Detectors for Deterministic Doping of ... · 1 On-Chip Avalanche Detectors for Deterministic Doping of Silicon Nano-Devices with sub-10 keV single ion implantation

11

Investigation of Avalanche detector for linear mode operation

e

2.0 MeV He+

2.5 MeV H+

Charge gain not uniform:

� Ions incident in avalanche zone

� The e-carrier never experience a full drifting process.

� The e-carrier may not gain a sufficient velocity

in avalanche zone before ending the ionization process.

ions

e

Uniform charge gain:

� Ions incident in drift zone

� The e-carrier reaches a high saturation

velocity in drift zone

� The e-carrier gains a high velocity in avalanche zone and make a large ionization impact.

Drifting at < 104 V/cm

e-carrier: <107 cm/s

avalanche process

at >105 V/cm

avalanche process

at >105 V/cm

Page 12: On-Chip Avalanche Detectors for Deterministic Doping of ... · 1 On-Chip Avalanche Detectors for Deterministic Doping of Silicon Nano-Devices with sub-10 keV single ion implantation

12

Avalanche detector: linear internal charge gain

� Increase the signal out put using internal charge gain

� IBIC analysis: relative charge collection efficiency

� 2.0 MeV He+ ions generate 0.55×106 e-h pairs

� A high charge gain can be achieved.

100%

charge

MAXMIN

Optical

500 µm

Page 13: On-Chip Avalanche Detectors for Deterministic Doping of ... · 1 On-Chip Avalanche Detectors for Deterministic Doping of Silicon Nano-Devices with sub-10 keV single ion implantation

13

Avalanche detector: charge gain VS bias voltage

PIN detector

Charge gain: 1

Page 14: On-Chip Avalanche Detectors for Deterministic Doping of ... · 1 On-Chip Avalanche Detectors for Deterministic Doping of Silicon Nano-Devices with sub-10 keV single ion implantation

14

Linear mode avalanche detector operation

Page 15: On-Chip Avalanche Detectors for Deterministic Doping of ... · 1 On-Chip Avalanche Detectors for Deterministic Doping of Silicon Nano-Devices with sub-10 keV single ion implantation

15

Linear mode APD: Readout of energy spectrum

Page 16: On-Chip Avalanche Detectors for Deterministic Doping of ... · 1 On-Chip Avalanche Detectors for Deterministic Doping of Silicon Nano-Devices with sub-10 keV single ion implantation

16

IBIC (0.5 MeV He+) Optical image

PIN detector arrays

Page 17: On-Chip Avalanche Detectors for Deterministic Doping of ... · 1 On-Chip Avalanche Detectors for Deterministic Doping of Silicon Nano-Devices with sub-10 keV single ion implantation

17

Backside of the wafer Front side wafer(allowing ion entrance)

Integrating avalanche zone in the existing detector structure

Detector p-contact arraysGuard ring

n+-contact

10 m

m

Smoothly reduced

edge doping: n+�n-

Page 18: On-Chip Avalanche Detectors for Deterministic Doping of ... · 1 On-Chip Avalanche Detectors for Deterministic Doping of Silicon Nano-Devices with sub-10 keV single ion implantation

18

p

E

aval

anch

e zo

ne V

/cm

dri

ft z

on

e

avala

nch

e z

on

e

field

>10

5V

/cm

dri

ft z

on

e

ions p-c

on

tact

p-c

on

tact

E-f

ile

d

Linear mode APD: E-field profile

Page 19: On-Chip Avalanche Detectors for Deterministic Doping of ... · 1 On-Chip Avalanche Detectors for Deterministic Doping of Silicon Nano-Devices with sub-10 keV single ion implantation

19

Geiger mode: Testing a commercial PIN detector as APD device

Gated bias time window: 5 microseconds4 events observed from Geiger mode

avalanche operation per 5 ms pulse

The PIN device has

a terminal capacitance

~ 20 pF

at 300 K

Page 20: On-Chip Avalanche Detectors for Deterministic Doping of ... · 1 On-Chip Avalanche Detectors for Deterministic Doping of Silicon Nano-Devices with sub-10 keV single ion implantation

20

Switch-off lightDark count at room T (77K)

Switch-on lightWith very weak light at near 77K

Geiger mode avalanche operation on a PIN diode

Page 21: On-Chip Avalanche Detectors for Deterministic Doping of ... · 1 On-Chip Avalanche Detectors for Deterministic Doping of Silicon Nano-Devices with sub-10 keV single ion implantation

21

SNL Geiger mode detectors in Melbourne

• Designed to be operated in Geiger mode

• IBIC mapping with 2 MeV He in P-i-N mode (not

expected to avalanche)

– Measure internal electric field distribution

and charge collection efficiency

• Next steps:

– Develop device control electronics in

Melbourne to allow devices to be tested in

full Geiger mode.

– Develop new device architecture with sub-

5 nm oxides to allow for tests with sub-20

keV P ions.

– Identify potential device architectures that

will allow integration of Geiger mode

detectors into the CQCT process flow –

ensure compatibility with new channel

stopper electrode structure.

25 µm

Run9, Bias = 25V

Run12, Bias = 28V

Run14, Bias = 30V

Run16, Bias = 35V

Run20, Bias = 36V

Run25, Bias = 39V

Charge collection (ch)

Rela

tive

coun

ts

100 150 200PIN Reference50100% CC E Photodiode

Run9, Bias = 25V

Run12, Bias = 28V

Run14, Bias = 30V

Run16, Bias = 35V

Run20, Bias = 36V

Run25, Bias = 39V

Charge collection (ch)

Rela

tive

coun

ts

10050 150 200PIN Reference100% CC E Photodiode

IBIC near the n+ contact: Avalanche onset

IBIC p+ contact area: No avalanche

SchematicSchematicSchematicSchematicIBICIBICIBICIBICOpticalOpticalOpticalOptical

o

Page 22: On-Chip Avalanche Detectors for Deterministic Doping of ... · 1 On-Chip Avalanche Detectors for Deterministic Doping of Silicon Nano-Devices with sub-10 keV single ion implantation

22

Summary

• PIN detector does not provide enough detection limit for single ion implantation operation in the new device design.

• APD linear and Geiger mode operation are promising for lower energy (sub-10 keV) ion doping with more accurate positioning control (the uncertainty can be reduced from current 10 nm to less than 6 nm).

• APD design can be made compatible with nano-fabrication strategy in the existing PIN structure.