Top Banner
HSE Health & Safety Executive The effects of local joint flexibility on the reliability of fatigue life estimates and inspection planning Prepared by MSL Engineering Ltd for the Health and Safety Executive OFFSHORE TECHNOLOGY REPORT 2001/056
70

OFFSHORE TECHNOLOGY REPORT 2001/056 · APPENDIX B GEOMETRY PLOTS FROM THE SACS MODEL 37 APPENDIX C COMPARISON OF RIGID AND FLEXIBLE FATIGUE-LIFE PREDICTIONS 51. vi. 1 1. INTRODUCTION

Mar 23, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: OFFSHORE TECHNOLOGY REPORT 2001/056 · APPENDIX B GEOMETRY PLOTS FROM THE SACS MODEL 37 APPENDIX C COMPARISON OF RIGID AND FLEXIBLE FATIGUE-LIFE PREDICTIONS 51. vi. 1 1. INTRODUCTION

HSEHealth & Safety

Executive

The effects of local joint flexibilityon the reliability of fatigue life

estimates and inspection planning

Prepared by MSL Engineering Ltdfor the Health and Safety Executive

OFFSHORE TECHNOLOGY REPORT

2001/056

Page 2: OFFSHORE TECHNOLOGY REPORT 2001/056 · APPENDIX B GEOMETRY PLOTS FROM THE SACS MODEL 37 APPENDIX C COMPARISON OF RIGID AND FLEXIBLE FATIGUE-LIFE PREDICTIONS 51. vi. 1 1. INTRODUCTION

HSEHealth & Safety

Executive

The effects of local joint flexibilityon the reliability of fatigue life

estimates and inspection planning

MSL Engineering LtdMSL House

5-7 High StreetSunninghill

Ascot SL5 9NQUnited Kingdom

HSE BOOKS

Page 3: OFFSHORE TECHNOLOGY REPORT 2001/056 · APPENDIX B GEOMETRY PLOTS FROM THE SACS MODEL 37 APPENDIX C COMPARISON OF RIGID AND FLEXIBLE FATIGUE-LIFE PREDICTIONS 51. vi. 1 1. INTRODUCTION

ii

© Crown copyright 2002Applications for reproduction should be made in writing to:Copyright Unit, Her Majesty’s Stationery Office,St Clements House, 2-16 Colegate, Norwich NR3 1BQ

First published 2002

ISBN 0 7176 2288 6

All rights reserved. No part of this publication may bereproduced, stored in a retrieval system, or transmittedin any form or by any means (electronic, mechanical,photocopying, recording or otherwise) without the priorwritten permission of the copyright owner.

This report is made available by the Health and SafetyExecutive as part of a series of reports of work which hasbeen supported by funds provided by the Executive.Neither the Executive, nor the contractors concernedassume any liability for the reports nor do theynecessarily reflect the views or policy of the Executive.

Page 4: OFFSHORE TECHNOLOGY REPORT 2001/056 · APPENDIX B GEOMETRY PLOTS FROM THE SACS MODEL 37 APPENDIX C COMPARISON OF RIGID AND FLEXIBLE FATIGUE-LIFE PREDICTIONS 51. vi. 1 1. INTRODUCTION

iii

EXECUTIVE SUMMARY Introduction MSL Engineering Limited (MSL) has prepared this report for the Offshore Safety Division of the Health & Safety Executive (HSE). The report relates to a study of the effects of linear-elastic local joint flexibility (LJF) on fatigue life predictions for offshore steel jacket structures. Objectives The objectives of the study, in addition to evaluating the effects of LJF on fatigue life predictions, include an assessment of their impact on platform inspection planning. Scope A conventional, rigid-joint, spectral fatigue analysis has been carried out on Shell’s Leman CD Platform. The platform was installed in the Southern North Sea in June 1970, in 34m of water. Conventional fatigue analysis indicates numerous joints with fatigue-lives below 10 years. Results from underwater inspection of 46 joints, however, show that only two joints have crack indications. The fatigue analysis was repeated with local joint flexibility explicitly modelled in the analysis. The resulting fatigue life predictions were then compared with the rigid-joint analysis and with the inspection data. Summary of Results The results of the spectral fatigue analysis using the flexible joint structural model are presented Section 4.4. The results show that, in all cases, the fatigue-life predictions have increased compared to the rigid-joint analysis. The factor on life afforded by the implementation of LJF varies depending on the location of the joint within the structure. This factor is a ratio of the life calculated using flexible joint modelling to the life calculated using a rigid-joint model. The average factors on life for each of the framing components considered are as follows: (i) Transverse frames (A to F): 19.3 factor on life (ii) Longitudinal frames (1 &2): 9.2 factor on life (iii) Horizontal framing (-24' elev.): 8.0 factor on life Impact on Inspection Planning The impact on platform underwater inspection planning is discussed in Section 5, where two main conclusions are drawn, namely: (i) The implementation of LJF in the fatigue analysis reduces the requirement for

underwater inspection by approximately 75%. (ii) Two joints have been found to have crack indications during underwater inspections of

the Shell Leman platform. Both joints are identified as requiring inspection based on the LJF fatigue analysis.

Page 5: OFFSHORE TECHNOLOGY REPORT 2001/056 · APPENDIX B GEOMETRY PLOTS FROM THE SACS MODEL 37 APPENDIX C COMPARISON OF RIGID AND FLEXIBLE FATIGUE-LIFE PREDICTIONS 51. vi. 1 1. INTRODUCTION

iv

Conclusions The following conclusions have been identified from this study; • The findings of this study support the view held by industry that conventional rigid joint

fatigue analysis under-predicts fatigue life. • It is seen that implementing joint flexibility allows for a more accurate fatigue life

prediction and closer agreement with results of underwater inspections. • The use of LJF can assist in the overall optimisation of inspection planning. This is

particularly important for older structures as newer structures would normally be designed to have minimum fatigue lives that were much higher than the intended service life (e.g. 10 times required life).

However, it should be noted that the data set is limited (i.e. one structure) and further correlation with other types of structures to consider the influence of parameters such as platform vintage, design basis and framing configuration which also exhibit fatigue cracking would be required. Also other uncertainties within the fatigue recipe, such as uncertainties in the loading, not considered within the scope of this study may play an important role in the fatigue life predictions. Furthermore, it should be emphasised that a number of elements are considered within the inspection strategy and that the use of LJF is one element that can be of use in determining this.

Page 6: OFFSHORE TECHNOLOGY REPORT 2001/056 · APPENDIX B GEOMETRY PLOTS FROM THE SACS MODEL 37 APPENDIX C COMPARISON OF RIGID AND FLEXIBLE FATIGUE-LIFE PREDICTIONS 51. vi. 1 1. INTRODUCTION

v

CONTENTS EXECUTIVE SUMMARY ii CONTENTS iii

1. INTRODUCTION 1

2. BACKGROUND TO THE STUDY 2

3. RIGID JOINT FATIGUE ANALYSIS 4

3.1 Platform Description 4

3.2 Structural Model 4

3.3 Analysis Parameters 5

3.4 Fatigue Analysis Results 8

4. FLEXIBLE JOINT FATIGUE ANALYSIS 10

4.1 Implementation of Local Joint Flexibility 10

4.2 Validation of the LJF Methodology 10

4.3 Selection of Joints 12

4.4 Fatigue Analysis Results 12

5. IMPACT ON INSPECTION PLANNING 16

5.1 Inspection Categories 16

5.2 Inspection Results 16

5.3 Impact of LJF on Inspection Planning 16

6. CONCLUSIONS AND RECOMMENDATIONS 19

REFERENCES 20

APPENDIX A INSPECTION DATA 21

APPENDIX B GEOMETRY PLOTS FROM THE SACS MODEL 37

APPENDIX C COMPARISON OF RIGID AND FLEXIBLE FATIGUE-LIFE PREDICTIONS 51

Page 7: OFFSHORE TECHNOLOGY REPORT 2001/056 · APPENDIX B GEOMETRY PLOTS FROM THE SACS MODEL 37 APPENDIX C COMPARISON OF RIGID AND FLEXIBLE FATIGUE-LIFE PREDICTIONS 51. vi. 1 1. INTRODUCTION

vi

Page 8: OFFSHORE TECHNOLOGY REPORT 2001/056 · APPENDIX B GEOMETRY PLOTS FROM THE SACS MODEL 37 APPENDIX C COMPARISON OF RIGID AND FLEXIBLE FATIGUE-LIFE PREDICTIONS 51. vi. 1 1. INTRODUCTION

1

1. INTRODUCTION The report describes a study of the effects of linear-elastic local joint flexibility (LJF) on fatigue life predictions for an offshore steel jacket structure. The objectives of the study, in addition to evaluating the effects of LJF, include an assessment of their impact on platform inspection planning. In Section 2 of the report the background to the study describes the present practice for prediction of fatigue lives and discusses the efforts exerted by industry, over the last 20 years, to better understand the fatigue behaviour of structures in the offshore environment. Despite the efforts described in Section 2, it is recognized within the offshore community that fatigue-life predictions for steel jacket structures tend to under-predict the lives of the joints. Comparisons between observed and predicted fatigue cracks[1] indicate that, even using more refined fracture-mechanics based prediction methods, fatigue-lives are being under-predicted by up to 18 times for certain structural components and by a factor of at least 3 for main framing elements of steel jackets. The objectives of the study have been met by performing both rigid-joint and flexible-joint fatigue analyses on a Platform located in 34m of water in the UK sector of the Southern North Sea. The structure was installed in 1970 and has a service life of 30 years. Based on the results of a spectral fatigue analysis undertaken in 1990[2] the platform has numerous joints with predicted lives of less than 10 years. Section 3 contains a description of the platform, and describes the rigid joint fatigue analysis including a comparison of the predicted fatigue lives with those calculated in the previous analysis, Reference 2. The flexible -joint fatigue analysis is described in Section 4 and the fatigue-life predictions are presented and compared with those from the rigid-joint analysis. Results from underwater inspections, including magnetic particle inspections (MPI), of forty-six joints, some with repeat inspections, have been evaluated in light of the fatigue-life predictions from the flexible-joint analysis. The impact of the effects of LJF on inspection planning for the platform is discussed in Section 5. Section 6 summarises the findings from the study and discusses conclusions that may be drawn from the results.

Page 9: OFFSHORE TECHNOLOGY REPORT 2001/056 · APPENDIX B GEOMETRY PLOTS FROM THE SACS MODEL 37 APPENDIX C COMPARISON OF RIGID AND FLEXIBLE FATIGUE-LIFE PREDICTIONS 51. vi. 1 1. INTRODUCTION

2

2. BACKGROUND TO THE STUDY Offshore steel jacket structures consist primarily of tubular members and associated joints, which are formed by the intersection of brace and chord members. The complex geometry at joint intersections results in stress concentrations of varying intensity. Wave loading causes fluctuations in stresses around the intersections, potentially leading to fatigue-induced crack growth and ultimately failure. Fatigue failure is defined as the number of stress cycles, a function of time, taken to reach a pre-defined failure criterion. Fatigue failure analysis is not a rigorous science and the idealisations and approximations inherent in it prevent the calculation of absolute fatigue lives. Nevertheless, the prediction of fatigue lives is essential for the safe life-cycle management of an offshore installation. The industry-standard approach to fatigue analysis must address four specific issues: (i) The operational environment of a structure and the relationship between the environment

and imposed forces in a structure. (ii) The internal stresses at a critical point in the structure induced by external forces acting

on the structure. (iii) The time to failure due to the accumulated stress history at the critical point. (iv) The definition of ‘failure’ used in design. An examination of the four areas above proves instructive: (i) The definition of operational environment lies within the domain of metocean

investigations, which define wave scatter diagrams, periods, etc. Wide ranges of metocean investigations have been conducted over the past two decades.

(ii) The calculation of external forces acting on the structure requires application of

Morison’s equation together with a suitable wave theory that permits conversion of the wave particle velocities and accelerations to externally applied forces. This area, inclusive of definition of drag and inertia coefficients, has received significant attention by hydrodynamicists over the past two decades.

(iii) System FE analysis provides a suitable tool for the derivation of nominal section stresses

along component elements within the structural model. The level of accuracy depends on the ability of the model to adequately capture actual behaviour. The nominal section stresses must be amplified by an appropriate factor (SCF) to account for geometric stress concentrations.

(iv) The time to failure and definition of failure has seen an investment by HSE and industry

exceeding £30m over the past two decades to establish experimentally derived S-N curves across a range of parameters.

Excluding fabrication defects, a review of available information reveals that the difference between prediction and observation may be due to one or more of the following parameters: (i) Wave kinematics in the splash zone

Page 10: OFFSHORE TECHNOLOGY REPORT 2001/056 · APPENDIX B GEOMETRY PLOTS FROM THE SACS MODEL 37 APPENDIX C COMPARISON OF RIGID AND FLEXIBLE FATIGUE-LIFE PREDICTIONS 51. vi. 1 1. INTRODUCTION

3

(ii) Wave spreading, at least for Southern North Sea (SNS) structures (iii) Hydrodynamic loads (iv) Deterministic versus stochastic wave modelling (v) Pile-soil flexibility (vi) Stress concentration effects (vii) Local Joint Flexibility (LJF) Of the above parameters, discussions with industry reveal that LJF effects are likely to be of most significance. Extensive test data have demonstrated that all tubular joints possess elastic flexibility, which varies depending on joint type, geometry and loadcase. It is generally recognised that the amount of brace rotation required to shed in-plane and out-of-plane moments at the joint is small and consistent with the imposed rotations from low amplitude waves, which, in the main, dominate fatigue life consumption. The moments, in practice, would therefore be expected to be shed from the joints and be amplified at the brace member mid-span location. Structural engineering mechanics suggests that, in essence, representing the joints with finite linear elastic flexibility (i.e. an accurate reflection of the way joints behave in practice) instead of no flexibility (i.e. infinitely stiff, typical present-day practice, inaccurate reflection of joint response) would result in a reduction of acting loads at the joints, with a commensurate increase in member loads to maintain equilibrium. The platform selected was considered suitable for the purpose of this study on the basis that it had been in-service for 30 years and has predicted fatigue lives for many of its joints of less than 10 years. More importantly during this time several inspections have been conducted at certain intervals, including visual and MPI inspections of the same joints, the details of which are given in Appendix A. Of the fifty-three inspections (using MPI) carried out during the service life of the structure, three have given crack-like indications on two joints. One of the cracked joints, identified during the 1987 inspection and confirmed two years later, is located amongst the horizontal conductor guide framing at elevation –24' (joint 5405). The other crack indication was found on longitudinal frame 1 (joint number 5401) at the intersection with transverse frame D, also at -24' elevation. This indication is described in the inspection report as a lack of sidewall fusion and was removed by local grinding to a depth of 4mm. It should be noted however that the indication was not found on earlier inspections of the same joint.

Page 11: OFFSHORE TECHNOLOGY REPORT 2001/056 · APPENDIX B GEOMETRY PLOTS FROM THE SACS MODEL 37 APPENDIX C COMPARISON OF RIGID AND FLEXIBLE FATIGUE-LIFE PREDICTIONS 51. vi. 1 1. INTRODUCTION

4

3. RIGID JOINT FATIGUE ANALYSIS 3.1 Platform Description

The Platform is an existing structure located in 34m of water in the UK sector of the Southern North Sea. The structure was identified as a good candidate for the study for a number of reasons, as follows:

(i) The platform was installed in 1970 and has a service life of 30 years. (ii) Based on the results of a spectral fatigue analysis undertaken in 1990[2] the platform has

predicted lives of less than 10 years for numerous joints. (iii) A total of fifty-three MPI inspection results are available, covering 46 different joints.

Therefore, data on repeat inspections are available. The platform is a wellhead platform. It supports twenty, 26in. diameter, conductors. The platform substructure is a twelve-legged steel jacket in a 6 x 2 array. The jacket is braced with single diagonals between four levels of horizontal framing in the two longitudinal frames and with inverted K-bracing in the six transverse frames. The jacket supports a number of appurtenances including a boat landing, 6 drainpipes, barge bumpers, riser inspection platforms, jacket walkways and sacrificial anodes. The jacket and appurtenances weigh 927 tonnes in air. The foundation comprises twelve, 36 in. diameter piles, driven through the legs. The wall thickness of each pile increases from 1 in. to 1.25 in. at the mud-line. Total pile weight is 893 tonnes. The piles extend above the jacket to support a module support frame, which, in turn, supports the twin deck topsides structure. The topsides include an accommodation module, helideck and wellhead facilities and has an operating weight is 2276 tonnes including a live load allowance of 512 tonnes. 3.2 Structural Model In 1990, Shell commissioned Wimpey Offshore to carry out a static spectral fatigue analysis of the platform[2]. In the present fatigue analysis every effort has been made to ensure consistency with the Wimpey structural model to allow verification of the predicted fatigue lives via comparisons with those presented in the Wimpey report. Consistent with this objective, the topsides, jacket, appurtenances and the foundation system were all modelled in the manner described in the Wimpey Report[2]. The SACS computer software suite was used for the present fatigue analysis. A three-dimensional isometric of the SACS[3] model is shown in Figure 3.1. Two-dimensional plots of the jacket frame elevations and horizontal framing plans are included in Appendix B.

Page 12: OFFSHORE TECHNOLOGY REPORT 2001/056 · APPENDIX B GEOMETRY PLOTS FROM THE SACS MODEL 37 APPENDIX C COMPARISON OF RIGID AND FLEXIBLE FATIGUE-LIFE PREDICTIONS 51. vi. 1 1. INTRODUCTION

5

Figure 3.1

3D Isometric of the Structural Model

3.3 Analysis Parameters As with the structural modelling, the representation of the hydrodynamic loading was selected consistent with that used in the Wimpey analysis. The data used is summarised below. Water Depth The water depth used in the analysis was 35.4m. This is made up of the water depth of 34.0 m, to L.A.T, plus an adjustment of 1.4m from L.A.T to M.S.L.

Page 13: OFFSHORE TECHNOLOGY REPORT 2001/056 · APPENDIX B GEOMETRY PLOTS FROM THE SACS MODEL 37 APPENDIX C COMPARISON OF RIGID AND FLEXIBLE FATIGUE-LIFE PREDICTIONS 51. vi. 1 1. INTRODUCTION

6

Marine Growth The marine growth profile used for all members is given in Table 3.1.

Table 3.1 Marine Growth Profile

Elevation level

From To

Marine growth Thickness

L.A.T +2.0m L.A.T -2.0m 125 mm on radius

L.A.T -2.0m L.A.T -4.0m 100 mm on radius

L.A.T -4.0m L.A.T -6.0m 75 mm on radius

L.A.T -6.0m Mud-line 50 mm on radius

Wave Loading A one-year return period wave was used, consistent with that used in the Wimpey analysis. The wave heights and frequency rosette reference to cardinal platform direction is shown in Figure 3.2

Figure 3.2 Leman CD Platform 1-Year Wave Data

Page 14: OFFSHORE TECHNOLOGY REPORT 2001/056 · APPENDIX B GEOMETRY PLOTS FROM THE SACS MODEL 37 APPENDIX C COMPARISON OF RIGID AND FLEXIBLE FATIGUE-LIFE PREDICTIONS 51. vi. 1 1. INTRODUCTION

7

Wave Directionality The spectral fatigue analysis considers wave attack from the eight directions indicated in Figure 3.2. The probability of occurrence for each wave direction is specified in Table 3.2. These values represent the contribution of each wave direction to the gross fatigue damage.

Table 3.2 Wave Directional Probability

Direction Probability (%)

From NNE 9.17

From ENE 7.97

From ESE 09.17

From SSE 12.78

From SSW 17.88

From WSW 18.27

From WNW 12.98

From NNW 11.78

The short-crestedness of the sea was specified for each direction based on a cos2 function, with spreading set to –90, -45, 0, 45 and 90 degrees relative to each of the eight wave directions. Wave Spectra The JONSWAP spectrum, representing a non-fully developed storm situation was applied for all sea-states. Sea-State Probability The probability of occurrence of significant wave height (Hs) and zero-crossing period (Tz) was taken from the Southern North Sea wave scatter diagram presented in the Wimpey report. Eighty-eight sea states, representing the complete scatter diagram, were derived and implemented in the analysis. Wave Frequencies Selection Thirty wave periods, ranging from 2.5 to 20.0 seconds, were selected for use in the determination of transfer functions. A cut-off of 15.1 m wave height i.e. the wave height of the 100-year design event was applied to the data. A wave steepness of 1/23 was used based on the results of a calibration study reported in the Wimpey Report.

Page 15: OFFSHORE TECHNOLOGY REPORT 2001/056 · APPENDIX B GEOMETRY PLOTS FROM THE SACS MODEL 37 APPENDIX C COMPARISON OF RIGID AND FLEXIBLE FATIGUE-LIFE PREDICTIONS 51. vi. 1 1. INTRODUCTION

8

Stress Concentration Factors Hot spot stresses and associated fatigue lives were calculated at eight positions around each tubular joint intersection. In general, SCFs were calculated in accordance with the Efthymiou parametric equations. However, the platform includes a number of joints with geometries outside the range of application of the Efthymiou equations. These joints were typically highly overlapped K and KT joints. In such cases, the SCFs calculated and reported in the Wimpey report were specified directly in the present fatigue analysis. S-N Curve The HSE T′-curve was used in the fatigue life estimation and cumulative damage was determined using the Palmgren-Miner criterion. 3.4 Fatigue Analysis Results Fatigue-life calculations were extracted from the SACS analysis for a selection of twenty-four joints, in order to compare predicted lives with those presented in the Wimpey report. The joints were carefully selected to include a representative sample, all with low predicted lives, distributed amongst the various framing components of the jacket. They included joints from one of the transverse frames (Frame F), both longitudinal frames (Frames 1 & 2) and from the first horizontal framing plan below the waterline. The predicted fatigue lives from the present MSL analysis and the Wimpey fatigue analysis are shown, for comparison, in Table 3.3. Figures contained in Appendix C indicate the precise locations of the joints identified in the table. Table 3.3 shows that good agreement was achieved between the results of the two fatigue analyses. In more than 50% of cases, the difference in life is less than 18 months. In general, the lives from the present analysis are slightly higher. Joint 5605, on the horizontal plan bracing (-24' elevation), has two braces with lives approaching 10 times those reported in the Wimpey analysis. It is believed that this is a result of the explicit modelling of the large eccentricities in the MSL analyses. The main reason for the small differences that exist are differences in the modelling of some jacket appurtenances due to a lack of data in the Wimpey Report. As expected, their effect is small as evidenced by the generally high level of agreement in fatigue life calculations.

Page 16: OFFSHORE TECHNOLOGY REPORT 2001/056 · APPENDIX B GEOMETRY PLOTS FROM THE SACS MODEL 37 APPENDIX C COMPARISON OF RIGID AND FLEXIBLE FATIGUE-LIFE PREDICTIONS 51. vi. 1 1. INTRODUCTION

9

Table 3.3 Comparison of Fatigue Life Predictions, MSL and Wimpey Analyses

Calculated Fatigue Life (Years) Joint No. Location Brace

MSL analysis Wimpey analysis

5804 Transverse Frame F

5804-7807 1.27 0.50

5804 5804-7801 1.29 0.50

5201 Longitudinal Frame 1

5201-7101 3.09 2.10

5301 5301-7201 3.05 2.40

5601 5601-7401 3.09 2.00

5801 5801-7601 3.37 2.20

5107 Longitudinal Frame 2

5107-7207 9.85 5.50

5207 5207-7307 7.66 4.50

5407 5407-7607 7.95 4.90

5607 5607-7807 7.58 4.60

5806 Horizontal Plan Framing @ -24'

Elev.

5806-5908 6.49 13.30

5805 5805-5905 1.18 0.70

5803 5803-5903 1.18 0.70

5802 5802-5901 6.04 10.50

5603 5603-5691 0.30 0.00

5603 5603-5702 1.97 2.80

5603 5603-5502 1.20 3.00

5603 5603-5503 0.18 0.10

5605 5605-5504 1.28 0.00

5605 5605-5506 19.13 2.70

5605 5605-5706 21.66 2.50

5605 5605-5964 2.41 0.00

5706 5706-5607 11.72 11.20

5706 5706-5978 40.17 31.80

Page 17: OFFSHORE TECHNOLOGY REPORT 2001/056 · APPENDIX B GEOMETRY PLOTS FROM THE SACS MODEL 37 APPENDIX C COMPARISON OF RIGID AND FLEXIBLE FATIGUE-LIFE PREDICTIONS 51. vi. 1 1. INTRODUCTION

10

4. FLEXIBLE JOINT FATIGUE ANALYSIS 4.1 Implementation of Local Joint Flexibility There are several methodologies available to account for the effects of local joint flexibility[4 -

10] in offshore structures. The present study has used the equations and implementation philosophy formulated by Buitrago[4]. The methodology has been tailored to accommodate the element modelling capabilities of the SACS analysis software. The method involves inserting a short ‘flex-element’ at the end of the brace. The flex-element connects the brace to the surface of the chord. Buitrago[4] gives explicit formulae to determine the local joint flexibilities for various joint types and geometries. These equations are directly employed here to calculate the appropriate local joint flexibility. The result is then used to calculate the necessary area and inertial properties of the flex-element to represent the axial and bending (both in-plane and out-of-plane) stiffness of the joint. Torsional and shear flexibilities are not considered. The area, A, and the moments of inertia, I, of the flex-element are calculated as follows:

)LJF(EL

Im

=

)LJF(EL

Ap

=

Where: L is the length of the flex-element LJFm is either the in-plane or the out-of-plane bending local joint flexibility LJFp is the axial loading local joint flexibility 4.2 Validation of the LJF Methodology In order to verify the implementation methodology, a simple model of a T-Joint was created using the SACS software. The T-joint was given the same geometry as a test specimen selected from the Makino[11, 12] database which contains data relating to full-scale failure tests on tubular joints. SACS analyses were carried out both with and without the flex-element. Five axial loading tests, two in-plane bending tests and two out-of-plane bending tests were used for the comparison. The results of the validation study are presented in Table 4.1, Table 4.2 and Table 4.3 for axial, in-plane bending and out of plane bending respectively. The tables show that, when the flex-element is included in the model, the predicted deformations are in good agreement with the test results. Conversely, the rigid joint model, as expected, shows no correlation with the test results.

Page 18: OFFSHORE TECHNOLOGY REPORT 2001/056 · APPENDIX B GEOMETRY PLOTS FROM THE SACS MODEL 37 APPENDIX C COMPARISON OF RIGID AND FLEXIBLE FATIGUE-LIFE PREDICTIONS 51. vi. 1 1. INTRODUCTION

11

Table 4.1 Comparison of Axial loading

T-Joint Geometry Chord Wall Deformation Specimen No.

D (mm)

T (mm)

d (mm)

t (mm)

L (mm)

Axial Load (kN) δflex

(mm) δrigid

(mm) δtest

(mm)

TC-8 165.2 4.24 89.1 3.5 527 45.1 0.703 0.023 0.512

TC-12 318.5 4.5 139.8 4.4 1593 76.5 2.241 0.035 4.141

TC-13 457.2 4.9 89.1 3.0 2286 46.1 2.916 0.069 4.572

TC-76 165.4 4.55 61.0 2.76 495 58.8 1.127 0.056 1.472

TC-92 216.47 4.51 216.33 4.58 696 248 1.426 0.049 0.770

Table 4.2 Comparison of In-Plane Bending (IPB)

T-Joint Geometry Chord Wall Deformation Specimen No.

D (mm)

T (mm)

d (mm)

t (mm)

L (mm)

IPB Moment (kNm) θflex

(rad) θrigid

(rad) θtest

(rad)

TM-39 355.4 15.1 317.4 8.7 1422.4 405 0.0093 0.0038 0.0081

TM-41 456.1 15.4 317.2 8.6 1828.8 341 0.0107 0.0041 0.0108

Table 4.3

Comparison of Out-of-Plane Bending (OPB)

T-Joint Geometry Chord Wall Deformation Specimen No.

D (mm)

T (mm)

d (mm)

t (mm)

L (mm)

OPB Moment (kNm) θflex

(rad) θrigid

(rad) θtest

(rad)

TM-1 216.42 4.5 216.4 4.56 696 18.0 0.0179 0.0006 0.0116

TM-2 216.45 4.5 165.55 4.53 698 6.80 0.0177 0.0007 0.0208

The results of the validation study, presented in the tables above, indicate that the Buitrago formulations and the applied implementation methodology allow the SACS software to effectively represent the local joint flexibility of tubular joints under axial, in-plane bending and out-of-plane bending loads.

Page 19: OFFSHORE TECHNOLOGY REPORT 2001/056 · APPENDIX B GEOMETRY PLOTS FROM THE SACS MODEL 37 APPENDIX C COMPARISON OF RIGID AND FLEXIBLE FATIGUE-LIFE PREDICTIONS 51. vi. 1 1. INTRODUCTION

12

4.3 Selection of Joints Local joint flexibilities were implemented into the SACS fatigue analysis model at eighty brace intersections on sixty-seven separate nodes. The joints were carefully selected to include a representative sample, including those with low predicted lives, distributed amongst the various framing components of the jacket. They include six joints from each of the transverse frames (Frames A to F), ten joints from each of the longitudinal frames (Frames 1 & 2) and twenty-four joints from the first horizontal framing plan below the waterline (-24' elevation). An important consideration in joint selection was to ensure symmetry of the flexible joints around the structure to prevent the introduction of artificial secondary forces caused by asymmetrical structural stiffness. At the time of the analysis, inspection data were not available and, therefore, engineering judgment was applied to predict which nodes were likely to have been included in the platform periodic underwater inspections, and to include LJF for those nodes. The selection was based upon rigid-joint fatigue-life predictions and areas of known susceptibility to fatigue cracking. In Tables 4.4, 4.5 and 4.6, which summarise the results of the fatigue analyses, bold typeface is used to indicate those joints for which inspection data were subsequently received. It turned out that LJF was implemented into approximately 95% of all inspected joints. 4.4 Fatigue Analysis Results The results of the spectral fatigue analysis with LJF implemented are presented in Table 4.4, Table 4.5 and Table 4.6 for the transverse frames, the longitudinal frames and the horizontal framing plan at –24' elevation, respectively. The tables show that, in all cases, the fatigue life predictions have increased. The factor on life afforded by the implementation of LJF is also shown in the tables for each joint. This factor is a ratio of the life calculated using flexible joint modeling to the life calculated using a rigid joint model. The average factors on life for each of the framing components considered are as follows: Transverse frames (A to F): 19.3 factor on life Longitudinal frames (1 & 2): 9.2 factor on life Horizontal framing (-24' elev.): 8.0 factor on life For a very small number of joints as shown in Table 4.6 the revised fatigue lives with LJF were still low (eg between 0.6 and 5.7 years) for Node 5603. The reasons for this are not known but may be due to uncertainties such as in the wave loading or LJF prediction for this joint type. The comparison of the predicted lives using the rigid-joint and the flexible-joint analyses are illustrated in the figures contained in Appendix C.

Page 20: OFFSHORE TECHNOLOGY REPORT 2001/056 · APPENDIX B GEOMETRY PLOTS FROM THE SACS MODEL 37 APPENDIX C COMPARISON OF RIGID AND FLEXIBLE FATIGUE-LIFE PREDICTIONS 51. vi. 1 1. INTRODUCTION

13

Table 4.4 Comparison of Predicted Fatigue Lives – Transverse Frames

Fatigue Lives Frame Node Element

Rigid Flexible

Factor on Life Average Factor on

Life

A 7107 7107-5104 279.9 2021.9 7.22 24.7

7101 7101-5104 272.0 2146.6 7.89

5104 5104-7107 11.6 381.2 32.86

5104 5104-7101 14.1 424.4 30.10

5107 5107-5104 1076.1 48981.0 45.52

5101 5101-5104 3269.7 80218.0 24.53

B 7207 7207-5204 277.7 3008.5 10.83 13.8

7201 7201-5204 271.7 2049.0 7.54

5204 5204-7207 10.9 52.7 4.83

5204 5204-7201 13.5 350.4 25.96

5207 5207-5204 3375.5 77365.0 22.92

5207 5201-5204 6178.4 66934.0 10.83

C 7307 7307-5304 254.6 1556.4 6.11 23.4

7301 7301-5304 255.4 1702.0 6.66

5304 5304-7307 8.6 334.8 38.93

5304 5304-7301 8.6 493.4 57.37

5307 5307-5304 13.8 6462.0 Ignored

5307 5301-5304 4251.8 32759.0 7.70

D 7407 7407-5404 49.2 248.5 5.05 26.0

7401 7401-5404 45.0 251.6 5.59

5404 5404-7407 1.1 43.6 39.64

5404 5404-7401 1.2 33.8 28.17

5407 5407-5404 1334.3 12457.0 9.34

5401 5401-5404 244.1 16653.0 68.22

E 7607 7607-5604 432.0 2341.5 5.42 11.1

7601 7601-5604 414.0 1812.6 4.38

5604 5604-7607 4.1 35.3 8.61

5604 5604-7601 4.5 179.0 39.78

5607 5607-5604 3900.0 19606.0 5.03

5601 5601-5604 2043.3 6856.5 3.36

F 7807 7807-5804 47.4 233.8 4.93 17.6

7801 7801-5804 45.4 235.9 5.20

5804 5804-7807 1.3 31.2 24.57

5804 5804-7801 1.3 31.5 24.42

5807 5807-5804 741.0 16216.0 21.88

5801 5801-5804 836.0 20747.0 24.82 Bold typeface indicates joints that have been inspected

Page 21: OFFSHORE TECHNOLOGY REPORT 2001/056 · APPENDIX B GEOMETRY PLOTS FROM THE SACS MODEL 37 APPENDIX C COMPARISON OF RIGID AND FLEXIBLE FATIGUE-LIFE PREDICTIONS 51. vi. 1 1. INTRODUCTION

14

Table 4.5 Comparison of Predicted Fatigue Lives – Longitudinal Frames

Fatigue Lives Frame Node Element

Rigid Flexible

Factor on Life

Average Factor on Life

1 7101 7101-5201 365.0 1984.9 5.44 9.0

7201 7201-5301 330.0 1941.8 5.88

7301 7301-5401 109.0 632.7 5.80

7401 7401-5601 292.4 1888.4 6.46

7601 7601-5801 321.6 1777.4 5.53

5201 5201-7101 3.1 34.0 11.00

5301 5301-7201 3.1 34.0 11.15

5401* 5401-7301 1.5 25.7 16.91

5601 5601-7401 3.1 34.8 11.26

5801 5801-7601 3.4 35.5 10.53

2 7207 7207-5107 567.0 3194.0 5.63 9.4

7307 7307-5207 615.0 3692.5 6.00

7407 7407-5307 221.7 1179.4 5.32

7607 7607-5407 647.0 3374.2 5.22

7807 7807-5607 744.0 3754.3 5.05

5107 5107-7207 9.9 117.2 11.90

5207 5207-7307 7.7 114.3 14.92

5307 5307-7407 3.6 32.7 9.08

5407 5407-7607 8.0 118.2 14.87

5607 5607-7807 7.6 120.3 15.87

Bold typeface indicates joints that have been inspected

*Underwater inspection shows crack indication

Page 22: OFFSHORE TECHNOLOGY REPORT 2001/056 · APPENDIX B GEOMETRY PLOTS FROM THE SACS MODEL 37 APPENDIX C COMPARISON OF RIGID AND FLEXIBLE FATIGUE-LIFE PREDICTIONS 51. vi. 1 1. INTRODUCTION

15

Table 4.6 Comparison of Predicted Fatigue Lives - CGF @ -24 ft. Elevation

Fatigue Lives Plan Elevation

Node Element

Rigid Flexible

Factor on Life

Average Factor on Life

-24 ft. 5807 5807-5706 89.3 160.9 1.80 8.1

5806 5806-5908 6.5 71.3 10.97

5805 5805-5905 1.2 31.8 26.50

5803 5803-5903 1.2 32.4 27.00

5802 5802-5901 6.0 57.5 9.58

5801 5801-5702 44.1 71.6 1.62

5706 5706-5978 40.2 3300.0 ignored

5706 5706-5607 11.7 12.8 1.09

5702 5702-5971 81.7 156.7 1.92

5607 5607-5706 116.1 603.9 5.20

5607 5607-5506 104.4 198.3 1.90

5605 5605-5964 2.4 8.5 3.54

5605 5605-5706 21.7 52.8 2.43

5605 5605-5506 19.1 311.2 16.29

5605 5605-5504 1.3 5.7 4.38

5603 5603-5961 0.3 0.7 2.33

5603 5603-5702 2.0 5.0 2.50

5603 5603-5502 1.2 3.7 3.08

5603 5603-5503 0.2 0.6 3.00

5407 5407-5506 24.8 56.6 2.28

5406 5406-5426 5.9 82.7 14.02

5403 5403-5423 0.9 27.6 30.67

5402 5402-5422 3.7 40.8 11.03

5401 5401-5502 10.6 21.0 1.98

Bold typeface indicates joints that have been inspected

Page 23: OFFSHORE TECHNOLOGY REPORT 2001/056 · APPENDIX B GEOMETRY PLOTS FROM THE SACS MODEL 37 APPENDIX C COMPARISON OF RIGID AND FLEXIBLE FATIGUE-LIFE PREDICTIONS 51. vi. 1 1. INTRODUCTION

16

5. IMPACT ON INSPECTION PLANNING 5.1 Inspection Categories The categories identified below have been generated to group the inspected joints in order of predicted fatigue lives. The categories have been selected solely for purposes of assessing the impact of LJF on what might be considered a rational inspection prioritisation. Category 1: Highest Priority, predicted fatigue lives of less than 10 years Category 2: High Priority, predicted fatigue lives between 10 and 30 years Category 3: Medium Priority, predicted fatigue lives of 30 to 60 years. Category 4: Inspection not justified on the basis of fatigue assessment The platform has been in place for thirty years; assuming a reasonable level of reliability in the fatigue life predictions, some of the Category 1 joints should have developed crack indications. A smaller proportion of the Category 2 joints may also have some visible indications. 5.2 Inspection Results Of the fifty-three inspections (using MPI) carried out during the service life of the structure, three have given crack-like indications on two joints. One of the cracked joints, identified during the 1987 inspection and confirmed two years later, is located amongst the horizontal conductor guide framing at elevation –24' (joint 5405). The other crack indication was found on longitudinal frame 1 (joint number 5401) at the intersection with transverse frame D, also at -24' elevation. This indication is described in the inspection report as a lack of sidewall fusion and was removed by local grinding to a depth of 4mm. It should be noted however that the indication was not found on earlier inspections of the same joint. 5.3 Impact of LJF on Inspection Planning Figure 5.1 shows the eighty joints included in the LJF study categorised in accordance with the criteria defined above. The figure shows that the number of Category 1 joints reduces from 31 to 6 when LJF is implemented into the fatigue analysis. The total number of Category 1 and Category 2 joints, which would be expected to be the focus of underwater inspections, reduce from 41 to 10 joints.

It may also be noted that the histogram for the LJF analysis is more reasonable in that it reflects the tail end of the distribution that can be expected from a fatigue analysis. The rigid joint analysis, on the other hand, seems to suggest a local peak in the tail end.

The locations of the Category 1 and Category 2 joints are shown in Figure 5.2. It can be seen that nine of the ten joints are located amongst the conductor guide framing at the -24' elevation. The joint with the crack indication (5405) was modelled, consistent with the Wimpey analysis, as rigid since a grouted repair clamp has been installed. Nevertheless the identical adjacent brace connection (5403) has a similar rigid joint fatigue life prediction and hence it can be deduced that the LJF fatigue life of joint (5405) would also be similar to that of joint (5403) and hence identified as a Category 2 joint. The only Category 1 or Category 2 joint, from the flexible joint analysis, not amongst the conductor guide framing is joint 5401 on

Page 24: OFFSHORE TECHNOLOGY REPORT 2001/056 · APPENDIX B GEOMETRY PLOTS FROM THE SACS MODEL 37 APPENDIX C COMPARISON OF RIGID AND FLEXIBLE FATIGUE-LIFE PREDICTIONS 51. vi. 1 1. INTRODUCTION

17

longitudinal frame 1 at the intersection with transverse frame D, also at -24' elevation. This joint was also found to have a crack indication during underwater inspection. In summary: A. Assuming that Category 1 and Category 2 joints are included in the periodic

inspections, the implementation of LJF in the fatigue analysis reduces the requirement for underwater inspection by approximately 75%.

B. Two joints have been found to have crack indications during underwater inspections.

Both joints are identified as Category 1 or Category 2 in the LJF fatigue analysis. C. For both joints cracks were observed (see Appendix A) during inspections undertaken

in 1987 for joint (5401) and in 1989 for joint (5405) corresponding to 17 years and 19 years. The corresponding lives predicted using LJF were 26 years approximately. Therefore it can be deduced that since the cracks detected have depths which are much less than the joint wall thickness they would be detected before through wall cracking occurred using LJF.

Figure 5.1:

Comparison of Rigid and Flexible Joint Categorization

31

10

6

33

64

17

53

0

10

20

30

40

50

60

Cat. 1 Cat. 2 Cat. 3 Cat. 4

Joint inspection categories

Rigid-joint Analysis

Flex-Joint Analysis

Page 25: OFFSHORE TECHNOLOGY REPORT 2001/056 · APPENDIX B GEOMETRY PLOTS FROM THE SACS MODEL 37 APPENDIX C COMPARISON OF RIGID AND FLEXIBLE FATIGUE-LIFE PREDICTIONS 51. vi. 1 1. INTRODUCTION

18

5401

D E FCBA

2

Figure 5.2 Location of Category 1 and 2 Joints on CGF (top) and Frame 1 (bottom)

5405 54015403

5706

56055603

1

2

2

2

1

1

1

11

2 1

F

E

D

Page 26: OFFSHORE TECHNOLOGY REPORT 2001/056 · APPENDIX B GEOMETRY PLOTS FROM THE SACS MODEL 37 APPENDIX C COMPARISON OF RIGID AND FLEXIBLE FATIGUE-LIFE PREDICTIONS 51. vi. 1 1. INTRODUCTION

19

6. CONCLUSIONS AND RECOMMENDATIONS On the basis of the structure analysed herein, the following observations can be made: I. The average increase in predicted fatigue life when local joint flexibility is included in

the structural analysis was found to be 19, 9 and 8 for transverse frames, longitudinal frames and the horizontal frame nearest the water line, respectively.

II. The inclusion of LJFs into the analysis reduce the number of joints having lives less

than 30 years from 41 (obtained using rigid joint assumptions) to 10. The two joints that were found to have crack-like indications during actual inspections were still captured within the 10 most susceptible joints identified with the LJF analysis. The following conclusions have therefore been identified from this study; • The findings of this study support the view held by industry that conventional rigid joint

fatigue analysis under-predicts fatigue life. • It is seen that implementing of joint flexibility allows for a more accurate fatigue life

prediction and closer agreement with results from underwater inspections. • The use of LJF can therefore assist in the overall optimisation of inspection planning.

This is particularly important for older structures as newer structures would normally be designed to have minimum fatigue lives that were much higher than the intended service life (e.g. 10 times required life).

However, it should be noted that the data set is limited (i.e. one structure) and further correlation with other types of structures to consider the influence of parameters such as platform vintage, design basis and framing configuration and which also exhibit fatigue cracking would be required. Also other uncertainties within the fatigue recipe, such as uncertainties in the loading, not considered within the scope of this study may play an important role in the fatigue life predictions. Furthermore, it should be emphasise that a number of elements are considered within the inspection strategy and that the use of LJF is one element that can be of use in determining this.

Page 27: OFFSHORE TECHNOLOGY REPORT 2001/056 · APPENDIX B GEOMETRY PLOTS FROM THE SACS MODEL 37 APPENDIX C COMPARISON OF RIGID AND FLEXIBLE FATIGUE-LIFE PREDICTIONS 51. vi. 1 1. INTRODUCTION

20

REFERENCES

1. Vardal, O. T., Moan, T., and Hellevig, N. C. “Comparison between observed and predicted characteristics of fatigue cracks in North Sea jackets”, OTC paper 10847, Houston, May 1999.

2. Wimpey Offshore. “Sesam Database Spectral Fatigue Analysis, July 1990.

3. Engineering Dynamics Incorporated (EDI). “Structural Analysis Computer System – User Manual”, Volumes I to IV, 1998.

4. Buitrago, J., Healy, B. E. and Chang, T.Y. “Local joint flexibility of tubular joints”, Offshore Mechanics and Arctic Engineering Conference, OMAE, Glasgow, 1993.

5. Ueda, Y., Rashed, S. M. H., and Nakacho, K., "An Improved Joint Model and Equations for Flexibility of Tubular Joints," Journal of Offshore Mechanics and Arctic Engineering, vol. 112, pp. 157-168, 1990.

6. Hu, Y., Chen, B., and Ma, J., "An Equivalent Element Representing Local Flexibility of Tubular Joints in Structural Analysis of Offshore Platforms," Computers and Structures, vol. 47, No. 6, pp. 957-969, 1993.

7. Chen, B., Hu, Y., and Tan, M., "Local Joint Flexibility of Tubular Joints of Offshore Structures," Marine Structures, Vol. 3, pp. 177-197, 1990.

8. Chen, T. Y. and Zhang, H. Y., "Stress Analysis of Spatial Frames with Consideration of Local Flexibility of Multiplanar Tubular Joint," Engineering Structures, Vol. 18, No. 6, pp. 465-471, 1996.

9. Romeyn, A., Puthli, R. S., and Wardenier, J., "Finite Element Modelling of Multiplanar Joint Flexibility in Tubular Structures," Proceedings of the Second International Offshore and Polar Engineering Conference, Vol. IV, International Society of Offshore and Polar Engineers, pp. 420-429, 1992.

10. Underwater Engineering Group. “Node flexibility on the behaviour of jacket structures – pilot study on two dimensional frames”, UEG Report UR/22, 1984.

11. Makino, Y et al “Behaviour of Tubular T- and K- joints under Combined Loads”, OTC 5133, OTC, 1986, Houston.

12. Makino, Y et al “Database of Test and Numerical Analysis Results for Unstiffened Tubular Joints”, IIW Doc XV-E-96-220, Kumamoto University, Kumamoto, Japan.

Page 28: OFFSHORE TECHNOLOGY REPORT 2001/056 · APPENDIX B GEOMETRY PLOTS FROM THE SACS MODEL 37 APPENDIX C COMPARISON OF RIGID AND FLEXIBLE FATIGUE-LIFE PREDICTIONS 51. vi. 1 1. INTRODUCTION

21

APPENDIX A

Inspection Data

Page 29: OFFSHORE TECHNOLOGY REPORT 2001/056 · APPENDIX B GEOMETRY PLOTS FROM THE SACS MODEL 37 APPENDIX C COMPARISON OF RIGID AND FLEXIBLE FATIGUE-LIFE PREDICTIONS 51. vi. 1 1. INTRODUCTION

22

JOIN

T IN

SP

EC

TIO

N S

UM

MA

RY

In

stal

led

Ju

ne

1970

Loc

atio

n E

levt

n (m

) R

ef. t

o L

AT

N

ode

Ref

. L

eg

Nod

e N

umbe

r M

embe

r N

umbe

r Jo

int T

ype

Vis

ual

Insp

ectio

n D

ate

MPI

( E

C )

Insp

ectio

n D

ate

CO

MM

EN

TS

Loc

atio

n, E

leva

tion,

Nod

e R

ef a

nd J

oint

Ref

dat

a fr

om

Sesa

m D

atab

ase

Spec

tral

Fat

igue

Ana

lysi

s, J

uly

1990

, W

impe

y O

ffsh

ore.

Joi

nt d

ata

from

UE

G '

Des

ign

of

Tub

ular

Joi

nts

' Fr

ame

1 -7

.3

B1

5201

36

11

KD

T 91

91

N

o si

gnif

ican

t def

ects

or c

rack

like

indi

catio

ns fo

und.

Pi

tting

2 m

m m

ax d

epth

:-

Wel

d ca

p 1

- 3 %

C

hord

9 -

12 %

60

% c

over

B

race

9 -

12 %

15

% c

over

B

race

2 -

3 %

20

% c

over

Fram

e 1

-7.3

C

1 53

01

3531

K

DT

87

87

Pitti

ng c

orro

sion

in c

an s

ide

of H

AZ

. Gen

eral

cor

rosi

on

with

pitt

ing

corr

osio

n br

ace

side

HA

Z.

Max

pitt

ing

2.5m

m. G

ener

al 1

mm

. M

PI :

No

crac

klik

e de

fect

s de

tect

ed.

Fram

e 1

-7.3

C

1 53

01

3621

K

DT

93

93

CD

/93/

13

No

sign

ific

ant d

efec

ts o

r cra

cklik

e in

dica

tions

foun

d

Fram

e 1

-7.3

D

1 54

01

3541

K

DT

77

N

o vi

sibl

e de

fect

s at

tim

e of

insp

ectio

n.

Fram

e 1

-7.3

D

1 54

01

3431

K

DT

77

N

o vi

sibl

e de

fect

s at

tim

e of

insp

ectio

n.

Fram

e 1

-7.3

D

1 54

01

3531

K

DT

77

N

o vi

sibl

e de

fect

s at

tim

e of

insp

ectio

n.

Fram

e 1

-7.3

D

1 54

01

3631

K

DT

77

N

o vi

sibl

e de

fect

s at

tim

e of

insp

ectio

n.

Page 30: OFFSHORE TECHNOLOGY REPORT 2001/056 · APPENDIX B GEOMETRY PLOTS FROM THE SACS MODEL 37 APPENDIX C COMPARISON OF RIGID AND FLEXIBLE FATIGUE-LIFE PREDICTIONS 51. vi. 1 1. INTRODUCTION

23

Loc

atio

n E

levt

n (m

) R

ef. t

o L

AT

N

ode

Ref

. L

eg

Nod

e N

umbe

r M

embe

r N

umbe

r Jo

int T

ype

Vis

ual

Insp

ectio

n D

ate

MPI

( E

C )

Insp

ectio

n D

ate

CO

MM

EN

TS

Loc

atio

n, E

leva

tion,

Nod

e R

ef a

nd J

oint

Ref

dat

a fr

om

Sesa

m D

atab

ase

Spec

tral

Fat

igue

Ana

lysi

s, J

uly

1990

, W

impe

y O

ffsh

ore.

Joi

nt d

ata

from

UE

G '

Des

ign

of

Tub

ular

Joi

nts

'

89

89

A

STR

ON

G IN

TER

MIT

TEN

T IN

DIC

ATI

ON

, hav

ing

the

appe

aran

ce o

f LA

CK

OF

SID

EWA

LL F

USI

ON

, in

the

chor

d to

e of

the

wel

d fr

om 1

0 o'

cloc

k th

roug

h 12

o'c

lock

to

3 o

'clo

ck (a

nd e

xten

ding

60m

m. o

nto

the

chor

d to

e of

th

e ad

jace

nt w

eld)

was

not

ed. 9

0% o

f ind

icat

ions

wer

e re

mov

ed b

y re

med

ial g

rind

ing

to a

dep

th o

f 2m

m. w

ith

resp

ect t

o th

e ch

ord

pare

nt m

etal

. All

rem

aini

ng

indi

catio

ns (a

roun

d 10

o'c

lock

) wer

e re

mov

ed b

y gr

indi

ng to

a m

ax. d

epth

of 4

mm

. with

resp

ect t

o th

e ch

ord

pare

nt m

etal

. Gro

und

area

s w

ere

light

ly d

ress

ed to

re

mov

e ac

ute

angl

es, b

efor

e pr

ofile

mea

sure

men

ts w

ere

take

n.

Fram

e 1

-7.3

E1

56

01

3441

K

DT

81

Is

olat

ed p

it 0.

06",

pitt

ing

& s

urfa

ce w

asta

ge m

ax 0

.06"

, ca

thod

ic p

rote

ctio

n re

adin

gs ta

ken.

Lar

ge a

rea

of

surf

ace

was

tage

max

dep

th 0

.04"

.

Fram

e 1

-7.3

E1

56

01

3541

K

DT

81

N

ode

cond

ition

goo

d.

Fram

e 1

-7.3

E1

56

01

3561

K

DT

81

Pi

tting

& s

urfa

ce w

asta

ge m

ax 0

.055

" ex

tend

ing

com

plet

ely

arou

nd le

g &

bra

ce s

ide,

cat

hodi

c pr

otec

tion

read

ings

take

n.

Pitti

ng m

ax 0

.04"

.

Fram

e 1

-7.3

E1

56

01

3641

K

DT

81

A

reas

of d

isco

lour

atio

n ap

pear

ed a

fter

cle

anin

g,

cath

odic

pro

tect

ion

read

ings

take

n, is

olat

ed p

it m

ax

0.05

5", s

urfa

ce w

asta

ge.

Pitti

ng m

ax 0

.05"

.

Page 31: OFFSHORE TECHNOLOGY REPORT 2001/056 · APPENDIX B GEOMETRY PLOTS FROM THE SACS MODEL 37 APPENDIX C COMPARISON OF RIGID AND FLEXIBLE FATIGUE-LIFE PREDICTIONS 51. vi. 1 1. INTRODUCTION

24

Loc

atio

n E

levt

n (m

) R

ef. t

o L

AT

N

ode

Ref

. L

eg

Nod

e N

umbe

r M

embe

r N

umbe

r Jo

int T

ype

Vis

ual

Insp

ectio

n D

ate

MPI

( E

C )

Insp

ectio

n D

ate

CO

MM

EN

TS

Loc

atio

n, E

leva

tion,

Nod

e R

ef a

nd J

oint

Ref

dat

a fr

om

Sesa

m D

atab

ase

Spec

tral

Fat

igue

Ana

lysi

s, J

uly

1990

, W

impe

y O

ffsh

ore.

Joi

nt d

ata

from

UE

G '

Des

ign

of

Tub

ular

Joi

nts

'

91

91

N

o si

gnif

ican

t def

ects

or c

rack

ike

indi

catio

ns fo

und.

M

oder

ate

corr

osio

n pi

tting

on

chor

d 9-

12-3

O/C

50

% c

over

, 2 m

m m

ax d

epth

.

Fram

e 1

-7.3

F1

58

01

3461

K

T 77

No

visi

ble

defe

cts.

Fram

e 1

-7.3

F1

58

01

3561

K

T 77

No

visi

ble

defe

cts.

89

89

No

sign

ific

ant d

efec

ts o

r cra

cklik

e in

dica

tion

s fo

und.

Fram

e 1

-7.3

F1

58

01

3661

K

T 77

No

visi

ble

defe

cts.

93

93

CD

/93/

12

No

crac

klik

e in

dica

tions

or s

igni

fica

nt d

efec

ts fo

und

Fram

e 2

-7.3

B

2 52

07

3627

K

DT

91

91

No

sign

ific

ant d

efec

ts o

r cra

cklik

e in

dica

tions

foun

d

Fram

e 2

-7.3

C

2 53

07

3437

K

DT

83

Pi

tting

max

0.0

4", s

urfa

ce w

asta

ge m

ax 0

.05"

.

89

89

No

crac

klik

e in

dica

tions

or s

igni

fica

nt d

efec

ts w

ere

foun

d.

Slig

ht c

orro

sion

of e

ntir

e w

eld

cap,

100

% c

over

, es

timat

ed m

etal

loss

1m

m.

Fram

e 2

-7.3

C

2 53

07

3527

K

DT

83

Pi

tting

max

0.0

4", p

it 5"

leng

th .1

25"

wid

e 0

.04"

dep

th a

t 12

o'cl

ock.

Page 32: OFFSHORE TECHNOLOGY REPORT 2001/056 · APPENDIX B GEOMETRY PLOTS FROM THE SACS MODEL 37 APPENDIX C COMPARISON OF RIGID AND FLEXIBLE FATIGUE-LIFE PREDICTIONS 51. vi. 1 1. INTRODUCTION

25

Loc

atio

n E

levt

n (m

) R

ef. t

o L

AT

N

ode

Ref

. L

eg

Nod

e N

umbe

r M

embe

r N

umbe

r Jo

int T

ype

Vis

ual

Insp

ectio

n D

ate

MPI

( E

C )

Insp

ectio

n D

ate

CO

MM

EN

TS

Loc

atio

n, E

leva

tion,

Nod

e R

ef a

nd J

oint

Ref

dat

a fr

om

Sesa

m D

atab

ase

Spec

tral

Fat

igue

Ana

lysi

s, J

uly

1990

, W

impe

y O

ffsh

ore.

Joi

nt d

ata

from

UE

G '

Des

ign

of

Tub

ular

Joi

nts

' Fr

ame

2 -7

.3

C2

5307

35

37

KD

T 83

Pitti

ng &

sur

face

was

tage

max

0.0

3".

Fram

e 2

-7.3

C

2 53

07

3637

K

DT

83

Pi

tting

max

0.0

5", s

urfa

ce w

asta

ge m

ax 0

.03"

.

91

91

No

sign

ific

ant d

efec

ts o

r cra

cklik

e in

dica

tions

foun

d.

Fram

e 2

-7.3

D

2 54

07

3447

K

DT

79

A

reas

of g

ener

al s

urfa

ce w

asta

ge e

vide

nt m

ax 1

mm

, ar

eas

of g

ener

al p

ittin

g to

dep

th 3

.00m

m c

omm

on.

81

N

ode

cond

ition

goo

d.

Fram

e 2

-7.3

D

2 54

07

3537

K

DT

79

A

reas

of g

ener

al s

urfa

ce w

asta

ge e

vide

nt m

ax 1

mm

, ar

eas

of g

ener

al p

ittin

g to

dep

th 3

.00m

m c

omm

on.

81

N

ode

cond

ition

goo

d.

Fram

e 2

-7.3

D

2 54

07

3647

K

DT

79

A

reas

of g

ener

al s

urfa

ce w

asta

ge e

vide

nt m

ax 1

mm

, ar

eas

of g

ener

al p

ittin

g to

dep

th 3

.00m

m c

omm

on.

81

N

ode

cond

ition

goo

d.

95

95

CD

/95/

15

No

crac

klik

e in

dica

tions

or s

igni

fica

nt d

efec

ts fo

und

Fram

e 2

-7.3

E2

56

07

3467

K

DT

79

A

reas

of p

ittin

g m

ax 3

.00m

m c

omm

on, a

reas

of g

ener

al

surf

ace

was

tage

evi

dent

to m

ax 1

.0m

m.

81

L

ight

pitt

ing

max

0.0

3", s

ome

surf

ace

was

tage

.

Fram

e 2

-7.3

E2

56

07

3547

K

DT

79

A

reas

of p

ittin

g m

ax 3

.00m

m c

omm

on, a

reas

of g

ener

al

surf

ace

was

tage

evi

dent

to m

ax 1

.00m

m.

Page 33: OFFSHORE TECHNOLOGY REPORT 2001/056 · APPENDIX B GEOMETRY PLOTS FROM THE SACS MODEL 37 APPENDIX C COMPARISON OF RIGID AND FLEXIBLE FATIGUE-LIFE PREDICTIONS 51. vi. 1 1. INTRODUCTION

26

Loc

atio

n E

levt

n (m

) R

ef. t

o L

AT

N

ode

Ref

. L

eg

Nod

e N

umbe

r M

embe

r N

umbe

r Jo

int T

ype

Vis

ual

Insp

ectio

n D

ate

MPI

( E

C )

Insp

ectio

n D

ate

CO

MM

EN

TS

Loc

atio

n, E

leva

tion,

Nod

e R

ef a

nd J

oint

Ref

dat

a fr

om

Sesa

m D

atab

ase

Spec

tral

Fat

igue

Ana

lysi

s, J

uly

1990

, W

impe

y O

ffsh

ore.

Joi

nt d

ata

from

UE

G '

Des

ign

of

Tub

ular

Joi

nts

'

81

Lig

ht s

urfa

ce p

ittin

g m

ax p

it 0.

05".

Fram

e 2

-7.3

E2

56

07

3567

K

DT

81

L

ight

sur

face

was

tage

, max

pit

0.04

".

Fram

e 2

-7.3

E2

56

07

3667

K

DT

79

A

reas

of p

ittin

g m

ax 3

.00m

m c

omm

on, a

reas

of

gene

ral

surf

ace

was

tage

evi

dent

to m

ax 1

.0m

m.

81

Li

ght p

ittin

g m

ax p

it 0.

05".

95

95

CD

/95/

14

No

crac

klik

e in

dica

tions

or s

igni

fica

nt d

efec

ts fo

und.

Fram

e A

-7

.3

MID

51

04

2611

K

79

Are

as o

f gen

eral

was

tage

to m

ax 1

mm

, gen

eral

pitt

ing

to

1mm

, max

pitt

ing

2mm

, no

defe

cts

of a

ny c

onse

quen

ce.

81

N

o de

fect

s fo

und.

95

95

CD

/95/

02

No

crac

klik

e in

dica

tions

or s

igni

fica

nt d

efec

ts fo

und.

Fram

e A

-7

.3

MID

51

04

2617

K

79

Are

as o

f gen

eral

was

tage

to m

ax 1

mm

, gen

eral

pitt

ing

to

1mm

, max

pitt

ing

2mm

, no

defe

cts

of a

ny c

onse

quen

ce.

81

N

o de

fect

s fo

und.

95

95

CD

/95/

01

No

crac

klik

e in

dica

tions

or s

igni

fica

nt d

efec

ts fo

und.

Fram

e B

-7

.3

MID

52

04

2627

K

93

93

C

D/9

3/04

B1.

B2

N

o cr

ackl

ike

indi

catio

ns o

r sig

nifi

cant

det

ails

foun

d

Page 34: OFFSHORE TECHNOLOGY REPORT 2001/056 · APPENDIX B GEOMETRY PLOTS FROM THE SACS MODEL 37 APPENDIX C COMPARISON OF RIGID AND FLEXIBLE FATIGUE-LIFE PREDICTIONS 51. vi. 1 1. INTRODUCTION

27

Loc

atio

n E

levt

n (m

) R

ef. t

o L

AT

N

ode

Ref

. L

eg

Nod

e N

umbe

r M

embe

r N

umbe

r Jo

int T

ype

Vis

ual

Insp

ectio

n D

ate

MPI

( E

C )

Insp

ectio

n D

ate

CO

MM

EN

TS

Loc

atio

n, E

leva

tion,

Nod

e R

ef a

nd J

oint

Ref

dat

a fr

om

Sesa

m D

atab

ase

Spec

tral

Fat

igue

Ana

lysi

s, J

uly

1990

, W

impe

y O

ffsh

ore.

Joi

nt d

ata

from

UE

G '

Des

ign

of

Tub

ular

Joi

nts

'

Fram

e B

-7

.3

MID

52

04

2621

K

93

93

C

D/9

3/03

B1.

B2

N

o cr

ackl

ike

indi

catio

ns o

r sig

nifi

cant

det

ails

foun

d

Fram

e B

-2

0.7

B2

3207

24

25

KT

87

87

CV

I : G

ener

al c

orro

sion

& c

orro

sion

pitt

ing

in b

oth

HA

Zs, m

ax 1

.5m

m.

Ligh

t pitt

ing

in w

eld

cap.

M

ax p

it in

toe

2.5m

m.

MPI

: no

cra

cklik

e or

sig

nifi

cant

def

ects

det

ecte

d.

Fram

e C

-7

.3

MID

53

04

2631

K

95

95

C

D/9

5/05

C1.

C2

N

o cr

ackl

ike

indi

catio

ns o

r sig

nifi

cant

det

ails

foun

d

Fram

e C

-7

.3

C2

5307

24

37

YT

83

Pi

tting

max

0.0

3", a

reas

of s

urfa

ce w

asta

ge.

Fram

e C

-7

.3

MID

53

04

2637

K

95

95

C

D/9

5/06

C1.

C2

N

o cr

ackl

ike

indi

catio

ns o

r sig

nifi

cant

det

ails

foun

d

Fram

e C

-7

.3

C2

5307

25

37

YT

83

Pi

tting

max

0.0

3", a

reas

of s

urfa

ce w

asta

ge.

95

95

CD

/95/

07

No

crac

klik

e in

dica

tions

or s

igni

fica

nt d

etai

ls fo

und

Fram

e D

+

6.1

D1

7401

26

41

YT

93

( 93

) C

D/9

3/34

No

crac

klik

e in

dica

tions

or s

igni

fica

nt d

efec

ts fo

und

( 9

4 )

CD

/94/

34

No

crac

klik

e in

dica

tions

or s

igni

fica

nt d

efec

ts fo

und

Page 35: OFFSHORE TECHNOLOGY REPORT 2001/056 · APPENDIX B GEOMETRY PLOTS FROM THE SACS MODEL 37 APPENDIX C COMPARISON OF RIGID AND FLEXIBLE FATIGUE-LIFE PREDICTIONS 51. vi. 1 1. INTRODUCTION

28

Loc

atio

n E

levt

n (m

) R

ef. t

o L

AT

N

ode

Ref

. L

eg

Nod

e N

umbe

r M

embe

r N

umbe

r Jo

int T

ype

Vis

ual

Insp

ectio

n D

ate

MPI

( E

C )

Insp

ectio

n D

ate

CO

MM

EN

TS

Loc

atio

n, E

leva

tion,

Nod

e R

ef a

nd J

oint

Ref

dat

a fr

om

Sesa

m D

atab

ase

Spec

tral

Fat

igue

Ana

lysi

s, J

uly

1990

, W

impe

y O

ffsh

ore.

Joi

nt d

ata

from

UE

G '

Des

ign

of

Tub

ular

Joi

nts

'

Fram

e D

+

6.1

D2

7407

26

47

YT

93

( 93

) C

D/9

3/35

No

crac

klik

e in

dica

tions

or s

igni

fica

nt d

efec

ts fo

und

( 9

4 )

CD

/94/

35

No

crac

klik

e in

dica

tions

or s

igni

fica

nt d

efec

ts fo

und

Fram

e D

-7

.3

D1

5401

24

41

YT

77

N

o vi

sibl

e de

fect

s at

tim

e of

insp

ectio

n.

Fram

e D

-7

.3

D1

5401

25

41

YT

77

N

o vi

sibl

e de

fect

s at

tim

e of

insp

ectio

n.

Fram

e D

-7

.3

D2

5407

24

47

YT

79

A

reas

of g

ener

al s

urfa

ce w

asta

ge e

vide

nt m

ax 1

mm

, ar

eas

of g

ener

al p

ittin

g to

dep

th 3

.00m

m c

omm

on.

81

N

ode

cond

ition

goo

d.

Fram

e D

-7

.3

D2

5407

25

47

YT

79

A

reas

of g

ener

al s

urfa

ce w

asta

ge e

vide

nt m

ax 1

mm

, ar

eas

of g

ener

al p

ittin

g to

dep

th 3

.00m

m c

omm

on.

81

N

ode

cond

ition

goo

d.

Fram

e D

-7

.3

MID

54

04

2641

K

91

91

N

o si

gnif

ican

t def

ects

or c

rack

ilke

indi

catio

ns fo

und.

D1

- D2

L

ocal

ised

pitt

ing

on c

hord

and

bra

ce 3

-6-9

O/C

, 20

%

cove

r, 2

mm

max

. dep

th

Fr

ame

D

-7.3

M

ID

5404

26

47

K

93

93

CD

/93/

08

D1

- D2

N

o cr

ackl

ike

indi

catio

ns o

r sig

nifi

cant

def

ects

foun

d

Page 36: OFFSHORE TECHNOLOGY REPORT 2001/056 · APPENDIX B GEOMETRY PLOTS FROM THE SACS MODEL 37 APPENDIX C COMPARISON OF RIGID AND FLEXIBLE FATIGUE-LIFE PREDICTIONS 51. vi. 1 1. INTRODUCTION

29

Loc

atio

n E

levt

n (m

) R

ef. t

o L

AT

N

ode

Ref

. L

eg

Nod

e N

umbe

r M

embe

r N

umbe

r Jo

int T

ype

Vis

ual

Insp

ectio

n D

ate

MPI

( E

C )

Insp

ectio

n D

ate

CO

MM

EN

TS

Loc

atio

n, E

leva

tion,

Nod

e R

ef a

nd J

oint

Ref

dat

a fr

om

Sesa

m D

atab

ase

Spec

tral

Fat

igue

Ana

lysi

s, J

uly

1990

, W

impe

y O

ffsh

ore.

Joi

nt d

ata

from

UE

G '

Des

ign

of

Tub

ular

Joi

nts

'

Fram

e E

-7.3

E1

56

01

2461

Y

T 75

Cat

hodi

c pr

otec

tion

read

ings

take

n.

81

L

ight

pitt

ing

max

0.0

4", s

ome

surf

ace

was

tage

, cat

hodi

c pr

otec

tion

read

ings

take

n.

83

Pi

tting

max

0.0

2", s

urfa

ce w

asta

ge m

ax 0

.04"

.

Fram

e E

-7.3

E1

56

01

2561

Y

T 75

81

Pi

tting

max

0.0

3", c

atho

dic

prot

ectio

n re

adin

gs ta

ken.

83

Pi

tting

max

0.0

4", s

urfa

ce w

asta

ge a

reas

.

Fram

e E

-7.3

E2

56

07

2467

Y

T 79

Are

as o

f pitt

ing

max

3.0

0mm

com

mon

, are

as o

f gen

eral

su

rfac

e w

asta

ge e

vide

nt to

max

1.0

mm

.

81

Lig

ht is

olat

ed p

ittin

g m

ax p

it 0.

05".

Fram

e E

-7.3

E2

56

07

2567

Y

T 79

Are

as o

f pitt

ing

max

3.0

0mm

com

mon

, are

as o

f gen

eral

su

rfac

e w

asta

ge e

vide

nt to

max

1.0

0mm

.

81

Slig

ht u

nder

cut,

light

pitt

ing

max

pit

0.05

".

Fram

e E

-7.3

M

ID

5604

26

66

K

93

93

CD

/93/

10

E1.E

2

No

crac

klik

e in

dica

tions

or s

igni

fica

nt d

efec

ts fo

und

Fram

e E

-7.3

M

ID

5604

26

62

K

93

93

CD

/93/

09

E1.E

2

No

crac

klik

e in

dica

tions

or s

igni

fica

nt d

efec

ts fo

und.

A

pit (

poss

ibly

Fr

ame

F -7

.3

F1

5801

24

81

YT

75

N

o si

gnif

ican

t def

ects

.

77

N

o vi

sibl

e de

fect

s.

Page 37: OFFSHORE TECHNOLOGY REPORT 2001/056 · APPENDIX B GEOMETRY PLOTS FROM THE SACS MODEL 37 APPENDIX C COMPARISON OF RIGID AND FLEXIBLE FATIGUE-LIFE PREDICTIONS 51. vi. 1 1. INTRODUCTION

30

Loc

atio

n E

levt

n (m

) R

ef. t

o L

AT

N

ode

Ref

. L

eg

Nod

e N

umbe

r M

embe

r N

umbe

r Jo

int T

ype

Vis

ual

Insp

ectio

n D

ate

MPI

( E

C )

Insp

ectio

n D

ate

CO

MM

EN

TS

Loc

atio

n, E

leva

tion,

Nod

e R

ef a

nd J

oint

Ref

dat

a fr

om

Sesa

m D

atab

ase

Spec

tral

Fat

igue

Ana

lysi

s, J

uly

1990

, W

impe

y O

ffsh

ore.

Joi

nt d

ata

from

UE

G '

Des

ign

of

Tub

ular

Joi

nts

'

Fram

e F

+ 6.

1 F1

78

07

2687

Y

T 94

( 9

4 )

CD

/94/

33

No

crac

klik

e in

dica

tions

or s

igni

fica

nt d

efec

ts fo

und

Fram

e F

-7.3

F1

58

01

2581

Y

T 75

No

sign

ific

ant d

efec

ts.

77

N

o vi

sibl

e de

fect

s.

Fram

e F

-7.3

F2

58

07

2587

Y

T 89

89

N

o cr

ackl

ike

indi

catio

ns o

r sig

nifi

cant

def

ects

w

ere

foun

d.

Fram

e F

-7.3

F2

58

07

2487

Y

T 89

89

N

o cr

ackl

ike

indi

catio

ns o

r sig

nifi

cant

def

ects

w

ere

foun

d.

Fram

e F

+ 6.

1 F1

78

01

2681

Y

T 94

( 9

4 )

CD

/94/

32

No

crac

klik

e in

dica

tions

or s

igni

fica

nt d

efec

ts fo

und

Fram

e F

-7.3

M

ID

5804

26

87

K

91

91

No

sign

ific

ant d

efec

ts o

r cra

cklik

e in

dica

tions

foun

d.

F1 -

F2

Pr

efer

entia

l cor

rosi

on o

n br

ace

over

a le

ngth

of 9

50 m

m

25 -

35 m

m fr

om w

eld

toe,

1.5

mm

dep

th.

Fram

e F

-7.3

M

ID

5804

26

81

K

93

93

CD

/93/

11

F1 -

F2

N

o cr

ackl

ike

indi

catio

ns o

r sig

nifi

cant

def

ects

foun

d.

Hor

izon

tal

-7.3

M

ID

5104

45

17

K

79

A

reas

of g

ener

al w

asta

ge to

max

1m

m, g

ener

al p

ittin

g to

1m

m, m

ax p

ittin

g 2m

m, n

o de

fect

s of

any

con

sequ

ence

.

81

No

defe

cts

foun

d.

Page 38: OFFSHORE TECHNOLOGY REPORT 2001/056 · APPENDIX B GEOMETRY PLOTS FROM THE SACS MODEL 37 APPENDIX C COMPARISON OF RIGID AND FLEXIBLE FATIGUE-LIFE PREDICTIONS 51. vi. 1 1. INTRODUCTION

31

Loc

atio

n E

levt

n (m

) R

ef. t

o L

AT

N

ode

Ref

. L

eg

Nod

e N

umbe

r M

embe

r N

umbe

r Jo

int T

ype

Vis

ual

Insp

ectio

n D

ate

MPI

( E

C )

Insp

ectio

n D

ate

CO

MM

EN

TS

Loc

atio

n, E

leva

tion,

Nod

e R

ef a

nd J

oint

Ref

dat

a fr

om

Sesa

m D

atab

ase

Spec

tral

Fat

igue

Ana

lysi

s, J

uly

1990

, W

impe

y O

ffsh

ore.

Joi

nt d

ata

from

UE

G '

Des

ign

of

Tub

ular

Joi

nts

'

Hor

izon

tal

Fram

e -7

.3

-7.3

56

05

4557

Y

95

95

C

D/9

5/23

BT

WN

E1

.E2

N

o cr

ackl

ike

indi

catio

ns o

r sig

nifi

cant

def

ects

foun

d.

Hor

izon

tal

Fram

e -7

.3

-7.3

51

04

4511

K

79

Are

as o

f gen

eral

was

tage

to m

ax 1

mm

, gen

eral

pitt

ing

to

1mm

, max

MID

A

1.A

2

pitti

ng 2

mm

, no

defe

cts

of a

ny c

onse

quen

ce.

81

N

o de

fect

s fo

und.

-7.3

56

03

4561

K

T 95

95

C

D/9

5/24

H

oriz

onta

l Fr

ame

-7.3

BT

WN

E1

.E2

N

o cr

ackl

ike

indi

catio

ns o

r sig

nifi

cant

def

ects

foun

d.

Hor

izon

tal

Fram

e -7

.3

-7.3

M

ID

B1.

B2

5204

45

27

K

83

83

Wel

d pa

rtia

lly o

bstr

ucte

d by

an

anod

e.

Hor

izon

tal

Fram

e -7

.3

-7.3

M

ID

B1.

B2

5204

45

21

K

83

83

VIS

IBLE

DIS

CO

NTI

NU

ITY

at 4

o'cl

ock

on h

oriz

onta

l br

ace

side

, gri

ndin

g ca

rrie

d ou

t. M

PI re

veal

ed a

n in

dica

tion

perp

endi

cula

r to

the

wel

d ru

nnin

g fr

om th

e ed

ge o

f the

vis

ible

def

ect t

o w

eld

cap.

M

etal

pee

ling

away

from

bra

ce. F

urth

er M

PI c

arri

ed o

ut

at 4

o'cl

ock

posi

tion

- no

defe

cts

foun

d. W

eld

part

ially

ob

stru

cted

by

an a

node

.

Hor

izon

tal

Fram

e -7

.3

-7.3

56

03

4551

Y

T 95

95

C

D/9

5/25

BT

WN

E1

.E2

N

o cr

ackl

ike

indi

catio

ns o

r sig

nifi

cant

def

ects

foun

d.

Page 39: OFFSHORE TECHNOLOGY REPORT 2001/056 · APPENDIX B GEOMETRY PLOTS FROM THE SACS MODEL 37 APPENDIX C COMPARISON OF RIGID AND FLEXIBLE FATIGUE-LIFE PREDICTIONS 51. vi. 1 1. INTRODUCTION

32

Loc

atio

n E

levt

n (m

) R

ef. t

o L

AT

N

ode

Ref

. L

eg

Nod

e N

umbe

r M

embe

r N

umbe

r Jo

int T

ype

Vis

ual

Insp

ectio

n D

ate

MPI

( E

C )

Insp

ectio

n D

ate

CO

MM

EN

TS

Loc

atio

n, E

leva

tion,

Nod

e R

ef a

nd J

oint

Ref

dat

a fr

om

Sesa

m D

atab

ase

Spec

tral

Fat

igue

Ana

lysi

s, J

uly

1990

, W

impe

y O

ffsh

ore.

Joi

nt d

ata

from

UE

G '

Des

ign

of

Tub

ular

Joi

nts

'

Hor

izon

tal

Fram

e -7

.3

-7.3

C

2 53

07

4527

Y

T 83

Pitti

ng m

ax 0

.02"

, sur

face

was

tage

max

0.0

5".

Hor

izon

tal

Fram

e -7

.3

-7.3

C

2 53

07

4539

K

T 83

Pitti

ng m

ax 0

.03"

, are

as o

f sur

face

was

tage

.

Hor

izon

tal

Fram

e -7

.3

-7.3

53

04

4534

K

75

No

sign

ific

ant d

efec

ts.

MID

C

1.C

2

84

84

No

defe

cts

foun

d.

87

87

4 pi

ts in

toe

max

1.5

mm

. M

PI n

o cr

ackl

ike

indi

catio

ns

dete

cted

.

Hor

izon

tal

Fram

e -7

.3

-7.3

M

ID

5304

45

31

K

75

N

o si

gnif

ican

t def

ects

.

C1.

C2

87

87

Is

olat

ed p

it m

ax 1

mm

.

MPI

: N

o cr

ackl

ike

indi

catio

ns d

etec

ted.

Hor

izon

tal

Fram

e -7

.3

-7.3

D

1 54

01

4531

K

T 77

77

N

o de

fect

s fo

und.

78

N

o de

fect

s of

any

con

sequ

ence

.

79

N

o de

fect

s fo

und.

80

N

o de

fect

s of

any

con

sequ

ence

.

81

N

o de

fect

s of

any

con

sequ

ence

.

82

N

o de

fect

s of

any

con

sequ

ence

.

83

N

o de

fect

s no

ted.

Page 40: OFFSHORE TECHNOLOGY REPORT 2001/056 · APPENDIX B GEOMETRY PLOTS FROM THE SACS MODEL 37 APPENDIX C COMPARISON OF RIGID AND FLEXIBLE FATIGUE-LIFE PREDICTIONS 51. vi. 1 1. INTRODUCTION

33

Loc

atio

n E

levt

n (m

) R

ef. t

o L

AT

N

ode

Ref

. L

eg

Nod

e N

umbe

r M

embe

r N

umbe

r Jo

int T

ype

Vis

ual

Insp

ectio

n D

ate

MPI

( E

C )

Insp

ectio

n D

ate

CO

MM

EN

TS

Loc

atio

n, E

leva

tion,

Nod

e R

ef a

nd J

oint

Ref

dat

a fr

om

Sesa

m D

atab

ase

Spec

tral

Fat

igue

Ana

lysi

s, J

uly

1990

, W

impe

y O

ffsh

ore.

Joi

nt d

ata

from

UE

G '

Des

ign

of

Tub

ular

Joi

nts

' H

oriz

onta

l Fr

ame

-7.3

-7

.3

D1

5401

45

41

KT

77

N

o vi

sibl

e de

fect

s at

tim

e of

insp

ectio

n.

Hor

izon

tal

Fram

e -7

.3

-7.3

D

2 54

07

4537

K

T 79

Are

as o

f gen

eral

sur

face

was

tage

evi

dent

max

1m

m,

area

s of

gen

eral

pitt

ing

to d

epth

3.0

0mm

com

mon

.

81

Nod

e co

nditi

on g

ood.

Hor

izon

tal

Fram

e -7

.3

-7.3

D

2 54

07

4547

K

T 79

Are

as o

f gen

eral

sur

face

was

tage

evi

dent

max

1m

m,

area

s of

gen

eral

pitt

ing

to d

epth

3.0

0mm

com

mon

.

81

Nod

e co

nditi

on g

ood.

Hor

izon

tal

Fram

e -7

.3

-7.3

54

05

5542

T

87

87

MID

D

1.D

2

SEV

ERE

CO

RR

OSI

ON

PIT

TIN

G in

the

HA

Zs b

oth

side

s of

wel

d. M

ax d

ia. 1

0mm

. Max

dep

th 1

.5m

m. P

its in

wel

d to

es &

HA

Zs.

Are

a of

cor

rosi

on p

ittin

g in

wel

d ca

p.

MPI

: N

o cr

ackl

ike/

sign

ific

ant i

ndic

atio

ns p

rese

nt.

No

rem

edia

l act

ion

requ

ired

.

Hor

izon

tal

Fram

e -7

.3

-7.3

54

05

5534

T

87

87

MID

D

1.D

2

CR

AC

KLI

KE

DEF

ECT

on h

oriz

onta

l bra

ce s

ide

of w

eld,

w

ithin

a g

roov

e, 8

5mm

long

, max

dep

th 1

.5m

m.

MPI

: CR

AC

KLI

KE

IND

ICA

TIO

NS

on h

oriz

onta

l bra

ce

side

wel

d w

ithin

gro

ove

in w

eld

toe,

200

mm

long

in s

ame

loca

tion

as 8

5mm

cra

cklik

e de

fect

. No

rem

edia

l act

ion

requ

ired

.

89

89

A 1

95m

m. l

ong

CR

AC

KLI

KE

IND

ICA

TIO

N w

as fo

und

in th

e ch

ord

toe

of th

e w

eld

from

11

o'cl

ock

thro

'12

to 1

Page 41: OFFSHORE TECHNOLOGY REPORT 2001/056 · APPENDIX B GEOMETRY PLOTS FROM THE SACS MODEL 37 APPENDIX C COMPARISON OF RIGID AND FLEXIBLE FATIGUE-LIFE PREDICTIONS 51. vi. 1 1. INTRODUCTION

34

Loc

atio

n E

levt

n (m

) R

ef. t

o L

AT

N

ode

Ref

. L

eg

Nod

e N

umbe

r M

embe

r N

umbe

r Jo

int T

ype

Vis

ual

Insp

ectio

n D

ate

MPI

( E

C )

Insp

ectio

n D

ate

CO

MM

EN

TS

Loc

atio

n, E

leva

tion,

Nod

e R

ef a

nd J

oint

Ref

dat

a fr

om

Sesa

m D

atab

ase

Spec

tral

Fat

igue

Ana

lysi

s, J

uly

1990

, W

impe

y O

ffsh

ore.

Joi

nt d

ata

from

UE

G '

Des

ign

of

Tub

ular

Joi

nts

'

in

the

chor

d to

e of

the

wel

d fr

om 1

1 o'

cloc

k th

ro'1

2 to

1

o'cl

ock.

The

indi

catio

n w

as c

ontin

uous

for a

ppro

x.

165m

m. a

nd in

term

itten

t for

30m

m.R

emed

ial g

rindi

ng w

as

carr

ied

out i

n 1m

m.in

crem

ents

. Whe

n gr

ound

to 6

.5m

m.

max

imum

dep

th th

e in

dica

tion

was

155

mm

. lo

ng a

nd

mai

nly

cont

inuo

us.

The

gro

und

area

was

ligh

tly

prof

iled

and

deta

iled

dim

ensi

ons

take

n. A

n FM

T

show

ed n

o in

dica

tion

of fl

oodi

ng in

eith

er th

e br

ace

or

the

chor

d.G

rout

ed c

lam

p fi

tted.

Hor

izon

tal

Fram

e -7

.3

-7.3

E2

56

07

4556

K

T 79

Are

as o

f pitt

ing

max

3.0

0mm

com

mon

, are

as o

f gen

eral

su

rfac

e w

asta

ge e

vide

nt to

max

1.0

mm

.

81

Lig

ht s

urfa

ce p

ittin

g, s

light

und

ercu

tting

on

guss

et

plat

e.

Hor

izon

tal

Fram

e -7

.3

-7.3

E2

56

07

4566

K

T 79

Are

as o

f pitt

ing

max

3.0

0mm

com

mon

, are

as o

f gen

eral

su

rfac

e w

asta

ge e

vide

nt to

max

1.0

mm

.

81

Lig

ht s

urfa

ce w

asta

ge.

Hor

izon

tal

Fram

e -7

.3

-7.3

F1

58

01

4571

Y

T 77

No

visi

ble

defe

cts.

-7.3

58

06

6697

T

75

No

sign

ific

ant d

efec

ts.

Hor

izon

tal

Fram

e -7

.3

BT

WN

F1

.F2

87

87

C

VI :

5m

m d

ia. x

2m

m p

it in

wel

d ca

p. G

ener

al c

orro

sion

&

ligh

t pitt

ing

both

sid

es H

AZ

. 3 a

reas

of d

eepe

r co

rros

ion

pitti

ng c

an s

ide

of H

AZ

, max

3m

m. G

ener

al

1mm

. MPI

: N

o cr

ackl

ike/

sign

ifica

nt in

dica

tions

de

tect

ed.

Page 42: OFFSHORE TECHNOLOGY REPORT 2001/056 · APPENDIX B GEOMETRY PLOTS FROM THE SACS MODEL 37 APPENDIX C COMPARISON OF RIGID AND FLEXIBLE FATIGUE-LIFE PREDICTIONS 51. vi. 1 1. INTRODUCTION

35

Loc

atio

n E

levt

n (m

) R

ef. t

o L

AT

N

ode

Ref

. L

eg

Nod

e N

umbe

r M

embe

r N

umbe

r Jo

int T

ype

Vis

ual

Insp

ectio

n D

ate

MPI

( E

C )

Insp

ectio

n D

ate

CO

MM

EN

TS

Loc

atio

n, E

leva

tion,

Nod

e R

ef a

nd J

oint

Ref

dat

a fr

om

Sesa

m D

atab

ase

Spec

tral

Fat

igue

Ana

lysi

s, J

uly

1990

, W

impe

y O

ffsh

ore.

Joi

nt d

ata

from

UE

G '

Des

ign

of

Tub

ular

Joi

nts

' H

oriz

onta

l Fr

ame

-7.3

-7

.3

BT

WN

F1

.F2

5605

66

83

KD

T 91

91

N

o si

gnif

ican

t def

ects

or c

rack

like

indi

catio

ns fo

und

Hor

izon

tal

Fram

e -7

.3

-7.3

B

TW

N

F1.F

2 56

05

4567

K

DT

91

91

No

sign

ific

ant d

efec

ts o

r cra

cklik

e in

dica

tions

foun

d

Hor

izon

tal

Fram

e -7

.3

-7.3

B

TW

N

F1.F

2 58

05

6689

T

75

No

sign

ific

ant d

efec

ts.

Hor

izon

tal

Fram

e -7

.3

-7.3

B

TW

N

F1.F

2 58

02

6667

T

75

No

sign

ific

ant d

efec

ts.

Hor

izon

tal

Fram

e -7

.3

-7.3

37

22

5368

T

75

No

sign

ific

ant d

efec

ts.

BT

WN

F1

.F2

77

No

visi

ble

defe

cts.

Hor

izon

tal

Fram

e -2

0.7

-20.

7 on

CF

3762

53

76

T

85

85

No

crac

klik

e in

dica

tions

. C

F =

Con

duct

or F

ram

e

Hor

izon

tal

Fram

e -2

0.7

-20.

7 on

CF

3722

53

68

T

85

85

No

crac

klik

e in

dica

tions

. C

F =

Con

duct

or F

ram

e

Page 43: OFFSHORE TECHNOLOGY REPORT 2001/056 · APPENDIX B GEOMETRY PLOTS FROM THE SACS MODEL 37 APPENDIX C COMPARISON OF RIGID AND FLEXIBLE FATIGUE-LIFE PREDICTIONS 51. vi. 1 1. INTRODUCTION

36

DA

MA

GE

LO

CA

TIO

N S

UM

MA

RY

In

stal

led

Ju

ne

1970

Loc

atio

n E

levt

n (m

) R

ef. t

o L

AT

Nod

e R

ef.

Leg

N

ode

Num

ber

Mem

ber

Num

ber

Join

t Ty

pe

Vis

ual

Insp

ectio

n D

ate

MPI

(EC

) In

spec

tion

Dat

e

CO

MM

EN

TS

Loc

atio

n,E

leva

tion,

Nod

e R

ef a

nd J

oint

Ref

dat

a fr

om S

esam

Dat

abas

e Sp

ectr

al F

atig

ue A

naly

sis,

Jul

y 19

90, W

impe

y O

ffsh

ore.

Joi

nt d

ata

from

U

EG

' D

esig

n of

Tub

ular

Joi

nts

'.

Fram

e 1

-7.3

D

1 54

01

3631

K

DT

77

N

o vi

sibl

e de

fect

s at

tim

e of

insp

ectio

n.

89

89

A

STR

ON

G

INTE

RM

ITTE

NT

IN

DIC

AT

ION

, ha

ving

th

e ap

pear

ance

of

LA

CK

OF

SID

EWA

LL F

USI

ON

, in

the

chor

d to

e of

the

wel

d fr

om 1

0 o'

cloc

k th

roug

h 12

o'c

lock

12

o'cl

ock

(and

ext

endi

ng 6

0mm

ont

o th

e ch

ord

toe

of th

e ad

jace

nt w

eld

) w

as n

oted

. 90%

of

the

indi

catio

ns w

ere

rem

oved

by

rem

edia

l gr

indi

ng t

o a

dept

h of

2m

m w

ith r

espe

ct t

o th

e ch

ord

pare

nt m

etal

. A

ll re

mai

ning

indi

catio

ns (a

roun

d 10

o'c

lock

) wer

e re

mov

ed b

y gr

indi

ng to

a m

ax.

dept

h of

4m

m.

with

res

pect

to

the

chor

d pa

rent

met

al.

Gro

und

area

s w

ere

light

ly d

ress

ed t

o re

mov

e ac

ute

angl

es,

befo

re p

rofi

le m

easu

rem

ents

wer

e ta

ken.

Hor

izon

tal

-7.3

M

ID

5405

55

34

T

87

87

CV

I: C

RA

CK

LIK

E D

EFEC

T 85

mm

lon

g on

hor

izon

tal

brac

e ch

ord

side

of

wel

d, w

ithin

a o

f wel

d, w

ithin

a g

roov

e, m

ax d

epth

1.5

mm

. M

PI:

A 2

00m

m l

ong

crac

klik

e in

dica

tion

(150

mm

con

tinuo

us a

nd 5

0mm

in

term

itten

t) in

sam

e lo

catio

n as

the

abov

e vi

sual

cra

cklik

e de

fect

. N

o re

med

ial a

ctio

n re

ques

ted.

89

89

A 1

95m

m. l

ong

CR

AC

KL

IKE

IND

ICA

TIO

N w

as fo

und

in th

e ch

ord

toe

of th

e w

eld

from

11

o'cl

ock

thro

'12

to 1

o'c

lock

. The

indi

catio

n w

as c

ontin

uous

for

ap

prox

. 165

mm

and

inte

rmitt

ent f

or 3

0mm

. Rem

edia

l grin

ding

was

car

ried

out

in 1

mm

. inc

rem

ents

. Whe

n gr

ound

to

6.5m

m. m

axim

um d

epth

the

ind

icat

ion

was

155

mm

lon

g an

d m

ainl

y c

ontin

uous

. T

he g

roun

d ar

ea w

as l

ight

ly

prof

iled

and

deta

iled

dim

ensi

ons

take

n. A

Flo

oded

Mem

ber

Tes

t sho

wed

no

indi

catio

n of

floo

ding

in e

ither

the

brac

e or

the

chor

d.

Gro

uted

cla

mp

fitte

d.

Page 44: OFFSHORE TECHNOLOGY REPORT 2001/056 · APPENDIX B GEOMETRY PLOTS FROM THE SACS MODEL 37 APPENDIX C COMPARISON OF RIGID AND FLEXIBLE FATIGUE-LIFE PREDICTIONS 51. vi. 1 1. INTRODUCTION

37

APPENDIX B Geometry Plots from the SACS Model

Page 45: OFFSHORE TECHNOLOGY REPORT 2001/056 · APPENDIX B GEOMETRY PLOTS FROM THE SACS MODEL 37 APPENDIX C COMPARISON OF RIGID AND FLEXIBLE FATIGUE-LIFE PREDICTIONS 51. vi. 1 1. INTRODUCTION

38

1 2 8 3 1 2 8 4

1289

1292

1 3 3 11332

1 3 3 5

1337

1338

1 3 3 9

1 3 4 1

1 3 4 4

1 3 9 3

1 3 9 5

1 3 9 6

1 3 9 7

1 3 9 8

1 3 9 9

1400

1 4 4 6

1 4 5 2 1453

1 4 5 4

1 4 5 5

1 4 8 0

1493

1 4 9 4

1 5 0 0

1517

1 5 2 4

1 5 2 5

1 5 3 5

1 5 3 9

1 5 4 2

1543

1 5 4 7

1 5 4 9

1 5 5 2

1 5 5 4

1 5 5 6

1558

1 5 5 9

1 5 6 0

1 5 6 1 1 5 6 2

1 5 6 3 1 5 6 4

1565 1 5 6 6

1567

99

.0

6X

1.

27

LABEL=SECTION

101.

6X2.

54

91

. 44

X2

. 54

99

.06

X1

.27

99

.06

X1

.27

10

1.6

X2

.54

91

.44

X2

.54

4 5 . 7 2 X 1 . 2 7 4 5 . 7 2 X 1 . 2 7

4 0 . 6 4 X 1 . 2 7 40.64X1.27

4 0 . 6 4 X 0 . 9 5 3 4 0 . 6 4 X 0 . 9 5 3

3 2 . 3 8 5 X 1 . 2 7

45

.72

X1

.27

4 5 . 72 X

1 . 27

40

.64

X1

.27

40.6

4X1 .

27

40.6

4X1.

27

99

.06

X1

.27

99.0

6X1.

27

99.0

6X1.

27

20

.32

X1

.27

99

.06

X1

.27

2 0 . 3 2 X 1 . 2 7

20.32X1.27

20

.32

X1

.27

20

.32

X1

.27

20.32X1.27

20

. 32

X1

. 27

10

1. 6

X2

. 54

10

1. 6

X3

. 17

5

10

1. 6

X3

. 17

5

10

1. 6

X3

. 17

5

10

1.6

X2

.54

10

1.6

X3

.17

5

10

1.6

X3

.17

5

45

.72

X1

.90

54

5.7

2X

1.9

05

4 5 . 7 2 X 1 . 9 0 5

4 5 . 7 2 X 1 . 9 0 5

4 5 . 7 2 X 1 . 9 0 5

45

.72

X1

.90

54

5.7

2X

1.9

05

4 5 . 7 2 X 1 . 9 0 5

45.72X1.905

45.72X1.905

91

.44

X2

.54

91

. 44

X2

. 54

91

. 44

X2

. 54

91

. 44

X2

. 54

91

. 44

X3

. 17

5

91

.44

X3

.17

5

91

. 44

X3

. 17

5

91

.44

X3

.17

5

91

.44

X2

.54

91

.44

X2

.54

99

. 06

X1

. 27

40.6

4X1 .

27

10

1.6

X3

.17

5

32.385X1.27

1 2 8 3 1 2 8 4

1289

1292

1 3 3 11332

1 3 3 5

1337

1338

1 3 3 9

1 3 4 1

1 3 4 4

1 3 9 3

1 3 9 5

1 3 9 6

1 3 9 7

1 3 9 8

1 3 9 9

1400

1 4 4 6

1 4 5 2 1453

1 4 5 4

1 4 5 5

1 4 8 0

1493

1 4 9 4

1 5 0 0

1517

1 5 2 4

1 5 2 5

1 5 3 5

1 5 3 9

1 5 4 2

1543

1 5 4 7

1 5 4 9

1 5 5 2

1 5 5 4

1 5 5 6

1558

1 5 5 9

1 5 6 0

1 5 6 1 1 5 6 2

1 5 6 3 1 5 6 4

1565 1 5 6 6

1567

99

.0

6X

1.

27

LABEL=SECTION

101.

6X2.

54

91

. 44

X2

. 54

99

.06

X1

.27

99

.06

X1

.27

10

1.6

X2

.54

91

.44

X2

.54

4 5 . 7 2 X 1 . 2 7 4 5 . 7 2 X 1 . 2 7

4 0 . 6 4 X 1 . 2 7 40.64X1.27

4 0 . 6 4 X 0 . 9 5 3 4 0 . 6 4 X 0 . 9 5 3

3 2 . 3 8 5 X 1 . 2 7

45

.72

X1

.27

4 5 . 72 X

1 . 27

40

.64

X1

.27

40.6

4X1 .

27

40.6

4X1.

27

99

.06

X1

.27

99.0

6X1.

27

99.0

6X1.

27

20

.32

X1

.27

1 2 8 3 1 2 8 4

1289

1292

1 3 3 11332

1 3 3 5

1337

1338

1 3 3 9

1 3 4 1

1 3 4 4

1 3 9 3

1 3 9 5

1 3 9 6

1 3 9 7

1 3 9 8

1 3 9 9

1400

1 4 4 6

1 4 5 2 1453

1 4 5 4

1 4 5 5

1 4 8 0

1493

1 4 9 4

1 5 0 0

1517

1 5 2 4

1 5 2 5

1 5 3 5

1 5 3 9

1 5 4 2

1543

1 5 4 7

1 5 4 9

1 5 5 2

1 5 5 4

1 5 5 6

1558

1 5 5 9

1 5 6 0

1 5 6 1 1 5 6 2

1 5 6 3 1 5 6 4

1565 1 5 6 6

1567

99

.0

6X

1.

27

LABEL=SECTION

101.

6X2.

54

91

. 44

X2

. 54

99

.06

X1

.27

99

.06

X1

.27

10

1.6

X2

.54

91

.44

X2

.54

4 5 . 7 2 X 1 . 2 7 4 5 . 7 2 X 1 . 2 7

4 0 . 6 4 X 1 . 2 7 40.64X1.27

4 0 . 6 4 X 0 . 9 5 3 4 0 . 6 4 X 0 . 9 5 3

3 2 . 3 8 5 X 1 . 2 7

45

.72

X1

.27

4 5 . 72 X

1 . 27

40

.64

X1

.27

40.6

4X1 .

27

40.6

4X1.

27

99

.06

X1

.27

99.0

6X1.

27

99.0

6X1.

27

20

.32

X1

.27

99

.06

X1

.27

2 0 . 3 2 X 1 . 2 7

20.32X1.27

20

.32

X1

.27

20

.32

X1

.27

20.32X1.27

20

. 32

X1

. 27

10

1. 6

X2

. 54

10

1. 6

X3

. 17

5

10

1. 6

X3

. 17

5

10

1. 6

X3

. 17

5

10

1.6

X2

.54

10

1.6

X3

.17

5

10

1.6

X3

.17

5

45

.72

X1

.90

54

5.7

2X

1.9

05

4 5 . 7 2 X 1 . 9 0 5

4 5 . 7 2 X 1 . 9 0 5

4 5 . 7 2 X 1 . 9 0 5

45

.72

X1

.90

54

5.7

2X

1.9

05

4 5 . 7 2 X 1 . 9 0 5

45.72X1.905

45.72X1.905

91

.44

X2

.54

91

. 44

X2

. 54

91

. 44

X2

. 54

91

. 44

X2

. 54

91

. 44

X3

. 17

5

91

.44

X3

.17

5

91

. 44

X3

. 17

5

91

.44

X3

.17

5

91

.44

X2

.54

91

.44

X2

.54

99

. 06

X1

. 27

40.6

4X1 .

27

10

1.6

X3

.17

5

32.385X1.27

Elevation Frame A

Page 46: OFFSHORE TECHNOLOGY REPORT 2001/056 · APPENDIX B GEOMETRY PLOTS FROM THE SACS MODEL 37 APPENDIX C COMPARISON OF RIGID AND FLEXIBLE FATIGUE-LIFE PREDICTIONS 51. vi. 1 1. INTRODUCTION

39

91.44X3.175

91

. 44

X3

. 17

5

1 2 8 5 1 2 8 6

1 3 3 313341 3 4 0

1 3 4 21 3 4 3

1 3 8 5

1 3 9 1 1 3 9 2 1 3 9 4

1 4 0 1 1 4 0 2

1 4 3 4 1 4 3 5

1 4 4 2

1 4 4 4

1 4 4 5

1451

1 4 7 8

1 4 7 9

1 4 8 9

1490

1491

1492

1 4 9 9

1515

1 5 2 2

1523

1528

1 5 3 3

1 5 3 4

1 5 3 8

1 5 4 1

1 5 4 6

1 5 4 8

1 5 5 1

1553

1 5 5 7

LABEL=SECTION

99

.06

X1

.27

99

. 06

X1

. 27

10

1. 6

X2

. 54

91

. 44

X2

. 54

10

1.6

X2

.54

10

1.6

X2

.54

91

.44

X2

.54

4 5 . 7 2 X 1 . 2 7 4 5 . 7 2 X 1 . 2 7

4 0 . 6 4 X 1 . 2 7 4 0 . 6 4 X 1 . 2 7

40.64X0.953 4 0 . 6 4 X 1 . 2 7

40.6

4X1.

27

40

.64

X1

.27

45.72

X1.27

40.6

4X1.

27

40

. 64

X1

. 27

10

1.6

X2

.54

4 0 . 6 4 X 1 . 2 7

32.385X1.2

7

40

. 64

X1

. 27

10

1.

6X

2.

54

45.72

X1.27

45.72X1.2

7

10

1.6

X2

.54

10

1.6

X2

.54

4 0 . 6 4 X 1 . 2 7

32.385X1.27

99

.0

6X

1.

27

99

.06

X1

.27

10

1. 6

X2

. 54

10

1. 6

X3

. 17

5

10

1. 6

X3

. 17

5

10

1. 6

X3

. 17

5

45

.72

X1

.90

54

5.7

2X

1.9

05

10

1.6

X3

.17

5

91

.44

X2

.54

91

. 44

X2

. 54

4 5 . 7 2 X 1 . 9 0 5

45.72X1.905

4 5 . 7 2 X 1 . 9 0 5

91

. 44

X3

. 17

5

91

. 44

X2

. 54

91.4

4X2.

54

91

.44

X3

.17

5

91

.44

X2

.54

91

.44

X2

.54

3 2 . 3 8 5 X 1 . 2 7 3 2 . 3 8 5 X 1 . 2 7

91.44X3.175

91

. 44

X3

. 17

5

1 2 8 5 1 2 8 6

1 3 3 313341 3 4 0

1 3 4 21 3 4 3

1 3 8 5

1 3 9 1 1 3 9 2 1 3 9 4

1 4 0 1 1 4 0 2

1 4 3 4 1 4 3 5

1 4 4 2

1 4 4 4

1 4 4 5

1451

1 4 7 8

1 4 7 9

1 4 8 9

1490

1491

1492

1 4 9 9

1515

1 5 2 2

1523

1528

1 5 3 3

1 5 3 4

1 5 3 8

1 5 4 1

1 5 4 6

1 5 4 8

1 5 5 1

1553

1 5 5 7

LABEL=SECTION

99

.06

X1

.27

99

. 06

X1

. 27

10

1. 6

X2

. 54

91

. 44

X2

. 54

10

1.6

X2

.54

10

1.6

X2

.54

91

.44

X2

.54

4 5 . 7 2 X 1 . 2 7 4 5 . 7 2 X 1 . 2 7

4 0 . 6 4 X 1 . 2 7 4 0 . 6 4 X 1 . 2 7

40.64X0.953 4 0 . 6 4 X 1 . 2 7

40.6

4X1.

27

40

.64

X1

.27

45.72

X1.27

40.6

4X1.

27

40

. 64

X1

. 27

10

1.6

X2

.54

4 0 . 6 4 X 1 . 2 7

32.385X1.2

7

40

. 64

X1

. 27

10

1.

6X

2.

54

45.72

X1.27

45.72X1.2

7

10

1.6

X2

.54

10

1.6

X2

.54

4 0 . 6 4 X 1 . 2 7

32.385X1.27

99

.0

6X

1.

27

99

.06

X1

.27

10

1. 6

X2

. 54

10

1. 6

X3

. 17

5

10

1. 6

X3

. 17

5

10

1. 6

X3

. 17

5

45

.72

X1

.90

54

5.7

2X

1.9

05

10

1.6

X3

.17

5

91

.44

X2

.54

91

. 44

X2

. 54

1 2 8 5 1 2 8 6

1 3 3 313341 3 4 0

1 3 4 21 3 4 3

1 3 8 5

1 3 9 1 1 3 9 2 1 3 9 4

1 4 0 1 1 4 0 2

1 4 3 4 1 4 3 5

1 4 4 2

1 4 4 4

1 4 4 5

1451

1 4 7 8

1 4 7 9

1 4 8 9

1490

1491

1492

1 4 9 9

1515

1 5 2 2

1523

1528

1 5 3 3

1 5 3 4

1 5 3 8

1 5 4 1

1 5 4 6

1 5 4 8

1 5 5 1

1553

1 5 5 7

LABEL=SECTION

99

.06

X1

.27

99

. 06

X1

. 27

10

1. 6

X2

. 54

91

. 44

X2

. 54

10

1.6

X2

.54

10

1.6

X2

.54

91

.44

X2

.54

4 5 . 7 2 X 1 . 2 7 4 5 . 7 2 X 1 . 2 7

4 0 . 6 4 X 1 . 2 7 4 0 . 6 4 X 1 . 2 7

40.64X0.953 4 0 . 6 4 X 1 . 2 7

40.6

4X1.

27

40

.64

X1

.27

45.72

X1.27

40.6

4X1.

27

40

. 64

X1

. 27

10

1.6

X2

.54

4 0 . 6 4 X 1 . 2 7

32.385X1.2

7

40

. 64

X1

. 27

10

1.

6X

2.

54

45.72

X1.27

45.72X1.2

7

10

1.6

X2

.54

10

1.6

X2

.54

4 0 . 6 4 X 1 . 2 7

32.385X1.27

99

.0

6X

1.

27

99

.06

X1

.27

10

1. 6

X2

. 54

10

1. 6

X3

. 17

5

10

1. 6

X3

. 17

5

10

1. 6

X3

. 17

5

45

.72

X1

.90

54

5.7

2X

1.9

05

10

1.6

X3

.17

5

91

.44

X2

.54

91

. 44

X2

. 54

4 5 . 7 2 X 1 . 9 0 5

45.72X1.905

4 5 . 7 2 X 1 . 9 0 5

91

. 44

X3

. 17

5

91

. 44

X2

. 54

91.4

4X2.

54

91

.44

X3

.17

5

91

.44

X2

.54

91

.44

X2

.54

3 2 . 3 8 5 X 1 . 2 7 3 2 . 3 8 5 X 1 . 2 7

Elevation Frame B

Page 47: OFFSHORE TECHNOLOGY REPORT 2001/056 · APPENDIX B GEOMETRY PLOTS FROM THE SACS MODEL 37 APPENDIX C COMPARISON OF RIGID AND FLEXIBLE FATIGUE-LIFE PREDICTIONS 51. vi. 1 1. INTRODUCTION

40

1287 1 2 8 8

1 2 9 0

1 2 9 1

1 3 1 6

1 3 2 21 3 2 3

1 3 2 4 1 3 2 5

1 3 2 7

1330

1 3 3 6

1 3 7 8

1 3 8 0

1 3 8 1

1 3 8 41389

1 3 9 0

1 4 3 3

1 4 3 7

1438

1439 1 4 4 3

1 4 7 6

1 4 7 7

1 4 8 2

1 4 8 4

1 4 8 7

1488

1 5 1 4

1 5 1 8

1519

1 5 2 0

1 5 2 1

1 5 3 6

1 5 3 7

1544

1 5 4 5

1 5 5 0

1 5 5 5

L A B E L = S E C T I O N

99

. 06

X1

. 27

99

.06

X1

.27

10

1. 6

X2

. 54

91

. 44

X2

. 54

99

.06

X1

.27

99

.06

X1

.27

10

1.6

X2

.54

91

.44

X2

.54

4 5 . 7 2 X 1 . 2 74 5 . 7 2 X 1 . 2 7

4 0 . 6 4 X 1 . 2 7 4 0 . 6 4 X 1 . 2 7

4 0 . 6 4 X 0 . 9 5 3 4 0 . 6 4 X 0 . 9 5 3

45.72X1.2

7

45

. 72

X1

. 27

40

.64

X1

.27

40.6

4X1.

27

40

.64

X1

.27

40.6

4X1.

27

32.385X1.27

99

. 06

X1

. 27

99

.06

X1

.27

4 0 . 6 4 X 0 . 9 5 3

10

1.6

X2

.54

10

1. 6

X3

. 17

5

10

1. 6

X3

. 17

5

10

1. 6

X3

. 17

5

10

1.6

X3

.17

5

10

1.6

X3

.17

5

10

1.6

X3

.17

5

10

1.6

X2

.54

45

.72

X1

.90

54

5.7

2X

1.9

05

4 5 . 7 2 X 1 . 9 0 5

4 5 . 7 2 X 1 . 9 0 5

4 5 . 7 2 X 1 . 9 0 5

91

.44

X3

.17

5

91

. 44

X3

. 17

5

91

. 44

X3

. 17

5

91

. 44

X2

. 54

91

. 44

X2

. 54

91

. 44

X3

. 17

5

91

.44

X3

.17

5

91

.44

X3

.17

5

91

.44

X2

.54

91.4

4X2.

54

3 2 . 3 8 5 X 1 . 2 7 3 2 . 3 8 5 X 1 . 2 73 2 . 3 8 5 X 1 . 2 7

1287 1 2 8 8

1 2 9 0

1 2 9 1

1 3 1 6

1 3 2 21 3 2 3

1 3 2 4 1 3 2 5

1 3 2 7

1330

1 3 3 6

1 3 7 8

1 3 8 0

1 3 8 1

1 3 8 41389

1 3 9 0

1 4 3 3

1 4 3 7

1438

1439 1 4 4 3

1 4 7 6

1 4 7 7

1 4 8 2

1 4 8 4

1 4 8 7

1488

1 5 1 4

1 5 1 8

1519

1 5 2 0

1 5 2 1

1 5 3 6

1 5 3 7

1544

1 5 4 5

1 5 5 0

1 5 5 5

L A B E L = S E C T I O N

99

. 06

X1

. 27

99

.06

X1

.27

10

1. 6

X2

. 54

91

. 44

X2

. 54

99

.06

X1

.27

99

.06

X1

.27

10

1.6

X2

.54

91

.44

X2

.54

4 5 . 7 2 X 1 . 2 74 5 . 7 2 X 1 . 2 7

4 0 . 6 4 X 1 . 2 7 4 0 . 6 4 X 1 . 2 7

4 0 . 6 4 X 0 . 9 5 3 4 0 . 6 4 X 0 . 9 5 3

45.72X1.2

7

45

. 72

X1

. 27

40

.64

X1

.27

40.6

4X1.

27

40

.64

X1

.27

40.6

4X1.

27

32.385X1.27

99

. 06

X1

. 27

99

.06

X1

.27

4 0 . 6 4 X 0 . 9 5 3

10

1.6

X2

.54

10

1. 6

X3

. 17

5

10

1. 6

X3

. 17

5

10

1. 6

X3

. 17

5

10

1.6

X3

.17

5

10

1.6

X3

.17

5

10

1.6

X3

.17

5

10

1.6

X2

.54

45

.72

X1

.90

54

5.7

2X

1.9

05

4 5 . 7 2 X 1 . 9 0 5

4 5 . 7 2 X 1 . 9 0 5

4 5 . 7 2 X 1 . 9 0 5

91

.44

X3

.17

5

1287 1 2 8 8

1 2 9 0

1 2 9 1

1 3 1 6

1 3 2 21 3 2 3

1 3 2 4 1 3 2 5

1 3 2 7

1330

1 3 3 6

1 3 7 8

1 3 8 0

1 3 8 1

1 3 8 41389

1 3 9 0

1 4 3 3

1 4 3 7

1438

1439 1 4 4 3

1 4 7 6

1 4 7 7

1 4 8 2

1 4 8 4

1 4 8 7

1488

1 5 1 4

1 5 1 8

1519

1 5 2 0

1 5 2 1

1 5 3 6

1 5 3 7

1544

1 5 4 5

1 5 5 0

1 5 5 5

L A B E L = S E C T I O N

99

. 06

X1

. 27

99

.06

X1

.27

10

1. 6

X2

. 54

91

. 44

X2

. 54

99

.06

X1

.27

99

.06

X1

.27

10

1.6

X2

.54

91

.44

X2

.54

4 5 . 7 2 X 1 . 2 74 5 . 7 2 X 1 . 2 7

4 0 . 6 4 X 1 . 2 7 4 0 . 6 4 X 1 . 2 7

4 0 . 6 4 X 0 . 9 5 3 4 0 . 6 4 X 0 . 9 5 3

45.72X1.2

7

45

. 72

X1

. 27

40

.64

X1

.27

40.6

4X1.

27

40

.64

X1

.27

40.6

4X1.

27

32.385X1.27

99

. 06

X1

. 27

99

.06

X1

.27

4 0 . 6 4 X 0 . 9 5 3

10

1.6

X2

.54

10

1. 6

X3

. 17

5

10

1. 6

X3

. 17

5

10

1. 6

X3

. 17

5

10

1.6

X3

.17

5

10

1.6

X3

.17

5

10

1.6

X3

.17

5

10

1.6

X2

.54

45

.72

X1

.90

54

5.7

2X

1.9

05

4 5 . 7 2 X 1 . 9 0 5

4 5 . 7 2 X 1 . 9 0 5

4 5 . 7 2 X 1 . 9 0 5

91

.44

X3

.17

5

91

. 44

X3

. 17

5

91

. 44

X3

. 17

5

91

. 44

X2

. 54

91

. 44

X2

. 54

91

. 44

X3

. 17

5

91

.44

X3

.17

5

91

.44

X3

.17

5

91

.44

X2

.54

91.4

4X2.

54

3 2 . 3 8 5 X 1 . 2 7 3 2 . 3 8 5 X 1 . 2 73 2 . 3 8 5 X 1 . 2 7

Elevation Frame C

Page 48: OFFSHORE TECHNOLOGY REPORT 2001/056 · APPENDIX B GEOMETRY PLOTS FROM THE SACS MODEL 37 APPENDIX C COMPARISON OF RIGID AND FLEXIBLE FATIGUE-LIFE PREDICTIONS 51. vi. 1 1. INTRODUCTION

41

1 1 8 5

1186

1 1 9 6

1 2 0 31 2 0 5

1 2 1 7

1 2 1 9 1 2 2 0

1 2 2 2 1 2 2 3

1 2 2 5 1226

1229

1230

1231

1 2 3 2

12361 2 3 7

1 2 5 9

1 2 6 0

1261 1 2 6 51 2 6 6

1 2 6 7

1 2 6 8

1 2 7 0

1272

1273

1 2 7 4

1 2 7 7

1 2 7 8

1279

1 3 1 1

1 3 1 2

1317

1 3 1 8

1 3 1 9

1 3 2 1

1 3 2 6

1 3 7 4

1 3 7 5

1 3 8 6

1 3 8 7

1 4 2 6

1 4 2 7

1 4 2 8

1447

1 4 6 9

1 4 9 5

1 5 0 8

1 5 2 6

1 5 3 1

1540

L A B E L = S E C T I O N

99

. 06

X1

. 27

99

. 06

X1

. 27

101.

6X2.

549

1. 4

4X

2. 5

4

99

.06

X1

.27

99

.06

X1

.27

10

1.6

X2

.54

91

.44

X2

.54

40

. 64

X1

. 27

40.6

4X1.

27

45

.72

X1

.27

45.72X1.2

7

40

.64

X1

.27

40

. 64

X1

. 27

3 2 . 3 8 5 X 1 . 2 7 3 2 . 3 8 5 X 1 . 2 7 3 2 . 3 8 5 X 1 . 2 7

4 0 . 6 4 X 0 . 9 5 3 4 0 . 6 4 X 0 . 9 5 3 4 0 . 6 4 X 0 . 9 5 3 4 0 . 6 4 X 0 . 9 5 3 4 0 . 6 4 X 0 . 9 5 3

4 0 . 6 4 X 1 . 2 7 4 0 . 6 4 X 1 . 2 7 4 0 . 6 4 X 1 . 2 7 4 0 . 6 4 X 1 . 2 7 4 0 . 6 4 X 1 . 2 7 4 0 . 6 4 X 1 . 2 7

99

. 06

X1

. 27

99

.06

X1

.27

4 5 . 7 2 X 1 . 2 74 5 . 7 2 X 1 . 2 7 4 5 . 7 2 X 1 . 2 7 4 5 . 7 2 X 1 . 2 7 4 5 . 7 2 X 1 . 2 7 4 5 . 7 2 X 1 . 2 7

10

1. 6

X3

. 17

5

10

1. 6

X3

. 17

5

10

1. 6

X3

. 17

5

10

1. 6

X2

. 54

10

1.6

X3

.17

5

101.

6X3.

175

10

1.6

X3

.17

5

10

1.6

X2

.54

45

.72

X1

.90

54

5.7

2X

1.9

05

4 5 . 7 2 X 1 . 9 0 5

4 5 . 7 2 X 1 . 9 0 5

45.72X1.905

91

.44

X3

.17

5

91

. 44

X3

. 17

5

91

. 44

X2

. 54

91

. 44

X2

. 54

91

. 44

X2

. 54

91

. 44

X3

. 17

5

91

.44

X3

.17

5

91

.44

X2

.54

91

.44

X2

.54

91

.44

X2

.54

3 2 . 3 8 5 X 1 . 2 73 2 . 3 8 5 X 1 . 2 7 3 2 . 3 8 5 X 1 . 2 7

40.64X0.953

1 1 8 5

1186

1 1 9 6

1 2 0 31 2 0 5

1 2 1 7

1 2 1 9 1 2 2 0

1 2 2 2 1 2 2 3

1 2 2 5 1226

1229

1230

1231

1 2 3 2

12361 2 3 7

1 2 5 9

1 2 6 0

1261 1 2 6 51 2 6 6

1 2 6 7

1 2 6 8

1 2 7 0

1272

1273

1 2 7 4

1 2 7 7

1 2 7 8

1279

1 3 1 1

1 3 1 2

1317

1 3 1 8

1 3 1 9

1 3 2 1

1 3 2 6

1 3 7 4

1 3 7 5

1 3 8 6

1 3 8 7

1 4 2 6

1 4 2 7

1 4 2 8

1447

1 4 6 9

1 4 9 5

1 5 0 8

1 5 2 6

1 5 3 1

1540

L A B E L = S E C T I O N

99

. 06

X1

. 27

99

. 06

X1

. 27

101.

6X2.

549

1. 4

4X

2. 5

4

99

.06

X1

.27

99

.06

X1

.27

10

1.6

X2

.54

91

.44

X2

.54

40

. 64

X1

. 27

40.6

4X1.

27

45

.72

X1

.27

45.72X1.2

7

40

.64

X1

.27

40

. 64

X1

. 27

3 2 . 3 8 5 X 1 . 2 7 3 2 . 3 8 5 X 1 . 2 7 3 2 . 3 8 5 X 1 . 2 7

4 0 . 6 4 X 0 . 9 5 3 4 0 . 6 4 X 0 . 9 5 3

1 1 8 5

1186

1 1 9 6

1 2 0 31 2 0 5

1 2 1 7

1 2 1 9 1 2 2 0

1 2 2 2 1 2 2 3

1 2 2 5 1226

1229

1230

1231

1 2 3 2

12361 2 3 7

1 2 5 9

1 2 6 0

1261 1 2 6 51 2 6 6

1 2 6 7

1 2 6 8

1 2 7 0

1272

1273

1 2 7 4

1 2 7 7

1 2 7 8

1279

1 3 1 1

1 3 1 2

1317

1 3 1 8

1 3 1 9

1 3 2 1

1 3 2 6

1 3 7 4

1 3 7 5

1 3 8 6

1 3 8 7

1 4 2 6

1 4 2 7

1 4 2 8

1447

1 4 6 9

1 4 9 5

1 5 0 8

1 5 2 6

1 5 3 1

1540

L A B E L = S E C T I O N

99

. 06

X1

. 27

99

. 06

X1

. 27

101.

6X2.

549

1. 4

4X

2. 5

4

99

.06

X1

.27

99

.06

X1

.27

10

1.6

X2

.54

91

.44

X2

.54

40

. 64

X1

. 27

40.6

4X1.

27

45

.72

X1

.27

45.72X1.2

7

40

.64

X1

.27

40

. 64

X1

. 27

3 2 . 3 8 5 X 1 . 2 7 3 2 . 3 8 5 X 1 . 2 7 3 2 . 3 8 5 X 1 . 2 7

4 0 . 6 4 X 0 . 9 5 3 4 0 . 6 4 X 0 . 9 5 3 4 0 . 6 4 X 0 . 9 5 3 4 0 . 6 4 X 0 . 9 5 3 4 0 . 6 4 X 0 . 9 5 3

4 0 . 6 4 X 1 . 2 7 4 0 . 6 4 X 1 . 2 7 4 0 . 6 4 X 1 . 2 7 4 0 . 6 4 X 1 . 2 7 4 0 . 6 4 X 1 . 2 7 4 0 . 6 4 X 1 . 2 7

99

. 06

X1

. 27

99

.06

X1

.27

4 5 . 7 2 X 1 . 2 74 5 . 7 2 X 1 . 2 7 4 5 . 7 2 X 1 . 2 7 4 5 . 7 2 X 1 . 2 7 4 5 . 7 2 X 1 . 2 7 4 5 . 7 2 X 1 . 2 7

10

1. 6

X3

. 17

5

10

1. 6

X3

. 17

5

10

1. 6

X3

. 17

5

10

1. 6

X2

. 54

10

1.6

X3

.17

5

101.

6X3.

175

10

1.6

X3

.17

5

10

1.6

X2

.54

45

.72

X1

.90

54

5.7

2X

1.9

05

4 5 . 7 2 X 1 . 9 0 5

4 5 . 7 2 X 1 . 9 0 5

45.72X1.905

91

.44

X3

.17

5

91

. 44

X3

. 17

5

91

. 44

X2

. 54

91

. 44

X2

. 54

91

. 44

X2

. 54

91

. 44

X3

. 17

5

91

.44

X3

.17

5

91

.44

X2

.54

91

.44

X2

.54

91

.44

X2

.54

3 2 . 3 8 5 X 1 . 2 73 2 . 3 8 5 X 1 . 2 7 3 2 . 3 8 5 X 1 . 2 7

40.64X0.953

Elevation Frame D

Page 49: OFFSHORE TECHNOLOGY REPORT 2001/056 · APPENDIX B GEOMETRY PLOTS FROM THE SACS MODEL 37 APPENDIX C COMPARISON OF RIGID AND FLEXIBLE FATIGUE-LIFE PREDICTIONS 51. vi. 1 1. INTRODUCTION

42

1 1 3 3

1 1 4 9 1 1 5 1

1 1 5 4

1 1 7 7

1 1 8 21 1 8 3

1 1 9 0

1 1 9 3

1 1 9 4

1 1 9 51 1 9 8 1 1 9 9

1 2 0 6

1 2 0 7

1 2 1 1

1 2 1 3 1 2 1 4

1 2 2 1 1 2 3 3

1 2 3 4 1 2 3 5

1 2 4 6 1 2 5 3

1 2 5 4

1 2 5 5

1 2 5 6

1 2 5 71 2 6 2

1 2 6 9

1 3 0 1 1 3 0 7

1 3 0 9

1 3 1 0

1 3 1 31 3 1 4

1 3 1 5

1 3 7 2

1 3 7 3

1 3 7 9

1 4 2 5

1 4 3 6

1 4 6 8

1 4 8 1

1 5 0 7

1 5 3 0

L A B E L = S E C T I O N

99.0

6X1.

27

101 .

6X2.

5491

.44X

2.54

101.

6X2.

5491

.44X

2.54

45.72

X1.27

40.64

X1.27

40.64

X1.27

40.64

X1.27

101.

6X2.

54

10

1.6

X2

.54

40 .64X1.27

32.385X1.27

3 2 . 3 8 5 X 1 . 2 7

4 0 . 6 4 X 0 . 9 5 3 4 0 . 6 4 X 0 . 9 5 3 4 0 . 6 4 X 1 . 2 7 40 .64X1.27

40 .64X1.27 4 0 . 6 4 X 1 . 2 7 4 0 . 6 4 X 1 . 2 7 4 0 . 6 4 X 1 . 2 7

4 5 . 7 2 X 1 . 2 7 45 .72X1.27 45 .72X1.27 45 .72X1.27

45.72

X1.27

45.72

X1.27

101.

6X2.

54

101.

6X2.

54

40 .64X1.27

32.385X1.2

7

101.

6X2.

54

10

1. 6

X3

. 17

5

10

1. 6

X3

. 17

5

10

1. 6

X3

. 17

5

10

1.6

X3

.17

5

99.0

6X1.

27

99.0

6X1.

27

91

.44

X3

.17

5

91

. 44

X3

. 17

5

91

. 44

X3

. 17

5

91.4

4X2.

54

91.4

4X2.

54

91

. 44

X3

. 17

5

91

.44

X3

.17

5

91

.44

X3

.17

5

91.4

4X2.

54

91.4

4X2.

54

3 2 . 3 8 5 X 1 . 2 73 2 . 3 8 5 X 1 . 2 7 3 2 . 3 8 5 X 1 . 2 7 3 2 . 3 8 5 X 1 . 2 7

101.

6X2.

54

10

1.6

X3

.17

5

40.6

4X1.

27

40.6

4X1.

27

99.0

6X1.

27

1 1 3 3

1 1 4 9 1 1 5 1

1 1 5 4

1 1 7 7

1 1 8 21 1 8 3

1 1 9 0

1 1 9 3

1 1 9 4

1 1 9 51 1 9 8 1 1 9 9

1 2 0 6

1 2 0 7

1 2 1 1

1 2 1 3 1 2 1 4

1 2 2 1 1 2 3 3

1 2 3 4 1 2 3 5

1 2 4 6 1 2 5 3

1 2 5 4

1 2 5 5

1 2 5 6

1 2 5 71 2 6 2

1 2 6 9

1 3 0 1 1 3 0 7

1 3 0 9

1 3 1 0

1 3 1 31 3 1 4

1 3 1 5

1 3 7 2

1 3 7 3

1 3 7 9

1 4 2 5

1 4 3 6

1 4 6 8

1 4 8 1

1 5 0 7

1 5 3 0

L A B E L = S E C T I O N

99.0

6X1.

27

101 .

6X2.

5491

.44X

2.54

101.

6X2.

5491

.44X

2.54

45.72

X1.27

40.64

X1.27

40.64

X1.27

40.64

X1.27

101.

6X2.

54

10

1.6

X2

.54

40 .64X1.27

32.385X1.27

3 2 . 3 8 5 X 1 . 2 7

4 0 . 6 4 X 0 . 9 5 3 4 0 . 6 4 X 0 . 9 5 3 4 0 . 6 4 X 1 . 2 7 40 .64X1.27

40 .64X1.27 4 0 . 6 4 X 1 . 2 7 4 0 . 6 4 X 1 . 2 7 4 0 . 6 4 X 1 . 2 7

4 5 . 7 2 X 1 . 2 7 45 .72X1.27 45 .72X1.27 45 .72X1.27

45.72

X1.27

45.72

X1.27

101.

6X2.

54

1 1 3 3

1 1 4 9 1 1 5 1

1 1 5 4

1 1 7 7

1 1 8 21 1 8 3

1 1 9 0

1 1 9 3

1 1 9 4

1 1 9 51 1 9 8 1 1 9 9

1 2 0 6

1 2 0 7

1 2 1 1

1 2 1 3 1 2 1 4

1 2 2 1 1 2 3 3

1 2 3 4 1 2 3 5

1 2 4 6 1 2 5 3

1 2 5 4

1 2 5 5

1 2 5 6

1 2 5 71 2 6 2

1 2 6 9

1 3 0 1 1 3 0 7

1 3 0 9

1 3 1 0

1 3 1 31 3 1 4

1 3 1 5

1 3 7 2

1 3 7 3

1 3 7 9

1 4 2 5

1 4 3 6

1 4 6 8

1 4 8 1

1 5 0 7

1 5 3 0

L A B E L = S E C T I O N

99.0

6X1.

27

101 .

6X2.

5491

.44X

2.54

101.

6X2.

5491

.44X

2.54

45.72

X1.27

40.64

X1.27

40.64

X1.27

40.64

X1.27

101.

6X2.

54

10

1.6

X2

.54

40 .64X1.27

32.385X1.27

3 2 . 3 8 5 X 1 . 2 7

4 0 . 6 4 X 0 . 9 5 3 4 0 . 6 4 X 0 . 9 5 3 4 0 . 6 4 X 1 . 2 7 40 .64X1.27

40 .64X1.27 4 0 . 6 4 X 1 . 2 7 4 0 . 6 4 X 1 . 2 7 4 0 . 6 4 X 1 . 2 7

4 5 . 7 2 X 1 . 2 7 45 .72X1.27 45 .72X1.27 45 .72X1.27

45.72

X1.27

45.72

X1.27

101.

6X2.

54

101.

6X2.

54

40 .64X1.27

32.385X1.2

7

101.

6X2.

54

10

1. 6

X3

. 17

5

10

1. 6

X3

. 17

5

10

1. 6

X3

. 17

5

10

1.6

X3

.17

5

99.0

6X1.

27

99.0

6X1.

27

91

.44

X3

.17

5

91

. 44

X3

. 17

5

91

. 44

X3

. 17

5

91.4

4X2.

54

91.4

4X2.

54

91

. 44

X3

. 17

5

91

.44

X3

.17

5

91

.44

X3

.17

5

91.4

4X2.

54

91.4

4X2.

54

3 2 . 3 8 5 X 1 . 2 73 2 . 3 8 5 X 1 . 2 7 3 2 . 3 8 5 X 1 . 2 7 3 2 . 3 8 5 X 1 . 2 7

101.

6X2.

54

10

1.6

X3

.17

5

40.6

4X1.

27

40.6

4X1.

27

99.0

6X1.

27

Elevation Frame E

Page 50: OFFSHORE TECHNOLOGY REPORT 2001/056 · APPENDIX B GEOMETRY PLOTS FROM THE SACS MODEL 37 APPENDIX C COMPARISON OF RIGID AND FLEXIBLE FATIGUE-LIFE PREDICTIONS 51. vi. 1 1. INTRODUCTION

43

1 0 0 1

1 0 0 2

1 0 0 3

1 0 0 4

1 0 0 9

1 0 2 5

1 0 2 8

1 0 6 2

1 0 6 9

1 0 7 51 0 7 6

1 0 8 61 0 8 81 0 9 01 0 9 2

1 0 9 41 0 9 61 0 9 9

1 1 0 1

1 1 0 2

1 1 0 3

1 1 2 11 1 2 2

1 1 2 9

1 1 3 0

1 1 3 2 1 1 3 71 1 3 8

1 1 4 81 1 5 01 1 5 2

1 1 5 31 1 5 51 1 5 7

1 1 5 8

1 1 5 9

1 1 8 7

1 1 8 81 1 9 2

1 1 9 71 2 0 1

1 2 0 9

1 2 3 9

1 2 4 0

1 2 5 0

1 2 5 1

1 3 0 4

1 3 0 5

1 3 6 5

1 4 2 2

1 4 6 7

1 5 0 6

L A B E L = S E C T I O N

99

.06

X1

.27

99

.06

X1

.27

10

1.6

X2

.54

91

.44

X2

.54

99

.06

X1

.27

99

.06

X1

.27

10

1.6

X2

.54

91

.44

X2

.54

32.385X1.2732.385X1.2732.385X1.2732.385X1.2732.385X1.27

40.64X0.95340.64X0.95340.64X0.95340.64X0.95340.64X0.953

40.64X1.2740.64X1.2740.64X1.2740.64X1.2740.64X1.2740.64X1.27

45.72X1.2745.72X1.2745.72X1.2745.72X1.27

45.72

X1.27

45.72

X1.27

40.6

4X1.

27

40.6

4X1.

27

40.64

X1.27

40.6

4X1.

27

10

1.6

X3

.17

5

10

1.6

X3

.17

5

10

1.6

X3

.17

5

10

1.6

X2

.54

10

1. 6

X3

. 17

5

10

1. 6

X3

. 17

5

10

1. 6

X3

. 17

5

10

1.6

X2

.54

45

.72

X1

.90

54

5.7

2X

1.9

05

45.72X1.905

45.72X1.905

45.72X1.905

99

.06

X1

.27

99

.06

X1

.27

91

. 44

X3

. 17

5

91

.44

X3

.17

5

91

.44

X2

.54

91

.44

X2

.54

91

.44

X2

.54

91

.44

X3

.17

5

91

. 44

X3

. 17

5

91

. 44

X3

. 17

5

91

.44

X2

.54

91

.44

X2

.54

45.72X1.2745.72X1.27

40.64X0.953

1 0 0 1

1 0 0 2

1 0 0 3

1 0 0 4

1 0 0 9

1 0 2 5

1 0 2 8

1 0 6 2

1 0 6 9

1 0 7 51 0 7 6

1 0 8 61 0 8 81 0 9 01 0 9 2

1 0 9 41 0 9 61 0 9 9

1 1 0 1

1 1 0 2

1 1 0 3

1 1 2 11 1 2 2

1 1 2 9

1 1 3 0

1 1 3 2 1 1 3 71 1 3 8

1 1 4 81 1 5 01 1 5 2

1 1 5 31 1 5 51 1 5 7

1 1 5 8

1 1 5 9

1 1 8 7

1 1 8 81 1 9 2

1 1 9 71 2 0 1

1 2 0 9

1 2 3 9

1 2 4 0

1 2 5 0

1 2 5 1

1 3 0 4

1 3 0 5

1 3 6 5

1 4 2 2

1 4 6 7

1 5 0 6

L A B E L = S E C T I O N

99

.06

X1

.27

99

.06

X1

.27

10

1.6

X2

.54

91

.44

X2

.54

99

.06

X1

.27

99

.06

X1

.27

10

1.6

X2

.54

91

.44

X2

.54

32.385X1.2732.385X1.2732.385X1.2732.385X1.2732.385X1.27

40.64X0.95340.64X0.95340.64X0.95340.64X0.95340.64X0.953

40.64X1.2740.64X1.27

1 0 0 1

1 0 0 2

1 0 0 3

1 0 0 4

1 0 0 9

1 0 2 5

1 0 2 8

1 0 6 2

1 0 6 9

1 0 7 51 0 7 6

1 0 8 61 0 8 81 0 9 01 0 9 2

1 0 9 41 0 9 61 0 9 9

1 1 0 1

1 1 0 2

1 1 0 3

1 1 2 11 1 2 2

1 1 2 9

1 1 3 0

1 1 3 2 1 1 3 71 1 3 8

1 1 4 81 1 5 01 1 5 2

1 1 5 31 1 5 51 1 5 7

1 1 5 8

1 1 5 9

1 1 8 7

1 1 8 81 1 9 2

1 1 9 71 2 0 1

1 2 0 9

1 2 3 9

1 2 4 0

1 2 5 0

1 2 5 1

1 3 0 4

1 3 0 5

1 3 6 5

1 4 2 2

1 4 6 7

1 5 0 6

L A B E L = S E C T I O N

99

.06

X1

.27

99

.06

X1

.27

10

1.6

X2

.54

91

.44

X2

.54

99

.06

X1

.27

99

.06

X1

.27

10

1.6

X2

.54

91

.44

X2

.54

32.385X1.2732.385X1.2732.385X1.2732.385X1.2732.385X1.27

40.64X0.95340.64X0.95340.64X0.95340.64X0.95340.64X0.953

40.64X1.2740.64X1.2740.64X1.2740.64X1.2740.64X1.2740.64X1.27

45.72X1.2745.72X1.2745.72X1.2745.72X1.27

45.72

X1.27

45.72

X1.27

40.6

4X1.

27

40.6

4X1.

27

40.64

X1.27

40.6

4X1.

27

10

1.6

X3

.17

5

10

1.6

X3

.17

5

10

1.6

X3

.17

5

10

1.6

X2

.54

10

1. 6

X3

. 17

5

10

1. 6

X3

. 17

5

10

1. 6

X3

. 17

5

10

1.6

X2

.54

45

.72

X1

.90

54

5.7

2X

1.9

05

45.72X1.905

45.72X1.905

45.72X1.905

99

.06

X1

.27

99

.06

X1

.27

91

. 44

X3

. 17

5

91

.44

X3

.17

5

91

.44

X2

.54

91

.44

X2

.54

91

.44

X2

.54

91

.44

X3

.17

5

91

. 44

X3

. 17

5

91

. 44

X3

. 17

5

91

.44

X2

.54

91

.44

X2

.54

45.72X1.2745.72X1.27

40.64X0.953

Elevation Frame F

Page 51: OFFSHORE TECHNOLOGY REPORT 2001/056 · APPENDIX B GEOMETRY PLOTS FROM THE SACS MODEL 37 APPENDIX C COMPARISON OF RIGID AND FLEXIBLE FATIGUE-LIFE PREDICTIONS 51. vi. 1 1. INTRODUCTION

44

Page 52: OFFSHORE TECHNOLOGY REPORT 2001/056 · APPENDIX B GEOMETRY PLOTS FROM THE SACS MODEL 37 APPENDIX C COMPARISON OF RIGID AND FLEXIBLE FATIGUE-LIFE PREDICTIONS 51. vi. 1 1. INTRODUCTION

45

14

88

15

00

15

06

15

07

15

08

15

15

15

17

15

19

15

20

15

30

15

31

15

33

15

34

15

35

15

37

15

40

15

41

15

42

15

43

15

45

15

48

15

49

15

50

15

53

15

54

15

55

15

57

15

58

15

59

15

60

15

61

15

63

15

65

LA

BE

L=

SE

CT

IO

N

99.06X1.2799.06X1.27101.6X2.5491.44X2.54

99.06X1.2799.06X1.27101.6X2.5491.44X2.54

40

.64

X1

.27

40

.64

X1

.27

40

.64

X1

.27

40

.64

X1

.27

40

.64

X1

.27

32

.3

85

X0

.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.3

85

X0

.9

53

32

.38

5X

0.9

53

32

.3

85

X0

.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.3

85

X0

.9

53

32

.38

5X

0.9

53

32

.38

5X

1.2

73

2.3

85

X1

.27

32

.38

5X

1.2

73

2.3

85

X1

.27

101.6X2.54101.6X2.5491.44X2.54

99.06X1.2799.06X1.27101.6X2.5491.44X2.54

99.06X1.2799.06X1.27101.6X2.5491.44X2.54

101.6X2.5491.44X2.54

50.8X1.27

45.72X1.27

45.72X1.27

50.8X1.27

45.72X1.27

45.72X1.27

50.8X1.27

45.72X1.27

101.6X3.175 101.6X3.175 101.6X3.175

101.6X2.54 99.06X1.27

91.44X3.17591.44X3.175

91.44X2.5491.44X2.54

11

03

11

22

11

52

11

58

11

59

11

83

11

92

12

01

12

09

12

11

12

32

12

33

12

35

12

36

12

50

12

53

12

54

12

69

12

70

12

78

12

79

12

84

12

86

12

88

12

89

13

04

13

05

13

09

13

10

13

11

13

12

13

13

13

26

13

27

13

32

13

34

13

35

13

42

13

65

13

72

13

73

13

74

13

76

13

78

13

90

13

94

13

95

14

00

14

02

14

22

14

25

14

26

14

27

14

30

14

33

14

35

14

43

14

53

14

55

14

67

14

68

14

69

14

77

14

78

14

79

14

87

45.72X1.27

50.8X1.27

45.72X1.27

45.72X1.27

50.8X1.27

45.72X1.27

45.72X1.27

101.6X2.54

101.6X2.54101.6X2.54 101.6X2.54101.6X2.54

101.6X2.54 101.6X2.54101.6X2.54

32

.38

5X

1.2

73

2.

38

5X

1.

27

99.06X1.27

99.06X1.27

99.06X1.27

99.06X1.27

99.06X1.2799.06X1.27

101.6X3.175 101.6X3.175 101.6X3.175

101.6X2.54

101.6X3.175 101.6X3.175 101.6X3.175101.6X2.54

101.6X2.54101.6X3.175101.6X3.175

101.6X3.175

101.6X3.175

91.44X2.54

91.44X2.54

99.06X1.27

9 1 . 4 4 X 3 . 1 7 5

91.44X3.17591.44X2.5491.44X2.54

9 1 . 4 4 X 3 . 1 7 5

9 1 . 4 4 X 3 . 1 7 5

91.44X3.17591.44X3.175

91.44X2.5491.44X2.54

9 1 . 4 4 X 3 . 1 7 5

91.44X3.17591.44X2.5491.44X2.5491.44X2.54

9 1 . 4 4 X 3 . 1 7 5

91.44X3.175

91.44X2.5491.44X2.54

9 1 . 4 4 X 3 . 1 7 5

91.44X3.17591.44X3.17591.44X2.5491.44X2.54 101.6X2.54

101.6X3.175

101.6X3.175

32

.38

5X

1.2

7

Y

14

88

15

00

15

06

15

07

15

08

15

15

15

17

15

19

15

20

15

30

15

31

15

33

15

34

15

35

15

37

15

40

15

41

15

42

15

43

15

45

15

48

15

49

15

50

15

53

15

54

15

55

15

57

15

58

15

59

15

60

15

61

15

63

15

65

LA

BE

L=

SE

CT

IO

N

99.06X1.2799.06X1.27101.6X2.5491.44X2.54

99.06X1.2799.06X1.27101.6X2.5491.44X2.54

40

.64

X1

.27

40

.64

X1

.27

40

.64

X1

.27

40

.64

X1

.27

40

.64

X1

.27

32

.3

85

X0

.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.3

85

X0

.9

53

32

.38

5X

0.9

53

32

.3

85

X0

.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.3

85

X0

.9

53

32

.38

5X

0.9

53

32

.38

5X

1.2

73

2.3

85

X1

.27

32

.38

5X

1.2

73

2.3

85

X1

.27

101.6X2.54101.6X2.5491.44X2.54

99.06X1.2799.06X1.27101.6X2.5491.44X2.54

99.06X1.2799.06X1.27101.6X2.5491.44X2.54

101.6X2.5491.44X2.54

50.8X1.27

45.72X1.27

45.72X1.27

50.8X1.27

45.72X1.27

45.72X1.27

50.8X1.27

45.72X1.27

14

88

15

00

15

06

15

07

15

08

15

15

15

17

15

19

15

20

15

30

15

31

15

33

15

34

15

35

15

37

15

40

15

41

15

42

15

43

15

45

15

48

15

49

15

50

15

53

15

54

15

55

15

57

15

58

15

59

15

60

15

61

15

63

15

65

LA

BE

L=

SE

CT

IO

N

99.06X1.2799.06X1.27101.6X2.5491.44X2.54

99.06X1.2799.06X1.27101.6X2.5491.44X2.54

40

.64

X1

.27

40

.64

X1

.27

40

.64

X1

.27

40

.64

X1

.27

40

.64

X1

.27

32

.3

85

X0

.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.3

85

X0

.9

53

32

.38

5X

0.9

53

32

.3

85

X0

.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.3

85

X0

.9

53

32

.38

5X

0.9

53

32

.38

5X

1.2

73

2.3

85

X1

.27

32

.38

5X

1.2

73

2.3

85

X1

.27

101.6X2.54101.6X2.5491.44X2.54

99.06X1.2799.06X1.27101.6X2.5491.44X2.54

99.06X1.2799.06X1.27101.6X2.5491.44X2.54

101.6X2.5491.44X2.54

50.8X1.27

45.72X1.27

45.72X1.27

50.8X1.27

45.72X1.27

45.72X1.27

50.8X1.27

45.72X1.27

101.6X3.175 101.6X3.175 101.6X3.175

101.6X2.54 99.06X1.27

91.44X3.17591.44X3.175

91.44X2.5491.44X2.54

11

03

11

22

11

52

11

58

11

59

11

83

11

92

12

01

12

09

12

11

12

32

12

33

12

35

12

36

12

50

12

53

12

54

12

69

12

70

12

78

12

79

12

84

12

86

12

88

12

89

13

04

13

05

13

09

13

10

13

11

13

12

13

13

13

26

13

27

13

32

13

34

13

35

13

42

13

65

13

72

13

73

13

74

13

76

13

78

13

90

13

94

13

95

14

00

14

02

14

22

14

25

14

26

14

27

14

30

14

33

14

35

14

43

14

53

14

55

14

67

14

68

14

69

14

77

14

78

14

79

14

87

45.72X1.27

50.8X1.27

45.72X1.27

45.72X1.27

50.8X1.27

45.72X1.27

45.72X1.27

101.6X2.54

101.6X2.54101.6X2.54 101.6X2.54101.6X2.54

101.6X2.54 101.6X2.54101.6X2.54

32

.38

5X

1.2

73

2.

38

5X

1.

27

99.06X1.27

99.06X1.27

99.06X1.27

99.06X1.27

99.06X1.2799.06X1.27

101.6X3.175 101.6X3.175 101.6X3.175

101.6X2.54

101.6X3.175 101.6X3.175 101.6X3.175101.6X2.54

101.6X2.54101.6X3.175101.6X3.175

101.6X3.175

101.6X3.175

91.44X2.54

91.44X2.54

99.06X1.27

9 1 . 4 4 X 3 . 1 7 5

91.44X3.17591.44X2.5491.44X2.54

9 1 . 4 4 X 3 . 1 7 5

9 1 . 4 4 X 3 . 1 7 5

91.44X3.17591.44X3.175

91.44X2.5491.44X2.54

9 1 . 4 4 X 3 . 1 7 5

91.44X3.17591.44X2.5491.44X2.5491.44X2.54

9 1 . 4 4 X 3 . 1 7 5

91.44X3.175

91.44X2.5491.44X2.54

9 1 . 4 4 X 3 . 1 7 5

91.44X3.17591.44X3.17591.44X2.5491.44X2.54 101.6X2.54

101.6X3.175

101.6X3.175

32

.38

5X

1.2

7

11

03

11

22

11

52

11

58

11

59

11

83

11

92

12

01

12

09

12

11

12

32

12

33

12

35

12

36

12

50

12

53

12

54

12

69

12

70

12

78

12

79

12

84

12

86

12

88

12

89

13

04

13

05

13

09

13

10

13

11

13

12

13

13

13

26

13

27

13

32

13

34

13

35

13

42

13

65

13

72

13

73

13

74

13

76

13

78

13

90

13

94

13

95

14

00

14

02

14

22

14

25

14

26

14

27

14

30

14

33

14

35

14

43

14

53

14

55

14

67

14

68

14

69

14

77

14

78

14

79

14

87

11

03

11

22

11

52

11

58

11

59

11

83

11

92

12

01

12

09

12

11

12

32

12

33

12

35

12

36

12

50

12

53

12

54

12

69

12

70

12

78

12

79

12

84

12

86

12

88

12

89

13

04

13

05

13

09

13

10

13

11

13

12

13

13

13

26

13

27

13

32

13

34

13

35

13

42

13

65

13

72

13

73

13

74

13

76

13

78

13

90

13

94

13

95

14

00

14

02

14

22

14

25

14

26

14

27

14

30

14

33

14

35

14

43

14

53

14

55

14

67

14

68

14

69

14

77

14

78

14

79

14

87

45.72X1.27

50.8X1.27

45.72X1.27

45.72X1.27

50.8X1.27

45.72X1.27

45.72X1.27

101.6X2.54

101.6X2.54101.6X2.54 101.6X2.54101.6X2.54

101.6X2.54 101.6X2.54101.6X2.54

32

.38

5X

1.2

73

2.

38

5X

1.

27

99.06X1.27

99.06X1.27

99.06X1.27

99.06X1.27

99.06X1.2799.06X1.27

101.6X3.175 101.6X3.175 101.6X3.175

101.6X2.54

101.6X3.175 101.6X3.175 101.6X3.175101.6X2.54

101.6X2.54101.6X3.175101.6X3.175

101.6X3.175

101.6X3.175

91.44X2.54

91.44X2.54

99.06X1.27

9 1 . 4 4 X 3 . 1 7 5

91.44X3.17591.44X2.5491.44X2.54

9 1 . 4 4 X 3 . 1 7 5

9 1 . 4 4 X 3 . 1 7 5

91.44X3.17591.44X3.175

91.44X2.5491.44X2.54

9 1 . 4 4 X 3 . 1 7 5

91.44X3.17591.44X2.5491.44X2.5491.44X2.54

9 1 . 4 4 X 3 . 1 7 5

91.44X3.175

91.44X2.5491.44X2.54

9 1 . 4 4 X 3 . 1 7 5

91.44X3.17591.44X3.17591.44X2.5491.44X2.54 101.6X2.54

101.6X3.175

101.6X3.175

32

.38

5X

1.2

7

Y

Ele

vati

on

Fra

me

1

Page 53: OFFSHORE TECHNOLOGY REPORT 2001/056 · APPENDIX B GEOMETRY PLOTS FROM THE SACS MODEL 37 APPENDIX C COMPARISON OF RIGID AND FLEXIBLE FATIGUE-LIFE PREDICTIONS 51. vi. 1 1. INTRODUCTION

46

10

01

10

02

10

03

10

04

10

09

10

25

10

28

10

69

11

21

11

29

11

33

11

48

11

53

11

82

11

85

11

87

11

93

11

94

11

96

11

97

12

06

12

07

12

29

12

37

12

39

12

55

12

56

12

57

12

58

12

59

12

62

12

67

12

68

12

77

12

83

12

85

12

87

12

90

12

91

13

14

13

15

13

16

13

17

13

18

13

21

13

23

13

24

13

31

13

33

13

36

13

39

13

79

13

80

13

85

13

86

13

89

13

91

13

93

13

97

13

98

14

36

14

37

14

38

14

44

14

45

14

46

14

47

14

51

14

52

14

81

14

82

14

89

14

90

14

92

14

93

14

95

14

99

15

18

15

22

15

24

15

25

15

26

15

36

15

38

15

39

15

44

15

46

15

47

15

51

15

52

15

56

99.06X1.27

LA

BE

L=

SE

CT

IO

N

101.6X2.5491.44X2.54

99.06X1.2799.06X1.27101.6X2.5491.44X2.54

40.64X1.27

40.64X1.27

40.64X1.27

40

.64

X1

.27

40.64X1.27

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

1.2

73

2.3

85

X1

.27

32

.38

5X

1.2

73

2.3

85

X1

.27

99.06X1.2799.06X1.27101.6X2.5491.44X2.54

99.06X1.2799.06X1.27101.6X2.5491.44X2.54

99.06X1.2799.06X1.27101.6X2.5491.44X2.54

99.06X1.27101.6X2.5491.44X2.54

50.8X1.2

7

45.72X1.27

45.72X1.27

50.8X1.2

7

45.72X1.27

45.72X1.27

50.8X1.2

7

45.72X1.27

45.72X1.27

50.8X1.2

7

45.72X1.27

45.72X1.27

50.8X1.2

7

45.72X1.27

45.72X1.27

99.06X1.27

99.06X1.27

99.06X1.27

99.06X1.27

101.6X2.54101.6X3.175101.6X3.175101.6X3.175

101.6X3.175 101.6X3.175 101.6X3.175101.6X2.54

101.6X2.54

101.6X3.175101.6X3.175101.6X3.175

101.6X2.54

101.6X3.175101.6X3.175101.6X3.175

101.6X2.54101.6X3.175101.6X3.175101.6X3.175

101.6X3.175 101.6X3.175 101.6X3.175

101.6X2.54

91.44X2.54

91.44X2.54

99.06X1.27

99.06X1.27

91.44X2.54 91.44X2.54

91.44X3.175

9 1 . 4 4 X 3 . 1 7 5

9 1 . 4 4 X 3 . 1 7 5

91.44X3.175

91.44X2.5491.44X2.5491.44X2.54

9 1 . 4 4 X 3 . 1 7 5

91.44X3.17591.44X3.17591.44X2.5491.44X2.54

9 1 . 4 4 X 3 . 1 7 5

91.44X3.17591.44X2.5491.44X2.5491.44X2.54

9 1 . 4 4 X 3 . 1 7 5

91.44X3.175

91.44X2.5491.44X2.54

9 1 . 4 4 X 3 . 1 7 5

91.44X3.17591.44X3.17591.44X2.5491.44X2.54

32

.38

5X

1.2

73

2.3

85

X1

.27

99.06X1.27

99.06X1.27

Y

10

01

10

02

10

03

10

04

10

09

10

25

10

28

10

69

11

21

11

29

11

33

11

48

11

53

11

82

11

85

11

87

11

93

11

94

11

96

11

97

12

06

12

07

12

29

12

37

12

39

12

55

12

56

12

57

12

58

12

59

12

62

12

67

12

68

12

77

12

83

12

85

12

87

12

90

12

91

13

14

13

15

13

16

13

17

13

18

13

21

13

23

13

24

13

31

13

33

13

36

13

39

13

79

13

80

13

85

13

86

13

89

13

91

13

93

13

97

13

98

14

36

14

37

14

38

14

44

14

45

14

46

10

01

10

02

10

03

10

04

10

09

10

25

10

28

10

69

11

21

11

29

11

33

11

48

11

53

11

82

11

85

11

87

11

93

11

94

11

96

11

97

12

06

12

07

12

29

12

37

12

39

12

55

12

56

12

57

12

58

12

59

12

62

12

67

12

68

12

77

12

83

12

85

12

87

12

90

12

91

13

14

13

15

13

16

13

17

13

18

13

21

13

23

13

24

13

31

13

33

13

36

13

39

13

79

13

80

13

85

13

86

13

89

13

91

13

93

13

97

13

98

14

36

14

37

14

38

14

44

14

45

14

46

14

47

14

51

14

52

14

81

14

82

14

89

14

90

14

92

14

93

14

95

14

99

15

18

15

22

15

24

15

25

15

26

15

36

15

38

15

39

15

44

15

46

15

47

15

51

15

52

15

56

99.06X1.27

LA

BE

L=

SE

CT

IO

N

101.6X2.5491.44X2.54

99.06X1.2799.06X1.27101.6X2.5491.44X2.54

40.64X1.27

40.64X1.27

40.64X1.27

40

.64

X1

.27

40.64X1.27

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

1.2

73

2.3

85

X1

.27

32

.38

5X

1.2

73

2.3

85

X1

.27

99.06X1.2799.06X1.27101.6X2.5491.44X2.54

99.06X1.2799.06X1.27101.6X2.5491.44X2.54

99.06X1.2799.06X1.27101.6X2.5491.44X2.54

99.06X1.27101.6X2.5491.44X2.54

50.8X1.2

7

45.72X1.27

45.72X1.27

50.8X1.2

7

45.72X1.27

45.72X1.27

50.8X1.2

7

45.72X1.27

45.72X1.27

50.8X1.2

7

45.72X1.27

45.72X1.27

50.8X1.2

7

45.72X1.27

45.72X1.27

99.06X1.27

99.06X1.27

99.06X1.27

99.06X1.27

14

47

14

51

14

52

14

81

14

82

14

89

14

90

14

92

14

93

14

95

14

99

15

18

15

22

15

24

15

25

15

26

15

36

15

38

15

39

15

44

15

46

15

47

15

51

15

52

15

56

99.06X1.27

LA

BE

L=

SE

CT

IO

N

101.6X2.5491.44X2.54

99.06X1.2799.06X1.27101.6X2.5491.44X2.54

40.64X1.27

40.64X1.27

40.64X1.27

40

.64

X1

.27

40.64X1.27

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

1.2

73

2.3

85

X1

.27

32

.38

5X

1.2

73

2.3

85

X1

.27

99.06X1.2799.06X1.27101.6X2.5491.44X2.54

99.06X1.2799.06X1.27101.6X2.5491.44X2.54

99.06X1.2799.06X1.27101.6X2.5491.44X2.54

99.06X1.27101.6X2.5491.44X2.54

50.8X1.2

7

45.72X1.27

45.72X1.27

50.8X1.2

7

45.72X1.27

45.72X1.27

50.8X1.2

7

45.72X1.27

45.72X1.27

50.8X1.2

7

45.72X1.27

45.72X1.27

50.8X1.2

7

45.72X1.27

45.72X1.27

99.06X1.27

99.06X1.27

99.06X1.27

99.06X1.27

101.6X2.54101.6X3.175101.6X3.175101.6X3.175

101.6X3.175 101.6X3.175 101.6X3.175101.6X2.54

101.6X2.54

101.6X3.175101.6X3.175101.6X3.175

101.6X2.54

101.6X3.175101.6X3.175101.6X3.175

101.6X2.54101.6X3.175101.6X3.175101.6X3.175

101.6X3.175 101.6X3.175 101.6X3.175

101.6X2.54

91.44X2.54

91.44X2.54

99.06X1.27

99.06X1.27

91.44X2.54 91.44X2.54

91.44X3.175

9 1 . 4 4 X 3 . 1 7 5

9 1 . 4 4 X 3 . 1 7 5

91.44X3.175

91.44X2.5491.44X2.5491.44X2.54

9 1 . 4 4 X 3 . 1 7 5

91.44X3.17591.44X3.17591.44X2.5491.44X2.54

9 1 . 4 4 X 3 . 1 7 5

91.44X3.17591.44X2.5491.44X2.5491.44X2.54

9 1 . 4 4 X 3 . 1 7 5

91.44X3.175

91.44X2.5491.44X2.54

9 1 . 4 4 X 3 . 1 7 5

91.44X3.17591.44X3.17591.44X2.5491.44X2.54

32

.38

5X

1.2

73

2.3

85

X1

.27

99.06X1.27

99.06X1.27

Y

Ele

vati

on

Fra

me

2

Page 54: OFFSHORE TECHNOLOGY REPORT 2001/056 · APPENDIX B GEOMETRY PLOTS FROM THE SACS MODEL 37 APPENDIX C COMPARISON OF RIGID AND FLEXIBLE FATIGUE-LIFE PREDICTIONS 51. vi. 1 1. INTRODUCTION

47

15

75

15

81

15

87

15

93

15

99

16

05

16

11

16

17

16

23

16

29

16

35

16

41

16

47

16

53

16

59

16

65

16

71

16

77

16

95

LA

BE

L=

SE

CT

IO

N

40

.64

X1

.27

40

.64

X1

.27

40

.64

X1

.27

40

.64

X1

.27

40

.64

X1

.27

40

.64

X1

.27

40

.64

X1

.27

40

.64

X1

.27

40

.64

X1

.27

40

.64

X1

.27

4 5 . 7 2 X 1 . 2 7 4 5 . 7 2 X 1 . 2 7

4 5 . 7 2 X 1 . 2 7 4 5 . 7 2 X 1 . 2 7

4 5 . 7 2 X 1 . 2 7 4 5 . 7 2 X 1 . 2 7

45.72X1.27 45.72X1.27 4 5 . 7 2 X 1 . 2 7 4 5 . 7 2 X 1 . 2 7

45.72X1.27 4 5 . 7 2 X 1 . 2 7 4 5 . 7 2 X 1 . 2 7 4 5 . 7 2 X 1 . 2 7

45.72X1.27 45.72X1.27 4 5 . 7 2 X 1 . 2 7 4 5 . 7 2 X 1 . 2 7 4 5 . 7 2 X 1 . 2 7 4 5 . 7 2 X 1 . 2 7

45.72X1.27

45.72X1.27

45.72X1.27

45.72X1.27

45.72

X1.27

45.72

X1.27

32

.38

5X

1.2

73

2.3

85

X1

.27

32

.38

5X

1.2

73

2.3

85

X1

.27

32

.38

5X

1.2

73

2.3

85

X1

.27

32

.38

5X

1.2

73

2.3

85

X1

.27

32

.38

5X

1.2

73

2.3

85

X1

.27

32

.38

5X

1.2

73

2.3

85

X1

.27

45.72

X1.27

40.64

X1.27

45.72X1.27

40.64

X1.27

40.64

X1.27

45.72X1.27

40.64

X1.27

45.72

X1.27

32

.38

5X

1.2

73

2.3

85

X1

.27

32

.38

5X

1.2

73

2.3

85

X1

.27

32

.38

5X

1.2

73

2.3

85

X1

.27

32

.38

5X

1.2

73

2.3

85

X1

.27

P R I S M 3 5 P R I S M 3 5 P R I S M 3 5

P R I S M 3 5 P R I S M 3 5 P R I S M 3 5

P R I S M 3 5

15

75

15

81

15

87

15

93

15

99

16

05

16

11

16

17

16

23

16

29

16

35

16

41

16

47

16

53

16

59

16

65

16

71

16

77

16

95

LA

BE

L=

SE

CT

IO

N

40

.64

X1

.27

40

.64

X1

.27

40

.64

X1

.27

40

.64

X1

.27

40

.64

X1

.27

40

.64

X1

.27

40

.64

X1

.27

40

.64

X1

.27

40

.64

X1

.27

40

.64

X1

.27

4 5 . 7 2 X 1 . 2 7 4 5 . 7 2 X 1 . 2 7

4 5 . 7 2 X 1 . 2 7 4 5 . 7 2 X 1 . 2 7

4 5 . 7 2 X 1 . 2 7 4 5 . 7 2 X 1 . 2 7

45.72X1.27 45.72X1.27 4 5 . 7 2 X 1 . 2 7 4 5 . 7 2 X 1 . 2 7

45.72X1.27 4 5 . 7 2 X 1 . 2 7 4 5 . 7 2 X 1 . 2 7 4 5 . 7 2 X 1 . 2 7

45.72X1.27 45.72X1.27 4 5 . 7 2 X 1 . 2 7 4 5 . 7 2 X 1 . 2 7 4 5 . 7 2 X 1 . 2 7 4 5 . 7 2 X 1 . 2 7

45.72X1.27

45.72X1.27

45.72X1.27

45.72X1.27

45.72

X1.27

45.72

X1.27

32

.38

5X

1.2

73

2.3

85

X1

.27

32

.38

5X

1.2

73

2.3

85

X1

.27

32

.38

5X

1.2

73

2.3

85

X1

.27

32

.38

5X

1.2

73

2.3

85

X1

.27

32

.38

5X

1.2

73

2.3

85

X1

.27

32

.38

5X

1.2

73

2.3

85

X1

.27

45.72

X1.27

40.64

X1.27

45.72X1.27

40.64

X1.27

40.64

X1.27

45.72X1.27

40.64

X1.27

45.72

X1.27

32

.38

5X

1.2

73

2.3

85

X1

.27

32

.38

5X

1.2

73

2.3

85

X1

.27

32

.38

5X

1.2

73

2.3

85

X1

.27

32

.38

5X

1.2

73

2.3

85

X1

.27

P R I S M 3 5 P R I S M 3 5 P R I S M 3 5

P R I S M 3 5 P R I S M 3 5 P R I S M 3 5

P R I S M 3 5

10

02

10

49

10

50

10

51

10

52

10

53

10

54

10

55

10

56

10

86

10

87

10

88

10

89

10

90

10

91

10

92

10

93

11

25

11

26

11

27

11

28

11

48

11

49

11

50

11

51

11

52

11

73

11

74

11

75

11

76

11

77

11

80

11

81

12

06

12

08

12

10

12

11

12

19

12

20

12

25

12

26

12

67

12

70

12

73

13

22

13

23

13

27

13

31

13

32

13

33

13

34

13

40

13

41

14

36

14

67

14

95

15

07

15

31

15

36

15

46

15

50

15

52

15

53

15

58

15

67

15

69

32

.38

5X

1.2

73

2.3

85

X1

.27

32

.38

5X

1.2

7

32

.38

5X

1.2

73

2.3

85

X1

.27

32

.38

5X

1.2

7

P R I S M 3 5 P R I S M 3 5 P R I S M 3 5

P R I S M 3 5 P R I S M 3 5 P R I S M 3 5

P R I S M 3 5

4 5 . 7 2 X 1 . 2 7 4 5 . 7 2 X 1 . 2 7

32

.38

5X

1.2

7

32

.38

5X

1.2

7

10

02

10

49

10

50

10

51

10

52

10

53

10

54

10

55

10

56

10

86

10

87

10

88

10

89

10

90

10

91

10

92

10

93

11

25

11

26

11

27

11

28

11

48

11

49

11

50

11

51

11

52

11

73

11

74

11

75

11

76

11

77

11

80

11

81

12

06

12

08

12

10

12

11

12

19

12

20

12

25

12

26

12

67

12

70

12

73

13

22

13

23

13

27

13

31

13

32

13

33

13

34

13

40

13

41

14

36

14

67

14

95

15

07

15

31

15

36

15

46

15

50

15

52

15

53

15

58

15

67

15

69

10

02

10

49

10

50

10

51

10

52

10

53

10

54

10

55

10

56

10

86

10

87

10

88

10

89

10

90

10

91

10

92

10

93

11

25

11

26

11

27

11

28

11

48

11

49

11

50

11

51

11

52

11

73

11

74

11

75

11

76

11

77

11

80

11

81

12

06

12

08

12

10

12

11

12

19

12

20

12

25

12

26

12

67

12

70

12

73

13

22

13

23

13

27

13

31

13

32

13

33

13

34

13

40

13

41

14

36

14

67

14

95

15

07

15

31

15

36

15

46

15

50

15

52

15

53

15

58

15

67

15

69

32

.38

5X

1.2

73

2.3

85

X1

.27

32

.38

5X

1.2

7

32

.38

5X

1.2

73

2.3

85

X1

.27

32

.38

5X

1.2

7

P R I S M 3 5 P R I S M 3 5 P R I S M 3 5

P R I S M 3 5 P R I S M 3 5 P R I S M 3 5

P R I S M 3 5

4 5 . 7 2 X 1 . 2 7 4 5 . 7 2 X 1 . 2 7

32

.38

5X

1.2

7

32

.38

5X

1.2

7

H

ori

zon

tal F

ram

ing

Pla

n @

Ele

vati

on

–36

.1m

Page 55: OFFSHORE TECHNOLOGY REPORT 2001/056 · APPENDIX B GEOMETRY PLOTS FROM THE SACS MODEL 37 APPENDIX C COMPARISON OF RIGID AND FLEXIBLE FATIGUE-LIFE PREDICTIONS 51. vi. 1 1. INTRODUCTION

48

10

04

10

57

10

58

10

59

10

60

10

61

10

94

10

95

10

96

10

97

10

98

10

99

11

00

11

20

11

23

11

24

11

53

11

54

11

55

11

56

11

57

11

68

11

69

11

70

11

71

11

72

11

78

11

79

12

07

12

09

12

12

12

13

12

14

12

17

12

18

12

22

12

23

12

24

12

68

12

69

12

71

12

72

12

74

13

24

13

25

13

26

13

35

13

79

13

86

13

90

13

91

13

92

13

93

13

94

13

96

14

22

14

68

14

69

15

18

15

22

15

39

15

41

15

45

15

49

15

70

15

76

15

82

15

88

15

94

16

00

16

06

16

12

16

18

16

24

16

30

16

36

16

42

16

48

16

54

16

60

16

66

16

72

16

78

16

96

LA

BE

L=

SE

CT

IO

N

32

.3

85

X0

.9

53

32

.38

5X

0.9

53

32

.3

85

X0

.9

53

32

.3

85

X0

.9

53

32

.3

85

X0

.9

53

32

.3

85

X0

.9

53

32

.38

5X

0.9

53

32

.3

85

X0

.9

53

32

.3

85

X0

.9

53

32

.3

85

X0

.9

53

40.64X1.2740.64X1.27

40.64X1.2740.64X1.27

40.64X1.2740.64X1.27

40.64X1.2740.64X1.2740.64X1.2740.64X1.2740.64X1.2740.64X1.27

40.64X1.2740.64X1.2740.64X1.2740.64X1.2740.64X1.2740.64X1.27

40.64X1.2740.64X1.2740.64X1.2740.64X1.27

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

35.56X0.9

53

35.56X0.9

53

35.56X0.9

53

35.56X0.9

53

35.56X0.9

53

35.56X0.9

53

32

.38

5X

1.2

73

2.3

85

X1

.27

32

.38

5X

1.2

73

2.3

85

X1

.27

32

.38

5X

1.2

73

2.3

85

X1

.27

32

.38

5X

1.2

73

2.3

85

X1

.27

32

.38

5X

1.2

73

2.3

85

X1

.27

32

.38

5X

1.2

73

2.3

85

X1

.27

35.56X0.9

53

35.56X0.9

53

35.56X0.9

53

35.56X

0.953

35.56X

0.953

35.56X0.9

53

35.56X0.9

53

35.56X0.9

53

PRISM35

PRISM35

32

.3

85

X0

.9

53

32

.3

85

X0

.9

53

32

.3

85

X0

.9

53

32

.3

85

X0

.9

53

32

.3

85

X0

.9

53

32

.3

85

X0

.9

53

32

.3

85

X0

.9

53

32

.3

85

X0

.9

53

32

.3

85

X0

.9

53

32

.3

85

X0

.9

53

32

.3

85

X0

.9

53

32

.3

85

X0

.9

53

PRISM35PRISM35PRISM35

PRISM35PRISM35PRISM35

PRISM35PRISM35PRISM35

PRISM35PRISM35 PRISM35

10

04

10

57

10

58

10

59

10

60

10

61

10

94

10

95

10

96

10

97

10

98

10

99

11

00

11

20

11

23

11

24

11

53

11

54

11

55

11

56

11

57

11

68

11

69

11

70

11

71

11

72

11

78

11

79

12

07

12

09

12

12

12

13

12

14

12

17

12

18

12

22

12

23

12

24

12

68

12

69

12

71

12

72

12

74

13

24

13

25

13

26

13

35

13

79

13

86

13

90

13

91

13

92

13

93

13

94

13

96

14

22

14

68

14

69

15

18

15

22

15

39

15

41

15

45

15

49

15

70

15

76

10

04

10

57

10

58

10

59

10

60

10

61

10

94

10

95

10

96

10

97

10

98

10

99

11

00

11

20

11

23

11

24

11

53

11

54

11

55

11

56

11

57

11

68

11

69

11

70

11

71

11

72

11

78

11

79

12

07

12

09

12

12

12

13

12

14

12

17

12

18

12

22

12

23

12

24

12

68

12

69

12

71

12

72

12

74

13

24

13

25

13

26

13

35

13

79

13

86

13

90

13

91

13

92

13

93

13

94

13

96

14

22

14

68

14

69

15

18

15

22

15

39

15

41

15

45

15

49

15

70

15

76

15

82

15

88

15

94

16

00

16

06

16

12

16

18

16

24

16

30

16

36

16

42

16

48

16

54

16

60

16

66

16

72

16

78

16

96

LA

BE

L=

SE

CT

IO

N

32

.3

85

X0

.9

53

32

.38

5X

0.9

53

32

.3

85

X0

.9

53

32

.3

85

X0

.9

53

32

.3

85

X0

.9

53

32

.3

85

X0

.9

53

32

.38

5X

0.9

53

32

.3

85

X0

.9

53

32

.3

85

X0

.9

53

32

.3

85

X0

.9

53

40.64X1.2740.64X1.27

40.64X1.2740.64X1.27

40.64X1.2740.64X1.27

40.64X1.2740.64X1.2740.64X1.2740.64X1.2740.64X1.2740.64X1.27

40.64X1.2740.64X1.2740.64X1.2740.64X1.2740.64X1.2740.64X1.27

40.64X1.2740.64X1.2740.64X1.2740.64X1.27

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

35.56X0.9

53

35.56X0.9

53

35.56X0.9

53

35.56X0.9

53

35.56X0.9

53

35.56X0.9

53

32

.38

5X

1.2

73

2.3

85

X1

.27

32

.38

5X

1.2

73

2.3

85

X1

.27

32

.38

5X

1.2

73

2.3

85

X1

.27

32

.38

5X

1.2

73

2.3

85

X1

.27

32

.38

5X

1.2

73

2.3

85

X1

.27

32

.38

5X

1.2

73

2.3

85

X1

.27

35.56X0.9

53

35.56X0.9

53

35.56X0.9

53

35.56X

0.953

35.56X

0.953

35.56X0.9

53

35.56X0.9

53

35.56X0.9

53

PRISM35

PRISM35

32

.3

85

X0

.9

53

32

.3

85

X0

.9

53

32

.3

85

X0

.9

53

32

.3

85

X0

.9

53

32

.3

85

X0

.9

53

32

.3

85

X0

.9

53

32

.3

85

X0

.9

53

32

.3

85

X0

.9

53

32

.3

85

X0

.9

53

15

82

15

88

15

94

16

00

16

06

16

12

16

18

16

24

16

30

16

36

16

42

16

48

16

54

16

60

16

66

16

72

16

78

16

96

LA

BE

L=

SE

CT

IO

N

32

.3

85

X0

.9

53

32

.38

5X

0.9

53

32

.3

85

X0

.9

53

32

.3

85

X0

.9

53

32

.3

85

X0

.9

53

32

.3

85

X0

.9

53

32

.38

5X

0.9

53

32

.3

85

X0

.9

53

32

.3

85

X0

.9

53

32

.3

85

X0

.9

53

40.64X1.2740.64X1.27

40.64X1.2740.64X1.27

40.64X1.2740.64X1.27

40.64X1.2740.64X1.2740.64X1.2740.64X1.2740.64X1.2740.64X1.27

40.64X1.2740.64X1.2740.64X1.2740.64X1.2740.64X1.2740.64X1.27

40.64X1.2740.64X1.2740.64X1.2740.64X1.27

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

35.56X0.9

53

35.56X0.9

53

35.56X0.9

53

35.56X0.9

53

35.56X0.9

53

35.56X0.9

53

32

.38

5X

1.2

73

2.3

85

X1

.27

32

.38

5X

1.2

73

2.3

85

X1

.27

32

.38

5X

1.2

73

2.3

85

X1

.27

32

.38

5X

1.2

73

2.3

85

X1

.27

32

.38

5X

1.2

73

2.3

85

X1

.27

32

.38

5X

1.2

73

2.3

85

X1

.27

35.56X0.9

53

35.56X0.9

53

35.56X0.9

53

35.56X

0.953

35.56X

0.953

35.56X0.9

53

35.56X0.9

53

35.56X0.9

53

PRISM35

PRISM35

32

.3

85

X0

.9

53

32

.3

85

X0

.9

53

32

.3

85

X0

.9

53

32

.3

85

X0

.9

53

32

.3

85

X0

.9

53

32

.3

85

X0

.9

53

32

.3

85

X0

.9

53

32

.3

85

X0

.9

53

32

.3

85

X0

.9

53

32

.3

85

X0

.9

53

32

.3

85

X0

.9

53

32

.3

85

X0

.9

53

PRISM35PRISM35PRISM35

PRISM35PRISM35PRISM35

PRISM35PRISM35PRISM35

PRISM35PRISM35 PRISM35

Ho

rizo

nta

l Fra

min

g P

lan

@ E

leva

tio

n –

20.7

m

Page 56: OFFSHORE TECHNOLOGY REPORT 2001/056 · APPENDIX B GEOMETRY PLOTS FROM THE SACS MODEL 37 APPENDIX C COMPARISON OF RIGID AND FLEXIBLE FATIGUE-LIFE PREDICTIONS 51. vi. 1 1. INTRODUCTION

49

13

12

13

18

13

21

13

28

13

29

13

30

13

73

13

78

13

84

13

89

14

27

14

34

14

35

14

38

14

51

14

52

14

53

14

80

14

90

15

20

15

25

15

34

15

43

15

71

15

77

15

83

15

89

15

95

16

01

16

07

16

13

16

19

16

25

16

31

16

37

16

43

16

49

16

55

16

61

16

67

16

73

16

79

16

83

16

87

16

91

16

97

17

01

LA

BE

L=

SE

CT

IO

N

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

40.64X0.95340.64X0.953

40.64X0.95340.64X0.953

40.64X0.95340.64X1.27

40.64X0.95340.64X0.95340.64X0.95340.64X0.95340.64X0.953

40.64X0.95340.64X0.95340.64X0.95340.64X0.953

40.64X0.953

40.64X0.95340.64X0.95340.64X1.27

10

05

10

06

10

07

10

08

10

09

10

10

10

11

10

12

10

13

10

14

10

15

10

16

10

17

10

18

10

19

10

20

10

21

10

22

10

23

10

24

10

26

10

27

10

29

10

30

10

31

10

32

10

33

10

34

10

35

10

36

10

37

10

38

10

39

10

40

10

41

10

42

10

43

10

44

10

45

10

46

10

47

10

48

10

63

10

64

10

65

10

66

10

67

10

68

10

70

10

71

10

72

10

73

10

74

10

75

10

76

10

77

10

78

10

79

10

80

10

81

10

82

10

83

10

84

10

85

11

04

11

05

11

06

11

07

11

08

11

09

11

10

11

11

11

12

11

13

11

14

11

15

11

16

11

17

11

18

11

19

11

32

11

34

11

35

11

36

11

37

11

38

11

39

11

40

11

41

11

42

11

43

11

44

11

45

11

46

11

47

11

60

11

61

11

62

11

63

11

64

11

65

11

66

11

67

11

84

11

95

11

97

11

98

11

99

12

00

12

01

12

02

12

03

12

04

12

05

12

15

12

16

12

27

12

28

12

38

12

54

12

57

12

61

12

62

12

63

12

64

12

65

12

66

12

75

12

76

12

80

12

81

12

82

13

05

40.64X1.27

40.64X0.953

40

.64

X0

.95

3

35.56

X0.953

35.56

X0.953

35.56

X0.953

35.56

X0.953

35.5

6X0.

953

35.56X

0.953

35.56X

0.953

3 5 . 56 X

0 . 95 3

3 5 . 56 X

0 . 95 3

35. 5

6X0 .

9 53

35.5

6X0.

953

35.5

6X0.

953

35.5

6X0.

953

35.56X0.953

35.5

6X0.

953

35.5

6X0.

953

32

. 38

5X

0. 9

53

32

. 38

5X

0. 9

53

32.385X0.953

3 2 . 3 8 5 X 0 . 9 5 3

PRISM34PRISM34PRISM34

40.64X0.953

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

533

2.3

85

X0

.95

33

2.3

85

X0

.95

33

2.3

85

X0

.95

33

2.3

85

X0

.95

3

32

.38

5X

0.9

53

27.305X0.92727.305X0.92727.305X0.927

27.305X0.92727.305X0.92727.305X0.927

27.305X0.92727.305X0.92727.305X0.927

27.305X0.92727.305X0.92727.305X0.927

27.305X0.92727.305X0.927

27.305X0.92727.305X0.927

27.305X0.92727.305X0.927

27.305X0.92727.305X0.927

27.305X0.92727.305X0.927

27.305X0.92727.305X0.927

27.305X0.92727.305X0.927

27.305X0.927

PR

ISM

54

PR

ISM

54

PR

IS

M5

4P

RI

SM

54

PR

IS

M5

4

PR

IS

M5

4

PR

IS

M5

4P

RIS

M5

4

PRISM

55

PRISM

55

P RI S

M5 5

PRISM

55PRIS

M55

PRISM

55

PRISM

55

PRISM

55

PRISM

55

PRIS

M55

P RI S

M5 5

PRISM

55

PRISM

55

PRIS

M55

PRIS

M55

PRISM

55

PRISM

55

PRIS

M55

PRISM

55

PRISM

55

PRIS

M55

PRISM

55

PRISM

55 PRIS

M55

PRISM

55PR

ISM

55

PR

I SM

55

PRISM

55

PRISM

55

PRIS

M55

PRISM

55

PRISM

55

27.305X0.92727.305X0.92727.305X0.927

PR

ISM

54

27.305X0.92727.305X0.92727.305X0.927

PR

ISM

54

35.56X0.953

PRISM34PRISM34PRISM34PRISM34

35.56X0.953

35.56X0.953

PRISM

55

PRIS

M55

PRISM55

PRISM55

PRIS

M55

PRISM

55

PRISM55

PRISM

55

27.305X0.927

32

.38

5X

0.9

53

40.64X0.953

27.305X0.92727.305X0.92727.305X0.92727.305X0.92727.305X0.92727.305X0.92727.305X0.927

27.305X0.92727.305X0.92727.305X0.92727.305X0.92727.305X0.92727.305X0.92727.305X0.927

27.305X0.92727.305X0.92727.305X0.92727.305X0.92727.305X0.92727.305X0.92727.305X0.927

27.305X0.92727.305X0.92727.305X0.92727.305X0.92727.305X0.92727.305X0.92727.305X0.927

27.305X0.92727.305X0.92727.305X0.927

27.305X0.92727.305X0.92727.305X0.927

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

533

2.3

85

X0

.95

3

PR

ISM

54

PR

ISM

54

PR

ISM

54

PR

ISM

54

PR

ISM

54

PR

ISM

54

PR

ISM

54

PR

ISM

54

PR

IS

M5

4P

RIS

M5

4

P R I S M5 5

PRISM55

PRISM

55

PRISM

55

PRISM55

PRISM55

PRISM

55

PRISM

55

PRISM55

PRISM55

PRISM

55

PRISM

55

PRISM55

PRISM55

PRISM

55

PRISM

55

P R I S M5 5

PRISM55

PRISM

55

PRISM

55

PRISM55

PRISM55

P R I S M5 5

PRISM55

PRISM55

PRISM55

P R I S M5 5

PRISM

55

PRISM55

PRISM55

PRISM

55

PRISM55

PRISM55

PRISM55

PRISM

55

PRISM

55

PRISM55

PRISM55

PRISM

55

PRISM

55

13

12

13

18

13

21

13

28

13

29

13

30

13

73

13

78

13

84

13

89

14

27

14

34

14

35

14

38

14

51

14

52

14

53

14

80

14

90

15

20

15

25

15

34

15

43

15

71

15

77

15

83

15

89

15

95

16

01

16

07

16

13

16

19

16

25

16

31

16

37

16

43

16

49

16

55

16

61

16

67

16

73

16

79

16

83

16

87

16

91

16

97

17

01

LA

BE

L=

SE

CT

IO

N

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

40.64X0.95340.64X0.953

40.64X0.95340.64X0.953

40.64X0.95340.64X1.27

40.64X0.95340.64X0.95340.64X0.95340.64X0.95340.64X0.953

40.64X0.95340.64X0.95340.64X0.95340.64X0.953

40.64X0.953

40.64X0.95340.64X0.95340.64X1.27

13

12

13

18

13

21

13

28

13

29

13

30

13

73

13

78

13

84

13

89

14

27

14

34

14

35

14

38

14

51

14

52

14

53

14

80

14

90

15

20

15

25

15

34

15

43

15

71

15

77

15

83

15

89

15

95

16

01

16

07

16

13

16

19

16

25

16

31

16

37

16

43

16

49

16

55

16

61

16

67

16

73

16

79

16

83

16

87

16

91

16

97

17

01

LA

BE

L=

SE

CT

IO

N

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

40.64X0.95340.64X0.953

40.64X0.95340.64X0.953

40.64X0.95340.64X1.27

40.64X0.95340.64X0.95340.64X0.95340.64X0.95340.64X0.953

40.64X0.95340.64X0.95340.64X0.95340.64X0.953

40.64X0.953

40.64X0.95340.64X0.95340.64X1.27

10

05

10

06

10

07

10

08

10

09

10

10

10

11

10

12

10

13

10

14

10

15

10

16

10

17

10

18

10

19

10

20

10

21

10

22

10

23

10

24

10

26

10

27

10

29

10

30

10

31

10

32

10

33

10

34

10

35

10

36

10

37

10

38

10

39

10

40

10

41

10

42

10

43

10

44

10

45

10

46

10

47

10

48

10

63

10

64

10

65

10

66

10

67

10

68

10

70

10

71

10

72

10

73

10

74

10

75

10

76

10

77

10

78

10

79

10

80

10

81

10

82

10

83

10

84

10

85

11

04

11

05

11

06

11

07

11

08

11

09

11

10

11

11

11

12

11

13

11

14

11

15

11

16

11

17

11

18

11

19

11

32

11

34

11

35

11

36

11

37

11

38

11

39

11

40

11

41

11

42

11

43

11

44

11

45

11

46

11

47

11

60

11

61

11

62

11

63

11

64

11

65

11

66

11

67

11

84

11

95

11

97

11

98

11

99

12

00

12

01

12

02

12

03

12

04

12

05

12

15

12

16

12

27

12

28

12

38

12

54

12

57

12

61

12

62

12

63

12

64

12

65

12

66

12

75

12

76

12

80

12

81

12

82

13

05

40.64X1.27

40.64X0.953

40

.64

X0

.95

3

35.56

X0.953

35.56

X0.953

35.56

X0.953

35.56

X0.953

35.5

6X0.

953

35.56X

0.953

35.56X

0.953

3 5 . 56 X

0 . 95 3

3 5 . 56 X

0 . 95 3

35. 5

6X0 .

9 53

35.5

6X0.

953

35.5

6X0.

953

35.5

6X0.

953

35.56X0.953

35.5

6X0.

953

35.5

6X0.

953

32

. 38

5X

0. 9

53

32

. 38

5X

0. 9

53

32.385X0.953

3 2 . 3 8 5 X 0 . 9 5 3

PRISM34PRISM34PRISM34

40.64X0.953

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

533

2.3

85

X0

.95

33

2.3

85

X0

.95

33

2.3

85

X0

.95

33

2.3

85

X0

.95

3

32

.38

5X

0.9

53

27.305X0.92727.305X0.92727.305X0.927

27.305X0.92727.305X0.92727.305X0.927

27.305X0.92727.305X0.92727.305X0.927

27.305X0.92727.305X0.92727.305X0.927

27.305X0.92727.305X0.927

27.305X0.92727.305X0.927

27.305X0.92727.305X0.927

27.305X0.92727.305X0.927

27.305X0.92727.305X0.927

27.305X0.92727.305X0.927

27.305X0.92727.305X0.927

27.305X0.927

PR

ISM

54

PR

ISM

54

PR

IS

M5

4P

RI

SM

54

PR

IS

M5

4

PR

IS

M5

4

PR

IS

M5

4P

RIS

M5

4

PRISM

55

PRISM

55

P RI S

M5 5

PRISM

55PRIS

M55

PRISM

55

PRISM

55

PRISM

55

PRISM

55

PRIS

M55

P RI S

M5 5

PRISM

55

PRISM

55

PRIS

M55

PRIS

M55

PRISM

55

PRISM

55

PRIS

M55

PRISM

55

PRISM

55

PRIS

M55

PRISM

55

PRISM

55 PRIS

M55

PRISM

55PR

ISM

55

PR

I SM

55

PRISM

55

PRISM

55

PRIS

M55

PRISM

55

PRISM

55

27.305X0.92727.305X0.92727.305X0.927

PR

ISM

54

27.305X0.92727.305X0.92727.305X0.927

PR

ISM

54

35.56X0.953

PRISM34PRISM34PRISM34PRISM34

35.56X0.953

35.56X0.953

PRISM

55

PRIS

M55

PRISM55

PRISM55

PRIS

M55

PRISM

55

PRISM55

PRISM

55

27.305X0.927

32

.38

5X

0.9

53

40.64X0.953

27.305X0.92727.305X0.92727.305X0.92727.305X0.92727.305X0.92727.305X0.92727.305X0.927

27.305X0.92727.305X0.92727.305X0.92727.305X0.92727.305X0.92727.305X0.92727.305X0.927

27.305X0.92727.305X0.92727.305X0.92727.305X0.92727.305X0.92727.305X0.92727.305X0.927

27.305X0.92727.305X0.92727.305X0.92727.305X0.92727.305X0.92727.305X0.92727.305X0.927

27.305X0.92727.305X0.92727.305X0.927

27.305X0.92727.305X0.92727.305X0.927

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

533

2.3

85

X0

.95

3

PR

ISM

54

PR

ISM

54

PR

ISM

54

PR

ISM

54

PR

ISM

54

PR

ISM

54

PR

ISM

54

PR

ISM

54

PR

IS

M5

4P

RIS

M5

4

P R I S M5 5

PRISM55

PRISM

55

PRISM

55

PRISM55

PRISM55

PRISM

55

PRISM

55

PRISM55

PRISM55

PRISM

55

PRISM

55

PRISM55

PRISM55

PRISM

55

PRISM

55

P R I S M5 5

PRISM55

PRISM

55

PRISM

55

PRISM55

PRISM55

P R I S M5 5

PRISM55

PRISM55

PRISM55

P R I S M5 5

PRISM

55

PRISM55

PRISM55

PRISM

55

PRISM55

PRISM55

PRISM55

PRISM

55

PRISM

55

PRISM55

PRISM55

PRISM

55

PRISM

55

10

05

10

06

10

07

10

08

10

09

10

10

10

11

10

12

10

13

10

14

10

15

10

16

10

17

10

18

10

19

10

20

10

21

10

22

10

23

10

24

10

26

10

27

10

29

10

30

10

31

10

32

10

33

10

34

10

35

10

36

10

37

10

38

10

39

10

40

10

41

10

42

10

43

10

44

10

45

10

46

10

47

10

48

10

63

10

64

10

65

10

66

10

67

10

68

10

70

10

71

10

72

10

73

10

74

10

75

10

76

10

77

10

78

10

79

10

80

10

81

10

82

10

83

10

84

10

85

11

04

11

05

10

05

10

06

10

07

10

08

10

09

10

10

10

11

10

12

10

13

10

14

10

15

10

16

10

17

10

18

10

19

10

20

10

21

10

22

10

23

10

24

10

26

10

27

10

29

10

30

10

31

10

32

10

33

10

34

10

35

10

36

10

37

10

38

10

39

10

40

10

41

10

42

10

43

10

44

10

45

10

46

10

47

10

48

10

63

10

64

10

65

10

66

10

67

10

68

10

70

10

71

10

72

10

73

10

74

10

75

10

76

10

77

10

78

10

79

10

80

10

81

10

82

10

83

10

84

10

85

11

04

11

05

11

06

11

07

11

08

11

09

11

10

11

11

11

12

11

13

11

14

11

15

11

16

11

17

11

18

11

19

11

32

11

34

11

35

11

36

11

37

11

38

11

39

11

40

11

41

11

42

11

43

11

44

11

45

11

46

11

47

11

60

11

61

11

62

11

63

11

64

11

65

11

66

11

67

11

84

11

95

11

97

11

98

11

99

12

00

12

01

12

02

12

03

12

04

12

05

12

15

12

16

12

27

12

28

12

38

12

54

12

57

12

61

12

62

12

63

12

64

12

65

12

66

12

75

12

76

12

80

12

81

12

82

13

05

11

06

11

07

11

08

11

09

11

10

11

11

11

12

11

13

11

14

11

15

11

16

11

17

11

18

11

19

11

32

11

34

11

35

11

36

11

37

11

38

11

39

11

40

11

41

11

42

11

43

11

44

11

45

11

46

11

47

11

60

11

61

11

62

11

63

11

64

11

65

11

66

11

67

11

84

11

95

11

97

11

98

11

99

12

00

12

01

12

02

12

03

12

04

12

05

12

15

12

16

12

27

12

28

12

38

12

54

12

57

12

61

12

62

12

63

12

64

12

65

12

66

12

75

12

76

12

80

12

81

12

82

13

05

40.64X1.27

40.64X0.953

40

.64

X0

.95

3

35.56

X0.953

35.56

X0.953

35.56

X0.953

35.56

X0.953

35.5

6X0.

953

35.56X

0.953

35.56X

0.953

3 5 . 56 X

0 . 95 3

3 5 . 56 X

0 . 95 3

35. 5

6X0 .

9 53

35.5

6X0.

953

35.5

6X0.

953

35.5

6X0.

953

35.56X0.953

35.5

6X0.

953

35.5

6X0.

953

32

. 38

5X

0. 9

53

32

. 38

5X

0. 9

53

32.385X0.953

3 2 . 3 8 5 X 0 . 9 5 3

PRISM34PRISM34PRISM34

40.64X0.953

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

533

2.3

85

X0

.95

33

2.3

85

X0

.95

33

2.3

85

X0

.95

33

2.3

85

X0

.95

3

32

.38

5X

0.9

53

27.305X0.92727.305X0.92727.305X0.927

27.305X0.92727.305X0.92727.305X0.927

27.305X0.92727.305X0.92727.305X0.927

27.305X0.92727.305X0.92727.305X0.927

27.305X0.92727.305X0.927

27.305X0.92727.305X0.927

27.305X0.92727.305X0.927

27.305X0.92727.305X0.927

27.305X0.92727.305X0.927

27.305X0.92727.305X0.927

27.305X0.92727.305X0.927

27.305X0.927

PR

ISM

54

PR

ISM

54

PR

IS

M5

4P

RI

SM

54

PR

IS

M5

4

PR

IS

M5

4

PR

IS

M5

4P

RIS

M5

4

PRISM

55

PRISM

55

P RI S

M5 5

PRISM

55PRIS

M55

PRISM

55

PRISM

55

PRISM

55

PRISM

55

PRIS

M55

P RI S

M5 5

PRISM

55

PRISM

55

PRIS

M55

PRIS

M55

40.64X1.27

40.64X0.953

40

.64

X0

.95

3

35.56

X0.953

35.56

X0.953

35.56

X0.953

35.56

X0.953

35.5

6X0.

953

35.56X

0.953

35.56X

0.953

3 5 . 56 X

0 . 95 3

3 5 . 56 X

0 . 95 3

35. 5

6X0 .

9 53

35.5

6X0.

953

35.5

6X0.

953

35.5

6X0.

953

35.56X0.953

35.5

6X0.

953

35.5

6X0.

953

32

. 38

5X

0. 9

53

32

. 38

5X

0. 9

53

32.385X0.953

3 2 . 3 8 5 X 0 . 9 5 3

PRISM34PRISM34PRISM34

40.64X0.953

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

533

2.3

85

X0

.95

33

2.3

85

X0

.95

33

2.3

85

X0

.95

33

2.3

85

X0

.95

3

32

.38

5X

0.9

53

27.305X0.92727.305X0.92727.305X0.927

27.305X0.92727.305X0.92727.305X0.927

27.305X0.92727.305X0.92727.305X0.927

27.305X0.92727.305X0.92727.305X0.927

27.305X0.92727.305X0.927

27.305X0.92727.305X0.927

27.305X0.92727.305X0.927

27.305X0.92727.305X0.927

27.305X0.92727.305X0.927

27.305X0.92727.305X0.927

27.305X0.92727.305X0.927

27.305X0.927

PR

ISM

54

PR

ISM

54

PR

IS

M5

4P

RI

SM

54

PR

IS

M5

4

PR

IS

M5

4

PR

IS

M5

4P

RIS

M5

4

PRISM

55

PRISM

55

P RI S

M5 5

PRISM

55PRIS

M55

PRISM

55

PRISM

55

PRISM

55

PRISM

55

PRIS

M55

P RI S

M5 5

PRISM

55

PRISM

55

PRIS

M55

PRIS

M55

PRISM

55

PRISM

55

PRIS

M55

PRISM

55

PRISM

55

PRIS

M55

PRISM

55

PRISM

55 PRIS

M55

PRISM

55PR

ISM

55

PR

I SM

55

PRISM

55

PRISM

55

PRIS

M55

PRISM

55

PRISM

55

27.305X0.92727.305X0.92727.305X0.927

PR

ISM

54

27.305X0.92727.305X0.92727.305X0.927

PR

ISM

54

35.56X0.953

PRISM34PRISM34PRISM34PRISM34

35.56X0.953

35.56X0.953

PRISM

55

PRIS

M55

PRISM55

PRISM55

PRIS

M55

PRISM

55

PRISM55

PRISM

55

27.305X0.927

32

.38

5X

0.9

53

40.64X0.953

27.305X0.92727.305X0.92727.305X0.92727.305X0.92727.305X0.92727.305X0.92727.305X0.927

27.305X0.92727.305X0.92727.305X0.92727.305X0.92727.305X0.92727.305X0.92727.305X0.927

27.305X0.92727.305X0.92727.305X0.92727.305X0.92727.305X0.92727.305X0.92727.305X0.927

27.305X0.92727.305X0.92727.305X0.92727.305X0.92727.305X0.92727.305X0.92727.305X0.927

27.305X0.92727.305X0.92727.305X0.927

27.305X0.92727.305X0.92727.305X0.927

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

PRISM

55

PRISM

55

PRIS

M55

PRISM

55

PRISM

55

PRIS

M55

PRISM

55

PRISM

55 PRIS

M55

PRISM

55PR

ISM

55

PR

I SM

55

PRISM

55

PRISM

55

PRIS

M55

PRISM

55

PRISM

55

27.305X0.92727.305X0.92727.305X0.927

PR

ISM

54

27.305X0.92727.305X0.92727.305X0.927

PR

ISM

54

35.56X0.953

PRISM34PRISM34PRISM34PRISM34

35.56X0.953

35.56X0.953

PRISM

55

PRIS

M55

PRISM55

PRISM55

PRIS

M55

PRISM

55

PRISM55

PRISM

55

27.305X0.927

32

.38

5X

0.9

53

40.64X0.953

27.305X0.92727.305X0.92727.305X0.92727.305X0.92727.305X0.92727.305X0.92727.305X0.927

27.305X0.92727.305X0.92727.305X0.92727.305X0.92727.305X0.92727.305X0.92727.305X0.927

27.305X0.92727.305X0.92727.305X0.92727.305X0.92727.305X0.92727.305X0.92727.305X0.927

27.305X0.92727.305X0.92727.305X0.92727.305X0.92727.305X0.92727.305X0.92727.305X0.927

27.305X0.92727.305X0.92727.305X0.927

27.305X0.92727.305X0.92727.305X0.927

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

53

32

.38

5X

0.9

533

2.3

85

X0

.95

3

PR

ISM

54

PR

ISM

54

PR

ISM

54

PR

ISM

54

PR

ISM

54

PR

ISM

54

PR

ISM

54

PR

ISM

54

PR

IS

M5

4P

RIS

M5

4

P R I S M5 5

PRISM55

PRISM

55

PRISM

55

PRISM55

PRISM55

PRISM

55

PRISM

55

PRISM55

PRISM55

PRISM

55

PRISM

55

PRISM55

PRISM55

PRISM

55

PRISM

55

P R I S M5 5

PRISM55

PRISM

55

PRISM

55

PRISM55

PRISM55

P R I S M5 5

PRISM55

PRISM55

PRISM55

P R I S M5 5

PRISM

55

PRISM55

PRISM55

PRISM

55

PRISM55

PRISM55

PRISM55

PRISM

55

PRISM

55

PRISM55

PRISM55

PRISM

55

PRISM

55

H

ori

zon

tal F

ram

ing

Pla

n @

Ele

vati

on

–7.

3m

Page 57: OFFSHORE TECHNOLOGY REPORT 2001/056 · APPENDIX B GEOMETRY PLOTS FROM THE SACS MODEL 37 APPENDIX C COMPARISON OF RIGID AND FLEXIBLE FATIGUE-LIFE PREDICTIONS 51. vi. 1 1. INTRODUCTION

50

10

69

11

30

11

31

11

33

11

88

11

89

11

90

11

91

11

92

11

96

12

40

12

41

12

42

12

43

12

44

12

45

12

46

12

47

12

48

12

49

12

51

12

52

12

53

12

58

12

60

12

93

12

94

12

95

12

96

12

97

12

98

12

99

13

00

13

01

13

02

13

03

13

06

13

07

13

08

13

11

13

16

13

19

13

20

13

45

13

46

13

47

13

48

13

49

13

50

13

51

13

52

13

53

13

54

13

55

13

56

13

57

13

58

13

59

13

60

13

61

13

62

13

63

13

64

13

66

13

67

13

68

13

69

13

70

13

71

13

75

13

76

13

77

13

81

13

82

13

83

13

85

13

87

13

88

14

03

14

04

14

05

14

06

14

07

14

08

14

09

14

10

14

11

14

12

14

13

14

14

14

15

14

16

14

17

14

18

14

19

14

20

14

21

14

23

14

24

14

28

14

29

14

30

14

31

14

32

14

39

14

40

14

41

14

42

14

43

14

46

14

48

14

491

45

0

14

56

14

57

14

58

14

59

14

60

14

61

14

62

14

63

14

64

14

65

14

66

14

70

14

71 1

47

2

14

73

14

74

14

75

14

78

14

83

14

84

14

85

14

86

14

94

14

961

49

7

14

98

15

01

15

02

15

03

15

04

15

05

15

09 1

51

0

15

11

15

12

15

13

15

16

15

17

15

27

15

29

15

32

15

72

15

78

15

84

15

90

15

96

16

02

16

08

16

14

16

20

16

26

16

32

16

38

16

44

16

50

16

56

16

62

16

68

16

74

16

80

16

84

16

88

16

92

16

98

17

02

32.3

85X

1.27

32.3

85X

1.27

32.3

85X

1.27

32

.38

5X

1.2

7

32.3

85X

1.27

32.3

85X

1.27

32.3

85X

1.27

32

.38

5X

1.2

7

3 2 . 3 8 5 X 1 . 2 7

3 2 . 3 8 5 X 1 . 2 7 3 2 . 3 8 5 X 1 . 2 7 3 2 . 3 8 5 X 1 . 2 7 3 2 . 3 8 5 X 1 . 2 7 3 2 . 3 8 5 X 1 . 2 7

3 2 . 3 8 5 X 1 . 2 7 3 2 . 3 8 5 X 1 . 2 7 3 2 . 3 8 5 X 1 . 2 7

3 2 . 3 8 5 X 1 . 2 7

3 2 . 3 8 5 X 1 . 2 7

32.3

85X

1.27

32

.38

5X

1.2

7

32.3

85X

1.27

32.3

85X

1.27

32. 3

8 5X

1 .2 7

32.3

85X

1.27

32.3

85X

1.27

32.3

85X

1.27

32.385X1.27

32.385X1.27

32.385X1.27

3 2 . 3 8 5 X 1 . 2 7 3 2 . 3 8 5 X 1 . 2 7

27

.30

5X

1.2

7

32.385X1.27

32.385X1.27

32.385X1.27

27

.30

5X

1.2

7

27.3

05X

1.27

3 2 . 3 8 5 X 1 . 2 7 3 2 . 3 8 5 X 1 . 2 7

P R I S M 3 3 P R I S M 3 3

27.3

05X

1.27

32.385X1.27

32.385X1.27

32.385X1.27

32.385X1.27

27.3

05X

1.27

3 2 . 3 8 5 X 1 . 2 73 2 . 3 8 5 X 1 . 2 7 3 2 . 3 8 5 X 1 . 2 7

27

.30

5X

1.2

72

7.3

05

X1

.27

2 7 . 3 0 5 X 1 . 2 7

3 2 . 3 8 5 X 1 . 2 7 3 2 . 3 8 5 X 1 . 2 7 3 2 . 3 8 5 X 1 . 2 7 3 2 . 3 8 5 X 1 . 2 7

32.3

85X

1.27

32.3

85X

1.27

27

.30

5X

1.2

7

32.3

85X

1.27

32. 3

8 5X

1 .2 7

27

.30

5X

1.2

7

32.3

85X

1.27

32.3

85X

1.27

27

.30

5X

1.2

7

32.3

85X

1.27

32.3

85X

1.27

27

.30

5X

1.2

7

P R I S M 3 3 P R I S M 3 3

32.3

85X

1.27

32.3

85X

1.27

32.3

85X

1.27

32.3

85X

1.27

32

.38

5X

1.2

73

2.3

85

X1

.27

32.3

85X

1.27

32.3

85X

1.27

32

.38

5X

1.2

73

2.3

85

X1

.27

32

.38

5X

1.2

73

2.3

85

X1

.27

32

.38

5X

1.2

732

.385

X1.

2732

.385

X1.

273

2.3

85

X1

.27

32

.38

5X

1.2

7

32

.38

5X

1.2

73

2.3

85

X1

.27

32

.38

5X

1.2

732

.385

X1.

2732

.385

X1.

273

2.3

85

X1

.27

32

.38

5X

1.2

7

2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7

2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7

2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7

2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7

2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7

2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7

2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7

2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7

2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7

2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7

2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7

2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7

2 7 . 3 0 5 X 1 . 2 7

PR

ISM

50

PR

ISM

50

PR

ISM

50

PR

ISM

50

PR

ISM

50

PR

ISM

50

PR

ISM

50

PR

ISM

50

PR

ISM

50

PRISM53

PRISM

51

PRISM

51

PRISM51

PRISM51

PRISM

51

PRISM

51

PRISM51

PRISM51

PRISM

51

PR I SM

51

PRISM51

PRISM51

PRISM

51

PR I SM

51

PRISM51

PRISM51

PRISM

51

PR I SM

51

PRISM51

PRISM51

PRISM

51

PRISM

51

PRISM

51PRISM51

PRISM

51PRIS

M51

PRISM51

PRISM

51

PRISM

51PR I S

M51

PRISM

51PRIS

M51

PRISM

51

PR

ISM

50

PRISM

51

PRISM51

3 2 . 3 8 5 X 1 . 2 7

32

.38

5X

1.2

7

3 2 . 3 8 5 X 1 . 2 7

27.3

05X

1.27

32.3

85X

1.27

27.3

05X

1.27

32.3

85X

1.27

PRISM33PRISM33PRISM33PRISM33

PRISM

51

PRISM51

PRISM51

PRISM51

2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7

2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7

2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7

2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7

2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7

2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7

2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7

2 7 . 3 0 5 X 1 . 2 7

32

.38

5X

1.2

732

.385

X1.

273

2.3

85

X1

.27

32

.38

5X

1.2

7

32

.38

5X

1.2

732

.385

X1.

273

2.3

85

X1

.27

32

.38

5X

1.2

732

.385

X1.

273

2.3

85

X1

.27

32.3

85X

1.27

32

.38

5X

1.2

732

.385

X1.

273

2.3

85

X1

.27

32

.38

5X

1.2

732

.385

X1.

273

2.3

85

X1

.27

32.3

85X

1.27

32

.38

5X

1.2

732

.385

X1.

273

2.3

85

X1

.27

32

.38

5X

1.2

7

PR

ISM

50

PR

ISM

50

PR

ISM

50

PR

ISM

50P

RIS

M50

PR

ISM

50

PR

ISM

50P

RIS

M50

PR

ISM

50

PR

ISM

50

PRISM51

PRISM51

P R I S M5 1

PRISM

51

PRISM51

P R I S M5 1

PRISM51

PRISM51

PRISM51

PRISM51

PRISM51

PRISM

51

PRISM51

PRISM51

PRISM51

PR I SM

51

PRISM51

PRISM51

PRISM51

PRISM51 PRISM

51

PRISM51

PRISM51

P R I S M5 1

PRISM51

PRISM51

PRISM51

PRISM51 PRISM

51

PRISM51

PRISM51

P R I S M5 1

PRISM51

PRISM51

PRISM

51

PRISM

51 PRISM51

PRISM51

PRISM51

PRISM

51

10

69

11

30

11

31

11

33

11

88

11

89

11

90

11

91

11

92

11

96

12

40

12

41

12

42

12

43

12

44

12

45

12

46

12

47

12

48

12

49

12

51

12

52

12

53

12

58

12

60

12

93

12

94

12

95

12

96

12

97

12

98

12

99

13

00

13

01

13

02

13

03

13

06

13

07

13

08

13

11

13

16

13

19

13

20

13

45

13

46

13

47

13

48

13

49

13

50

13

51

13

52

13

53

13

54

13

55

13

56

13

57

13

58

13

59

13

60

13

61

13

62

13

63

13

64

13

66

13

67

13

68

10

69

11

30

11

31

11

33

11

88

11

89

11

90

11

91

11

92

11

96

12

40

12

41

12

42

12

43

12

44

12

45

12

46

12

47

12

48

12

49

12

51

12

52

12

53

12

58

12

60

12

93

12

94

12

95

12

96

12

97

12

98

12

99

13

00

13

01

13

02

13

03

13

06

13

07

13

08

13

11

13

16

13

19

13

20

13

45

13

46

13

47

13

48

13

49

13

50

13

51

13

52

13

53

13

54

13

55

13

56

13

57

13

58

13

59

13

60

13

61

13

62

13

63

13

64

13

66

13

67

13

68

13

69

13

70

13

71

13

75

13

76

13

77

13

81

13

82

13

83

13

85

13

87

13

88

14

03

14

04

14

05

14

06

14

07

14

08

14

09

14

10

14

11

14

12

14

13

14

14

14

15

14

16

14

17

14

18

14

19

14

20

14

21

14

23

14

24

14

28

14

29

14

30

14

31

14

32

14

39

14

40

14

41

14

42

14

43

14

46

14

48

14

491

45

0

14

56

14

57

14

58

14

59

14

60

14

61

14

62

14

63

14

64

14

65

14

66

14

70

14

71 1

47

2

14

73

14

74

14

75

14

78

14

83

14

84

13

69

13

70

13

71

13

75

13

76

13

77

13

81

13

82

13

83

13

85

13

87

13

88

14

03

14

04

14

05

14

06

14

07

14

08

14

09

14

10

14

11

14

12

14

13

14

14

14

15

14

16

14

17

14

18

14

19

14

20

14

21

14

23

14

24

14

28

14

29

14

30

14

31

14

32

14

39

14

40

14

41

14

42

14

43

14

46

14

48

14

491

45

0

14

56

14

57

14

58

14

59

14

60

14

61

14

62

14

63

14

64

14

65

14

66

14

70

14

71 1

47

2

14

73

14

74

14

75

14

78

14

83

14

84

14

85

14

86

14

94

14

961

49

7

14

98

15

01

15

02

15

03

15

04

15

05

15

09 1

51

0

15

11

15

12

15

13

15

16

15

17

15

27

15

29

15

32

15

72

15

78

15

84

15

90

15

96

16

02

16

08

16

14

16

20

16

26

16

32

16

38

16

44

16

50

16

56

16

62

16

68

16

74

16

80

16

84

16

88

16

92

16

98

17

02

32.3

85X

1.27

32.3

85X

1.27

32.3

85X

1.27

32

.38

5X

1.2

7

32.3

85X

1.27

32.3

85X

1.27

32.3

85X

1.27

32

.38

5X

1.2

7

3 2 . 3 8 5 X 1 . 2 7

3 2 . 3 8 5 X 1 . 2 7 3 2 . 3 8 5 X 1 . 2 7 3 2 . 3 8 5 X 1 . 2 7 3 2 . 3 8 5 X 1 . 2 7 3 2 . 3 8 5 X 1 . 2 7

3 2 . 3 8 5 X 1 . 2 7 3 2 . 3 8 5 X 1 . 2 7 3 2 . 3 8 5 X 1 . 2 7

3 2 . 3 8 5 X 1 . 2 7

3 2 . 3 8 5 X 1 . 2 7

32.3

85X

1.27

32

.38

5X

1.2

7

32.3

85X

1.27

32.3

85X

1.27

32. 3

8 5X

1 .2 7

32.3

85X

1.27

32.3

85X

1.27

32.3

85X

1.27

32.385X1.27

32.385X1.27

32.385X1.27

3 2 . 3 8 5 X 1 . 2 7 3 2 . 3 8 5 X 1 . 2 7

14

85

14

86

14

94

14

961

49

7

14

98

15

01

15

02

15

03

15

04

15

05

15

09 1

51

0

15

11

15

12

15

13

15

16

15

17

15

27

15

29

15

32

15

72

15

78

15

84

15

90

15

96

16

02

16

08

16

14

16

20

16

26

16

32

16

38

16

44

16

50

16

56

16

62

16

68

16

74

16

80

16

84

16

88

16

92

16

98

17

02

32.3

85X

1.27

32.3

85X

1.27

32.3

85X

1.27

32

.38

5X

1.2

7

32.3

85X

1.27

32.3

85X

1.27

32.3

85X

1.27

32

.38

5X

1.2

7

3 2 . 3 8 5 X 1 . 2 7

3 2 . 3 8 5 X 1 . 2 7 3 2 . 3 8 5 X 1 . 2 7 3 2 . 3 8 5 X 1 . 2 7 3 2 . 3 8 5 X 1 . 2 7 3 2 . 3 8 5 X 1 . 2 7

3 2 . 3 8 5 X 1 . 2 7 3 2 . 3 8 5 X 1 . 2 7 3 2 . 3 8 5 X 1 . 2 7

3 2 . 3 8 5 X 1 . 2 7

3 2 . 3 8 5 X 1 . 2 7

32.3

85X

1.27

32

.38

5X

1.2

7

32.3

85X

1.27

32.3

85X

1.27

32. 3

8 5X

1 .2 7

32.3

85X

1.27

32.3

85X

1.27

32.3

85X

1.27

32.385X1.27

32.385X1.27

32.385X1.27

3 2 . 3 8 5 X 1 . 2 7 3 2 . 3 8 5 X 1 . 2 7

27

.30

5X

1.2

7

32.385X1.27

32.385X1.27

32.385X1.27

27

.30

5X

1.2

7

27.3

05X

1.27

3 2 . 3 8 5 X 1 . 2 7 3 2 . 3 8 5 X 1 . 2 7

P R I S M 3 3 P R I S M 3 3

27.3

05X

1.27

32.385X1.27

32.385X1.27

32.385X1.27

32.385X1.27

27.3

05X

1.27

3 2 . 3 8 5 X 1 . 2 73 2 . 3 8 5 X 1 . 2 7 3 2 . 3 8 5 X 1 . 2 7

27

.30

5X

1.2

72

7.3

05

X1

.27

2 7 . 3 0 5 X 1 . 2 7

3 2 . 3 8 5 X 1 . 2 7 3 2 . 3 8 5 X 1 . 2 7 3 2 . 3 8 5 X 1 . 2 7 3 2 . 3 8 5 X 1 . 2 7

32.3

85X

1.27

32.3

85X

1.27

27

.30

5X

1.2

7

32.3

85X

1.27

32. 3

8 5X

1 .2 7

27

.30

5X

1.2

7

32.3

85X

1.27

32.3

85X

1.27

27

.30

5X

1.2

7

32.3

85X

1.27

32.3

85X

1.27

27

.30

5X

1.2

7

P R I S M 3 3 P R I S M 3 3

32.3

85X

1.27

32.3

85X

1.27

32.3

85X

1.27

32.3

85X

1.27

32

.38

5X

1.2

73

2.3

85

X1

.27

32.3

85X

1.27

32.3

85X

1.27

32

.38

5X

1.2

73

2.3

85

X1

.27

32

.38

5X

1.2

73

2.3

85

X1

.27

32

.38

5X

1.2

732

.385

X1.

2732

.385

X1.

273

2.3

85

X1

.27

32

.38

5X

1.2

7

32

.38

5X

1.2

73

2.3

85

X1

.27

32

.38

5X

1.2

732

.385

X1.

2732

.385

X1.

273

2.3

85

X1

.27

32

.38

5X

1.2

7

2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7

2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7

2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7

2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7

2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7

2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7

2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7

2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7

2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7

2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7

2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7

2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7

2 7 . 3 0 5 X 1 . 2 7

PR

ISM

50

PR

ISM

50

PR

ISM

50

PR

ISM

50

27

.30

5X

1.2

7

32.385X1.27

32.385X1.27

32.385X1.27

27

.30

5X

1.2

7

27.3

05X

1.27

3 2 . 3 8 5 X 1 . 2 7 3 2 . 3 8 5 X 1 . 2 7

P R I S M 3 3 P R I S M 3 3

27.3

05X

1.27

32.385X1.27

32.385X1.27

32.385X1.27

32.385X1.27

27.3

05X

1.27

3 2 . 3 8 5 X 1 . 2 73 2 . 3 8 5 X 1 . 2 7 3 2 . 3 8 5 X 1 . 2 7

27

.30

5X

1.2

72

7.3

05

X1

.27

2 7 . 3 0 5 X 1 . 2 7

3 2 . 3 8 5 X 1 . 2 7 3 2 . 3 8 5 X 1 . 2 7 3 2 . 3 8 5 X 1 . 2 7 3 2 . 3 8 5 X 1 . 2 7

32.3

85X

1.27

32.3

85X

1.27

27

.30

5X

1.2

7

32.3

85X

1.27

32. 3

8 5X

1 .2 7

27

.30

5X

1.2

7

32.3

85X

1.27

32.3

85X

1.27

27

.30

5X

1.2

7

32.3

85X

1.27

32.3

85X

1.27

27

.30

5X

1.2

7

P R I S M 3 3 P R I S M 3 3

32.3

85X

1.27

32.3

85X

1.27

32.3

85X

1.27

32.3

85X

1.27

32

.38

5X

1.2

73

2.3

85

X1

.27

32.3

85X

1.27

32.3

85X

1.27

32

.38

5X

1.2

73

2.3

85

X1

.27

32

.38

5X

1.2

73

2.3

85

X1

.27

32

.38

5X

1.2

732

.385

X1.

2732

.385

X1.

273

2.3

85

X1

.27

32

.38

5X

1.2

7

32

.38

5X

1.2

73

2.3

85

X1

.27

32

.38

5X

1.2

732

.385

X1.

2732

.385

X1.

273

2.3

85

X1

.27

32

.38

5X

1.2

7

2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7

2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7

2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7

2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7

2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7

2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7

2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7

2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7

2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7

2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7

2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7

2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7

2 7 . 3 0 5 X 1 . 2 7

PR

ISM

50

PR

ISM

50

PR

ISM

50

PR

ISM

50

PR

ISM

50

PR

ISM

50

PR

ISM

50

PR

ISM

50

PR

ISM

50

PRISM53

PRISM

51

PRISM

51

PRISM51

PRISM51

PRISM

51

PRISM

51

PRISM51

PRISM51

PRISM

51

PR I SM

51

PRISM51

PRISM51

PRISM

51

PR I SM

51

PRISM51

PRISM51

PRISM

51

PR I SM

51

PRISM51

PRISM51

PRISM

51

PRISM

51

PRISM

51PRISM51

PRISM

51PRIS

M51

PRISM51

PRISM

51

PRISM

51PR I S

M51

PRISM

51PRIS

M51

PRISM

51

PR

ISM

50

PRISM

51

PRISM51

3 2 . 3 8 5 X 1 . 2 7

32

.38

5X

1.2

7

3 2 . 3 8 5 X 1 . 2 7

27.3

05X

1.27

32.3

85X

1.27

27.3

05X

1.27

32.3

85X

1.27

PRISM33PRISM33PRISM33PRISM33

PRISM

51

PRISM51

PRISM51

PRISM51

2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7

2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7

2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7

2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7

2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7

2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7

2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7

2 7 . 3 0 5 X 1 . 2 7

32

.38

5X

1.2

732

.385

X1.

273

2.3

85

X1

.27

32

.38

5X

1.2

7

32

.38

5X

1.2

732

.385

X1.

273

2.3

85

X1

.27

PR

ISM

50

PR

ISM

50

PR

ISM

50

PR

ISM

50

PR

ISM

50

PRISM53

PRISM

51

PRISM

51

PRISM51

PRISM51

PRISM

51

PRISM

51

PRISM51

PRISM51

PRISM

51

PR I SM

51

PRISM51

PRISM51

PRISM

51

PR I SM

51

PRISM51

PRISM51

PRISM

51

PR I SM

51

PRISM51

PRISM51

PRISM

51

PRISM

51

PRISM

51PRISM51

PRISM

51PRIS

M51

PRISM51

PRISM

51

PRISM

51PR I S

M51

PRISM

51PRIS

M51

PRISM

51

PR

ISM

50

PRISM

51

PRISM51

3 2 . 3 8 5 X 1 . 2 7

32

.38

5X

1.2

7

3 2 . 3 8 5 X 1 . 2 7

27.3

05X

1.27

32.3

85X

1.27

27.3

05X

1.27

32.3

85X

1.27

PRISM33PRISM33PRISM33PRISM33

PRISM

51

PRISM51

PRISM51

PRISM51

2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7

2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7

2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7

2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7

2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7

2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7

2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7 2 7 . 3 0 5 X 1 . 2 7

2 7 . 3 0 5 X 1 . 2 7

32

.38

5X

1.2

732

.385

X1.

273

2.3

85

X1

.27

32

.38

5X

1.2

7

32

.38

5X

1.2

732

.385

X1.

273

2.3

85

X1

.27

32

.38

5X

1.2

732

.385

X1.

273

2.3

85

X1

.27

32.3

85X

1.27

32

.38

5X

1.2

732

.385

X1.

273

2.3

85

X1

.27

32

.38

5X

1.2

732

.385

X1.

273

2.3

85

X1

.27

32.3

85X

1.27

32

.38

5X

1.2

732

.385

X1.

273

2.3

85

X1

.27

32

.38

5X

1.2

7

PR

ISM

50

PR

ISM

50

PR

ISM

50

PR

ISM

50P

RIS

M50

PR

ISM

50

PR

ISM

50P

RIS

M50

PR

ISM

50

PR

ISM

50

PRISM51

PRISM51

P R I S M5 1

PRISM

51

PRISM51

P R I S M5 1

PRISM51

PRISM51

PRISM51

PRISM51

PRISM51

PRISM

51

PRISM51

PRISM51

PRISM51

PR I SM

51

PRISM51

PRISM51

PRISM51

PRISM51 PRISM

51

PRISM51

PRISM51

P R I S M5 1

PRISM51

PRISM51

PRISM51

PRISM51 PRISM

51

PRISM51

PRISM51

P R I S M5 1

PRISM51

PRISM51

PRISM

51

PRISM

51 PRISM51

PRISM51

PRISM51

PRISM

51

Ho

rizo

nta

l Fra

min

g P

lan

@ E

leva

tio

n +

6.1m

Page 58: OFFSHORE TECHNOLOGY REPORT 2001/056 · APPENDIX B GEOMETRY PLOTS FROM THE SACS MODEL 37 APPENDIX C COMPARISON OF RIGID AND FLEXIBLE FATIGUE-LIFE PREDICTIONS 51. vi. 1 1. INTRODUCTION

51

APPENDIX C

Comparison of Rigid and Flexible Fatigue-life Predictions

Page 59: OFFSHORE TECHNOLOGY REPORT 2001/056 · APPENDIX B GEOMETRY PLOTS FROM THE SACS MODEL 37 APPENDIX C COMPARISON OF RIGID AND FLEXIBLE FATIGUE-LIFE PREDICTIONS 51. vi. 1 1. INTRODUCTION

52

Conductor Guide Framing at Elevation –24 ft

54055406 5403 5402

5802580358055806

57025706

5605

LifeRigidFlex

1.23.7

LifeRigidFlex

0.20.6

LifeRigidFlex

2.05.0

LifeRigidFlex

0.30.7

LifeRigidFlex

81.7156.7

LifeRigidFlex

1.232.4

LifeRigidFlex

1.231.8

LifeRigidFlex

6.571.3

LifeRigidFlex

40.173300

LifeRigidFlex

11.712.8

LifeRigid

Flex

2.4

8.5

LifeRigid

Flex

21.7

52.8

LifeRigidFlex

19.1311.2

LifeRigidFlex

1.35.7

5603

LifeRigidFlex

89.3160.9

LifeRigidFlex

104.4198.3

LifeRigidFlex

116.1603.9

LifeRigid

Flex

24.8

56.6Life

Rigid

Flex

5.9

82.7

LifeRigid

Flex

0.9

27.6 LifeRigidFlex

3.740.8

LifeRigidFlex

10.621.0

LifeRigid

Flex

6.0

57.5

LifeRigidFlex

44.171.6

Clamped joint

58015807

5607 5601

54015407

2 1

F

E

D

Page 60: OFFSHORE TECHNOLOGY REPORT 2001/056 · APPENDIX B GEOMETRY PLOTS FROM THE SACS MODEL 37 APPENDIX C COMPARISON OF RIGID AND FLEXIBLE FATIGUE-LIFE PREDICTIONS 51. vi. 1 1. INTRODUCTION

53

5104

Life

RigidFlex

272.02146.6

LifeRigidFlex

14.1424.4

LifeRigidFlex

11.6381.2

7107 7101

LifeRigidFlex

297.92021.9

LifeRigidFlex

1076.148981

LifeRigidFlex

3269.780218

51015107

2 1

Transverse Frame A

Page 61: OFFSHORE TECHNOLOGY REPORT 2001/056 · APPENDIX B GEOMETRY PLOTS FROM THE SACS MODEL 37 APPENDIX C COMPARISON OF RIGID AND FLEXIBLE FATIGUE-LIFE PREDICTIONS 51. vi. 1 1. INTRODUCTION

54

5204

Life

RigidFlex

271.72049.0

LifeRigidFlex

13.5350.4

LifeRigidFlex

10.952.7

7207 7201

LifeRigidFlex

277.73008.5

LifeRigidFlex

3375.577365

LifeRigidFlex

6178.466934

52015207

2 1

Transverse Frame B

Page 62: OFFSHORE TECHNOLOGY REPORT 2001/056 · APPENDIX B GEOMETRY PLOTS FROM THE SACS MODEL 37 APPENDIX C COMPARISON OF RIGID AND FLEXIBLE FATIGUE-LIFE PREDICTIONS 51. vi. 1 1. INTRODUCTION

55

5304

LifeRigidFlex

255.41702.0

LifeRigid

Flex

8.6

493.4

LifeRigid

Flex

8.6

334.8

7307 7301

LifeRigidFlex

254.61556.4

Life

RigidFlex

13.86462

Life

RigidFlex

4251.832759

53015307

2 1

Transverse Frame C

Page 63: OFFSHORE TECHNOLOGY REPORT 2001/056 · APPENDIX B GEOMETRY PLOTS FROM THE SACS MODEL 37 APPENDIX C COMPARISON OF RIGID AND FLEXIBLE FATIGUE-LIFE PREDICTIONS 51. vi. 1 1. INTRODUCTION

56

5404

Life

RigidFlex

45.0251.6

LifeRigidFlex

1.233.8

LifeRigidFlex

1.143.6

7407 7401

LifeRigidFlex

49.2248.5

LifeRigidFlex

1334.312457

LifeRigidFlex

244.116653

54015407

2 1

Transverse Frame D

Page 64: OFFSHORE TECHNOLOGY REPORT 2001/056 · APPENDIX B GEOMETRY PLOTS FROM THE SACS MODEL 37 APPENDIX C COMPARISON OF RIGID AND FLEXIBLE FATIGUE-LIFE PREDICTIONS 51. vi. 1 1. INTRODUCTION

57

5604

LifeRigid

Flex

414.0

1812.6

LifeRigidFlex

4.5179.0

LifeRigidFlex

4.135.3

7607 7601

Life

RigidFlex

432.02341.5

LifeRigidFlex

3900.019606

LifeRigidFlex

2043.36856.5

56015607

2 1

Transverse Frame E

Page 65: OFFSHORE TECHNOLOGY REPORT 2001/056 · APPENDIX B GEOMETRY PLOTS FROM THE SACS MODEL 37 APPENDIX C COMPARISON OF RIGID AND FLEXIBLE FATIGUE-LIFE PREDICTIONS 51. vi. 1 1. INTRODUCTION

58

5804

Life

RigidFlex

45.4235.9

LifeRigidFlex

1.2931.5

LifeRigidFlex

1.2731.2

7807 7801

LifeRigidFlex

47.4233.8

LifeRigidFlex

74116216

LifeRigidFlex

83620747

58015807

2 1

Transverse Frame F

Page 66: OFFSHORE TECHNOLOGY REPORT 2001/056 · APPENDIX B GEOMETRY PLOTS FROM THE SACS MODEL 37 APPENDIX C COMPARISON OF RIGID AND FLEXIBLE FATIGUE-LIFE PREDICTIONS 51. vi. 1 1. INTRODUCTION

59

L

on

git

ud

inal

Fra

me

1

5401

7301

5301

5801

7601

7401

7201

Lif

eR

igid

Flex

365

1984

.9Li

feR

igid

Fle

x

330

1941

.8

Life

Rig

idF

lex

29

2.4

1888

.4L

ife

Rig

id

Flex

321.

6

1777

.4

Life

Rig

idF

lex

3.05

34

.0

Life

Rig

idF

lex

3.09

34.0

Life

Rig

idFl

ex3.

0934

.8

Life

Rig

idF

lex

3.37

35.5

Lif

eR

igid

Flex

1.5

22

5.7

Life

Rig

id

Fle

x

109

63

2.7

7101

5601

5201

DE

FC

BA

Page 67: OFFSHORE TECHNOLOGY REPORT 2001/056 · APPENDIX B GEOMETRY PLOTS FROM THE SACS MODEL 37 APPENDIX C COMPARISON OF RIGID AND FLEXIBLE FATIGUE-LIFE PREDICTIONS 51. vi. 1 1. INTRODUCTION

60

Lo

ng

itu

din

al F

ram

e 2 74

07

5107

5207

5407

5607

7807

7607

7307

7207

Lif

e

Rig

id

Fle

x

567.

0

3194

.0

Life

Rig

id

Fle

x

615.

0

3692

.5

Life

Rig

id

Fle

x

647.

0

3374

.2L

ife

Rig

id

Fle

x

74

4

3754

.3

Lif

e

Rig

idF

lex

7.58

120.

3

Life

Rig

id

Fle

x

7.95

11

8.2

Life

Rig

idF

lex

7.66

11

4.3

Lif

e

Rig

idF

lex

9.85

117.

2

Life

Rig

idF

lex

22

1.7

1179

.4

Lif

e

Rig

idF

lex

3.6

32

.7

5307

FE

DC

BA

Page 68: OFFSHORE TECHNOLOGY REPORT 2001/056 · APPENDIX B GEOMETRY PLOTS FROM THE SACS MODEL 37 APPENDIX C COMPARISON OF RIGID AND FLEXIBLE FATIGUE-LIFE PREDICTIONS 51. vi. 1 1. INTRODUCTION
Page 69: OFFSHORE TECHNOLOGY REPORT 2001/056 · APPENDIX B GEOMETRY PLOTS FROM THE SACS MODEL 37 APPENDIX C COMPARISON OF RIGID AND FLEXIBLE FATIGUE-LIFE PREDICTIONS 51. vi. 1 1. INTRODUCTION

Printed and published by the Health and Safety ExecutiveC0.35 2/02

Page 70: OFFSHORE TECHNOLOGY REPORT 2001/056 · APPENDIX B GEOMETRY PLOTS FROM THE SACS MODEL 37 APPENDIX C COMPARISON OF RIGID AND FLEXIBLE FATIGUE-LIFE PREDICTIONS 51. vi. 1 1. INTRODUCTION

OTO 2001/056

£15.00 9 780717 622887

ISBN 0-7176-2288-6