Top Banner
OFF-state TDDB in High-Voltage GaN MIS-HEMTs Shireen Warnock and Jesús A. del Alamo Microsystems Technology Laboratories (MTL) Massachusetts Institute of Technology (MIT)
35

OFF-state TDDB in High-Voltage GaN MIS-HEMTs slides.pdf · OFF-state TDDB in High-Voltage GaN MIS-HEMTs. Shireen Warnock and Jesús A. del Alamo. Microsystems Technology Laboratories

Dec 31, 2019

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: OFF-state TDDB in High-Voltage GaN MIS-HEMTs slides.pdf · OFF-state TDDB in High-Voltage GaN MIS-HEMTs. Shireen Warnock and Jesús A. del Alamo. Microsystems Technology Laboratories

OFF-state TDDB in High-Voltage GaN MIS-HEMTs

Shireen Warnock and Jesús A. del AlamoMicrosystems Technology Laboratories (MTL)Massachusetts Institute of Technology (MIT)

Page 2: OFF-state TDDB in High-Voltage GaN MIS-HEMTs slides.pdf · OFF-state TDDB in High-Voltage GaN MIS-HEMTs. Shireen Warnock and Jesús A. del Alamo. Microsystems Technology Laboratories

Purpose

• Further understanding of time-dependent dielectric breakdown (TDDB) in GaN MIS-HEMTs

• Explore TDDB under high-voltage OFF-state conditions: most common state in the operation of a power switching transistor

2

Page 3: OFF-state TDDB in High-Voltage GaN MIS-HEMTs slides.pdf · OFF-state TDDB in High-Voltage GaN MIS-HEMTs. Shireen Warnock and Jesús A. del Alamo. Microsystems Technology Laboratories

Outline

• Motivation & Challenges

• Initial Results & Breakdown Statistics

• Ultraviolet Light During Recovery & Stress

• Conclusions

3

Page 4: OFF-state TDDB in High-Voltage GaN MIS-HEMTs slides.pdf · OFF-state TDDB in High-Voltage GaN MIS-HEMTs. Shireen Warnock and Jesús A. del Alamo. Microsystems Technology Laboratories

Motivation

4

GaN Field-Effect Transistors (FETs) promising for high-voltage power applications more efficient & smaller footprint

Page 5: OFF-state TDDB in High-Voltage GaN MIS-HEMTs slides.pdf · OFF-state TDDB in High-Voltage GaN MIS-HEMTs. Shireen Warnock and Jesús A. del Alamo. Microsystems Technology Laboratories

GaN Reliability Challenges

5

Inverse piezoelectric effectJ. A. del Alamo, MR 2009

Page 6: OFF-state TDDB in High-Voltage GaN MIS-HEMTs slides.pdf · OFF-state TDDB in High-Voltage GaN MIS-HEMTs. Shireen Warnock and Jesús A. del Alamo. Microsystems Technology Laboratories

GaN Reliability Challenges

6

Inverse piezoelectric effectJ. A. del Alamo, MR 2009

Current collapseD. Jin, IEDM 2013

Page 7: OFF-state TDDB in High-Voltage GaN MIS-HEMTs slides.pdf · OFF-state TDDB in High-Voltage GaN MIS-HEMTs. Shireen Warnock and Jesús A. del Alamo. Microsystems Technology Laboratories

GaN Reliability Challenges

7

Inverse piezoelectric effectJ. A. del Alamo, MR 2009

Current collapseD. Jin, IEDM 2013

VT instability

Page 8: OFF-state TDDB in High-Voltage GaN MIS-HEMTs slides.pdf · OFF-state TDDB in High-Voltage GaN MIS-HEMTs. Shireen Warnock and Jesús A. del Alamo. Microsystems Technology Laboratories

GaN Reliability Challenges

8

Inverse piezoelectric effectJ. A. del Alamo, MR 2009

Current collapseD. Jin, IEDM 2013

Gate dielectric reliabilityVT instability

Page 9: OFF-state TDDB in High-Voltage GaN MIS-HEMTs slides.pdf · OFF-state TDDB in High-Voltage GaN MIS-HEMTs. Shireen Warnock and Jesús A. del Alamo. Microsystems Technology Laboratories

Time-Dependent Dielectric Breakdown• High gate bias → defect generation → catastrophic oxide

breakdown• Often dictates lifetime of chip

9

D. R. Wolters, Philips J. Res. 1985

T. Kauerauf, EDL 2005

Typical TDDB experiments:Si high-k MOSFETs

Gate material melted after breakdown

Si MOSFET

Page 10: OFF-state TDDB in High-Voltage GaN MIS-HEMTs slides.pdf · OFF-state TDDB in High-Voltage GaN MIS-HEMTs. Shireen Warnock and Jesús A. del Alamo. Microsystems Technology Laboratories

TDDB in GaN MIS-HEMTs

10

G. Meneghesso, SST 2016T.-L. Wu, IRPS 2013S. Warnock, CS MANTECH 2015

• Classic TDDB observed• But: studies to date all on positive gate stress TDDB

→ More relevant for D-mode devices: TDDB under OFF-state

Page 11: OFF-state TDDB in High-Voltage GaN MIS-HEMTs slides.pdf · OFF-state TDDB in High-Voltage GaN MIS-HEMTs. Shireen Warnock and Jesús A. del Alamo. Microsystems Technology Laboratories

OFF-state Stress• Negative gate bias turns FET off; high bias on drain• Relevant operational condition for GaN power circuits

11

Page 12: OFF-state TDDB in High-Voltage GaN MIS-HEMTs slides.pdf · OFF-state TDDB in High-Voltage GaN MIS-HEMTs. Shireen Warnock and Jesús A. del Alamo. Microsystems Technology Laboratories

OFF-state Stress• Negative gate bias turns FET off; high bias on drain• Relevant operational condition for GaN power circuits• Electrostatics more complicated than under positive gate stress

12

• TDDB failure can result from peak in electric field during OFF-state• Study devices with no field plates for simplicity

Positive gate stress OFF-state stress

Page 13: OFF-state TDDB in High-Voltage GaN MIS-HEMTs slides.pdf · OFF-state TDDB in High-Voltage GaN MIS-HEMTs. Shireen Warnock and Jesús A. del Alamo. Microsystems Technology Laboratories

Dielectric Reliability in GaN FETsAlGaN/GaN metal-insulator-semiconductor

high electron mobility transistors (MIS-HEMTs)

13

Goals of this work:- What does TDDB look like in the OFF-state stress condition?- How do transient instabilities (current collapse, VT shift) affect

our ability to observe TDDB?

Page 14: OFF-state TDDB in High-Voltage GaN MIS-HEMTs slides.pdf · OFF-state TDDB in High-Voltage GaN MIS-HEMTs. Shireen Warnock and Jesús A. del Alamo. Microsystems Technology Laboratories

Initial Results & Breakdown Statistics

14

Page 15: OFF-state TDDB in High-Voltage GaN MIS-HEMTs slides.pdf · OFF-state TDDB in High-Voltage GaN MIS-HEMTs. Shireen Warnock and Jesús A. del Alamo. Microsystems Technology Laboratories

GaN MIS-HEMTs for TDDB Study

15

• GaN MIS-HEMTs from industry collaboration: depletion-mode

• Gate stack has multiple layers & interfaces

→ Uncertain electric field distribution

→ Many trapping sites

• Complex dynamics involved→ Unstable and fast changing VT→ Current collapse

A. Guo, IRPS 2016

GaN MOSFET

Page 16: OFF-state TDDB in High-Voltage GaN MIS-HEMTs slides.pdf · OFF-state TDDB in High-Voltage GaN MIS-HEMTs. Shireen Warnock and Jesús A. del Alamo. Microsystems Technology Laboratories

Constant-Voltage OFF-state Stress

16

VGS,stress< 0 V, high VDS,stress

IG=ID damage at drain-side edge of gate

Page 17: OFF-state TDDB in High-Voltage GaN MIS-HEMTs slides.pdf · OFF-state TDDB in High-Voltage GaN MIS-HEMTs. Shireen Warnock and Jesús A. del Alamo. Microsystems Technology Laboratories

Constant-Voltage OFF-state Stress

17

VGS,stress< 0 V, high VDS,stress

soft breakdown

IG=ID damage at drain-side edge of gate

Page 18: OFF-state TDDB in High-Voltage GaN MIS-HEMTs slides.pdf · OFF-state TDDB in High-Voltage GaN MIS-HEMTs. Shireen Warnock and Jesús A. del Alamo. Microsystems Technology Laboratories

Constant-Voltage OFF-state Stress

18

VGS,stress< 0 V, high VDS,stress

soft breakdown

IG=ID damage at drain-side edge of gate

Page 19: OFF-state TDDB in High-Voltage GaN MIS-HEMTs slides.pdf · OFF-state TDDB in High-Voltage GaN MIS-HEMTs. Shireen Warnock and Jesús A. del Alamo. Microsystems Technology Laboratories

Constant-Voltage OFF-state Stress

19

VGS,stress< 0 V, high VDS,stress

soft breakdown

final hard breakdown

tBD

IG=ID damage at drain-side edge of gate

Page 20: OFF-state TDDB in High-Voltage GaN MIS-HEMTs slides.pdf · OFF-state TDDB in High-Voltage GaN MIS-HEMTs. Shireen Warnock and Jesús A. del Alamo. Microsystems Technology Laboratories

Constant-Voltage OFF-state Stress

20

Pause stress every 50 s and characterize devicestress

• Multiple jumps in stress IG before final breakdown‒ Corresponds to increase in I-V OFF-state leakage

• Significant current collapse

characterization

Page 21: OFF-state TDDB in High-Voltage GaN MIS-HEMTs slides.pdf · OFF-state TDDB in High-Voltage GaN MIS-HEMTs. Shireen Warnock and Jesús A. del Alamo. Microsystems Technology Laboratories

OFF-state Step-Stress

21

Step VDS,stress: ΔVDS,stress=5 V, each 100 s/step

• Moderate stress: IG=ID decreases during stress step trapping

• High stress: IG increases stress-induced leakage current (SILC)

Page 22: OFF-state TDDB in High-Voltage GaN MIS-HEMTs slides.pdf · OFF-state TDDB in High-Voltage GaN MIS-HEMTs. Shireen Warnock and Jesús A. del Alamo. Microsystems Technology Laboratories

OFF-state Step-Stress

22

Transfer characteristics in between stress steps

• Very large VT shifts (first positive, then negative) and hysteresis• Progressive increase in current collapse for increasing VDS,stress

Page 23: OFF-state TDDB in High-Voltage GaN MIS-HEMTs slides.pdf · OFF-state TDDB in High-Voltage GaN MIS-HEMTs. Shireen Warnock and Jesús A. del Alamo. Microsystems Technology Laboratories

OFF-state TDDB Statistics

23

• Statistics do not follow Weibull distribution• Spread over many orders of magnitude

Time to final breakdown (IG=1 mA)

positive gate stress TDDB

S. Warnock, IRPS 2016

Page 24: OFF-state TDDB in High-Voltage GaN MIS-HEMTs slides.pdf · OFF-state TDDB in High-Voltage GaN MIS-HEMTs. Shireen Warnock and Jesús A. del Alamo. Microsystems Technology Laboratories

Trapping at Drain-end of Channel

24

• Trapping affects electric field• Depends on trap concentration, location, etc. highly random

In OFF-state, large electric field peak at drain-end of channel Severe electron trapping

Page 25: OFF-state TDDB in High-Voltage GaN MIS-HEMTs slides.pdf · OFF-state TDDB in High-Voltage GaN MIS-HEMTs. Shireen Warnock and Jesús A. del Alamo. Microsystems Technology Laboratories

Ultraviolet Light DuringRecovery & Stress

25

Page 26: OFF-state TDDB in High-Voltage GaN MIS-HEMTs slides.pdf · OFF-state TDDB in High-Voltage GaN MIS-HEMTs. Shireen Warnock and Jesús A. del Alamo. Microsystems Technology Laboratories

UV Light to Mitigate Trapping

26

Need to separate current collapse, VT shift from permanent degradation

• UV light very effective for de-trapping in GaN• Choose 3.5 eV for TDDB study

D. Jin, IEDM 2013

Page 27: OFF-state TDDB in High-Voltage GaN MIS-HEMTs slides.pdf · OFF-state TDDB in High-Voltage GaN MIS-HEMTs. Shireen Warnock and Jesús A. del Alamo. Microsystems Technology Laboratories

OFF-state Step-Stress: Recovery with UV

27

• Step VDS,stress: ΔVDS,stress=5 V, each 100 s• Before characterization, shine 3.5 eV UV light for 5 minutes after

each stress step

• No UV during stress expect unchanged stress leakage current

Page 28: OFF-state TDDB in High-Voltage GaN MIS-HEMTs slides.pdf · OFF-state TDDB in High-Voltage GaN MIS-HEMTs. Shireen Warnock and Jesús A. del Alamo. Microsystems Technology Laboratories

OFF-state Step-Stress: Recovery with UV

28

Transfer characteristics in between stress steps

• Current collapse mitigated• No positive VT shift, only negative NBTI

Page 29: OFF-state TDDB in High-Voltage GaN MIS-HEMTs slides.pdf · OFF-state TDDB in High-Voltage GaN MIS-HEMTs. Shireen Warnock and Jesús A. del Alamo. Microsystems Technology Laboratories

OFF-state Step-Stress: Stress with UV

29

• Step VDS,stress: ΔVDS,stress=5 V, each step 100 s/step• 3.5 eV UV light during stress, and 5 minutes after (to eliminate residual

trapping)

Page 30: OFF-state TDDB in High-Voltage GaN MIS-HEMTs slides.pdf · OFF-state TDDB in High-Voltage GaN MIS-HEMTs. Shireen Warnock and Jesús A. del Alamo. Microsystems Technology Laboratories

OFF-state Step-Stress: Stress with UV

30

• Step VDS,stress: ΔVDS,stress=5 V, 100 s/step

• No evidence of trapping for moderate VDS,stress• Clear appearance of SILC at higher voltage• Breakdown at 60 V compared to ~110 V for step-stress in dark

(step-stress in dark)

Page 31: OFF-state TDDB in High-Voltage GaN MIS-HEMTs slides.pdf · OFF-state TDDB in High-Voltage GaN MIS-HEMTs. Shireen Warnock and Jesús A. del Alamo. Microsystems Technology Laboratories

OFF-state Step-Stress: Stress with UV

31

Transfer characteristics in between stress steps

• Current collapse entirely mitigated• Negative VT shift NBTI

Page 32: OFF-state TDDB in High-Voltage GaN MIS-HEMTs slides.pdf · OFF-state TDDB in High-Voltage GaN MIS-HEMTs. Shireen Warnock and Jesús A. del Alamo. Microsystems Technology Laboratories

OFF-state Constant-Voltage TDDB Statistics

32

• UV statistics now follow Weibull distribution• Breakdown occurs sooner, even with VDS,stress ~25% less• UV mitigates trapping electric field ↑

Compare TDDB in the dark and with 3.5 eV UV during stress

Page 33: OFF-state TDDB in High-Voltage GaN MIS-HEMTs slides.pdf · OFF-state TDDB in High-Voltage GaN MIS-HEMTs. Shireen Warnock and Jesús A. del Alamo. Microsystems Technology Laboratories

Conclusions• Investigated OFF-state TDDB in GaN MIS-HEMTs for the

first time• Without UV light:

‒ Current collapse, VT shift‒ Cannot separate transient and permanent effects‒ Non-Weibull breakdown statistics

• With UV light:‒ Current collapse completed mitigated‒ Progressive negative VT shift NBTI‒ UV de-trapping yields higher electric field accelerated

breakdown‒ Breakdown follows Weibull distribution

• Next work: estimate electric field to develop lifetime model

33

Page 34: OFF-state TDDB in High-Voltage GaN MIS-HEMTs slides.pdf · OFF-state TDDB in High-Voltage GaN MIS-HEMTs. Shireen Warnock and Jesús A. del Alamo. Microsystems Technology Laboratories

Acknowledgements

34

Dr. José Jiménez, IRPS 2017 mentor

Page 35: OFF-state TDDB in High-Voltage GaN MIS-HEMTs slides.pdf · OFF-state TDDB in High-Voltage GaN MIS-HEMTs. Shireen Warnock and Jesús A. del Alamo. Microsystems Technology Laboratories

Questions?

35