Top Banner
1 Applications of supplemental LED lighting in vegetable propagation Chieri Kubota and Ricardo Hernández The University of Arizona SCRI LED Stakeholders Meeting (6/24/2014) UA LED Research Objectives 1. To conduct research necessary for vegetable propagators to adopt LED lighting technology propagators to adopt LED lighting technology Light quality requirement for LED lighting Sidebyside comparison with the conventional HID lighting Testing new fixture designs and application methods 2. To explore new LED applications beneficial to vegetable propagators Low intensity applications of red and farred LEDs for controlling plant morphology Pulsed lighting University of Arizona 2014, Not for Publication
16

of supplemental LED vegetable propagationleds.hrt.msu.edu/assets/Uploads/PowerPoints/LEDs-in-veg-prop.pdf · Applications of supplemental LED lighting in vegetable propagation ...

Jul 29, 2018

Download

Documents

lamdang
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: of supplemental LED vegetable propagationleds.hrt.msu.edu/assets/Uploads/PowerPoints/LEDs-in-veg-prop.pdf · Applications of supplemental LED lighting in vegetable propagation ...

1

Applications of supplemental LED pp pplighting in vegetable propagation

Chieri Kubota and Ricardo Hernández

The University of Arizona

SCRI LED Stakeholders Meeting (6/24/2014)

UA LED Research Objectives

1. To conduct research necessary for vegetable propagators to adopt LED lighting technologypropagators to adopt LED lighting technology– Light quality requirement for LED lighting

– Side‐by‐side comparison with the conventional HID lighting

– Testing new fixture designs and application methods

2. To explore new LED applications beneficial to p ppvegetable propagators– Low intensity applications of red and far‐red LEDs for controlling plant morphology 

– Pulsed lighting

University of Arizona 2014, Not for Publication

Page 2: of supplemental LED vegetable propagationleds.hrt.msu.edu/assets/Uploads/PowerPoints/LEDs-in-veg-prop.pdf · Applications of supplemental LED lighting in vegetable propagation ...

2

Phase I: Supplemental LED B:R photon flux ratios for vegetable transplants

• ObjectiveT t diff t l t l LED Bl R d h t– Test different supplemental LED Blue:Red photon flux ratios for growth and development of vegetable transplants.

• Hypothesis

– Vegetable seedlings respond different to B:R PF ratios under different solar DLI conditions.

Phase I: Materials & Methods

Testing different RED:BLUE ratios providing 55 μmol m‐2 s‐1 for 18 hours = 3.54 molm‐2 d‐1 of supplemental LED light.

100% 

4% 

96%

16% 

84%

N

NO SUPPLEMENTAL 

LIGHT

treatment treatment treatment control

Blue = 455 nm, Red = 661 nm

96% 84%

Tested under different DLIs• Controlling sun radiation by deploying different shade 

cloths. 

University of Arizona 2014, Not for Publication

Page 3: of supplemental LED vegetable propagationleds.hrt.msu.edu/assets/Uploads/PowerPoints/LEDs-in-veg-prop.pdf · Applications of supplemental LED lighting in vegetable propagation ...

3

Phase I: Materials & Methods

DRY MASS RESPONSE

Effects of supplemental LED light 

Phase I: Results

Similar results for

0.45 0.5 

0.55 0.6 0.65 0.7 

ry m

ass (g) 

DRY MASS RESPONSE

control  LED supplement 

P < 0.000126%

increase

P < 0.0001

48%

Similar results for Tomato ‘Komeett’, and Pepper ‘Fascinato’

0.2 0.25 0.3 0.35 0.4 

High DLI  Low DLI 

Shoot dr

SOLAR DAILY LIGHT INTEGRAL 

48% increase

Hernández, R., Kubota, C. (2014)

University of Arizona 2014, Not for Publication

Page 4: of supplemental LED vegetable propagationleds.hrt.msu.edu/assets/Uploads/PowerPoints/LEDs-in-veg-prop.pdf · Applications of supplemental LED lighting in vegetable propagation ...

4

CUCUMBER LEAF AREA RESPONSE High DLI

Effects of LED B:R PF ratios

Phase I: Results

Leaf area reduction 13%

0.017 

0.018 

0.019 

0.02 

0.021 

0.022 

area/plant (m

   2 )   

CUCUMBER LEAF AREA RESPONSE High DLI

Low DLI 

P = 0.2138

reduction: 13%

Dry mass reduction: 12%

0.014 

0.015 

0.016 

0  2  4  6  8  10  12  14  16  18 

Leaf 

Percent of blue light   

P = 0.0163

Hernández, R., Kubota, C. (2014)

Conclusion Phase I

• LED supplemental lighting increased plant growth even under high DLI conditions.under high DLI conditions.

• 100% red supplemental LED lighting is preferred at the current LED efficiencies.

• Responses to LED light quality vary under different solar DLI.

• Responses to LED light quality are species specific.

University of Arizona 2014, Not for Publication

Page 5: of supplemental LED vegetable propagationleds.hrt.msu.edu/assets/Uploads/PowerPoints/LEDs-in-veg-prop.pdf · Applications of supplemental LED lighting in vegetable propagation ...

5

Phase II

• Objective

– Quantify plant responses of vegetable transplants  grown side‐by‐side under LED and HPS supplemental lighting

– Compared electrical efficiencies between HPS and LED supplemental lighting

Materials & methods: treatments

Testing different lighting technologies providing 60 μmol m‐2 s‐1

for 18 hours = 3.9 molm‐2 d‐1 of supplemental light.pp g

100%  100%100%

TreatmentRed‐LED

TreatmentBlue‐LED

Treatment 600W HPS

53%42%

5%

Blue = 443 nm peakRed = 632 nm peak

42%

University of Arizona 2014, Not for Publication

Page 6: of supplemental LED vegetable propagationleds.hrt.msu.edu/assets/Uploads/PowerPoints/LEDs-in-veg-prop.pdf · Applications of supplemental LED lighting in vegetable propagation ...

6

Phase III: Materials & methods

Phase III: Results

Cucumber ‘Cumlaude’

P < 0.0001

22% 22%

Similar results for tomato

A

BB

for tomato‘Komeett’

Hernández, R., Kubota, C. In press

University of Arizona 2014, Not for Publication

Page 7: of supplemental LED vegetable propagationleds.hrt.msu.edu/assets/Uploads/PowerPoints/LEDs-in-veg-prop.pdf · Applications of supplemental LED lighting in vegetable propagation ...

7

Phase III Results: morphology

P < 0.0001

38%

100% blue HPS 100% red

Hernández, R., Kubota, C. In press

Phase III: Discussion

Tomato and cucumber plants had higher dry mass under the HPS treatment than the LED treatments.under the HPS treatment than the LED treatments. 

Air T measured directly under the leaf was 1 ºC higher in

Higher leaf T in HPS than LED

Air T measured directly under the leaf was 1  C higher in the HPS treatment

University of Arizona 2014, Not for Publication

Page 8: of supplemental LED vegetable propagationleds.hrt.msu.edu/assets/Uploads/PowerPoints/LEDs-in-veg-prop.pdf · Applications of supplemental LED lighting in vegetable propagation ...

8

Phase III: energy consumption

66 % more66 % more

Greenhouse Engineering R. Aldrich

Aeral Power Consumption (W m‐2) Fixture Growing Efficiency (g kWh‐1)

Phase III: energy consumption

Lamp type and ballast

Input power (W)

Fixture efficiency (µmol·J-1)

Fixture photon emission rate (PER,

µmol·s-1)

UF MF Effective photons (EP,

µmol·s-1)

Number of fixtures per

hectare

Areal power consumption

(W·m-2)

Fixture growing

efficiency (g·kWh-1)

Blue-LEDs 43x 1.9 y 81.2z 1.00u 0.85u 69 8258 35 3.3 600W HPS 656 1.6 w 1075z 0.90v 0.90v 871 655 43 3.5 Red-LEDs 22x 1.7 y 37z 1.00u 0.85u 31 18124 39 3.0

z Values provided by the manufacturer. y Values provided by Nelson and Bugbee (2013) for red-LED (655 nm) and blue-LED (455 nm).

Fixture Growing Efficiency (g kWh )

p y g ( ) ( ) ( )x Calculated using fixture photon emission rate and fixture efficiency. Input power does not include fixture controller and cooling system. w Calculated using fixture photon emission rate and measured input power. v Reported for HPS lamps by Aldrich and Bartok (1994). u UF is a high value due to the directional nature of the emitted light, MF is 0.85 since LED lamp life is defined as the time to reach 70% of initial output and LED light output almost linearly declines over time (EERE, 2009).

Hernández, R., Kubota, C. unpublished (a)

University of Arizona 2014, Not for Publication

Page 9: of supplemental LED vegetable propagationleds.hrt.msu.edu/assets/Uploads/PowerPoints/LEDs-in-veg-prop.pdf · Applications of supplemental LED lighting in vegetable propagation ...

9

Phase II: Energy Consumption Conclusion

• At the current technology state, supplemental HPS lighting is more efficient than supplemental LED lighting as over‐head lighting for the production of tomato and vegetable transplants.

Phase II: Leaf Curling Index in bell peppers

University of Arizona 2014, Not for Publication

Page 10: of supplemental LED vegetable propagationleds.hrt.msu.edu/assets/Uploads/PowerPoints/LEDs-in-veg-prop.pdf · Applications of supplemental LED lighting in vegetable propagation ...

10

Greenhouse pepper varieties

Phase II: Leaf Curling Index

• Viper• PP0710• Orangela• Fascinato

Phase II: Leaf Curling Index

Supplemental Blue Supplemental HPS Supplemental red

Hernández, R., Kubota, C. unpublished (b)

University of Arizona 2014, Not for Publication

Page 11: of supplemental LED vegetable propagationleds.hrt.msu.edu/assets/Uploads/PowerPoints/LEDs-in-veg-prop.pdf · Applications of supplemental LED lighting in vegetable propagation ...

11

Phase III: R:B photon flux ratio sole‐source LEDs

ObjectivesObjectivesEvaluate LED technology for the production of vegetable transplants.

Find the optimal B:R Photon flux ratio for theFind the optimal B:R Photon flux ratio for the production of vegetable transplants using LEDs.

Phase III: Materials & Methods

Testing different RED:BLUE ratios providing  100 μmol m‐2 s‐1 for 18 hours = 6.48 molm‐2 d‐1 DLI.

• 0B‐100R• 10B‐90R• 20B‐28G‐52R

• 30B‐70R• 50B‐50R• 75B‐25R• 100B‐0R

Growing temperature: 25 ˚CCO2 concentration: Maintained at ambientRH: 40‐70%

University of Arizona 2014, Not for Publication

Page 12: of supplemental LED vegetable propagationleds.hrt.msu.edu/assets/Uploads/PowerPoints/LEDs-in-veg-prop.pdf · Applications of supplemental LED lighting in vegetable propagation ...

12

Phase III: Materials & Methods

Phase III: Cucumber R:B ratio Results

Percent blue

University of Arizona 2014, Not for Publication

Page 13: of supplemental LED vegetable propagationleds.hrt.msu.edu/assets/Uploads/PowerPoints/LEDs-in-veg-prop.pdf · Applications of supplemental LED lighting in vegetable propagation ...

13

Phase III: Cucumber R:B ratio Results

P<0.0001

Hernández, R., Kubota, C. unpublished (c)

Phase III: Cucumber R:B ratio Results

P<0.0001

Hernández, R., Kubota, C. unpublished (c)

University of Arizona 2014, Not for Publication

Page 14: of supplemental LED vegetable propagationleds.hrt.msu.edu/assets/Uploads/PowerPoints/LEDs-in-veg-prop.pdf · Applications of supplemental LED lighting in vegetable propagation ...

14

Phase III: Cucumber R:B ratio Results

P<0.0001

Hernández, R., Kubota, C. unpublished (c)

Phase III: Tomato R:B ratio Results

P<0.0001

Hernández, R., Kubota, C. unpublished (d)

University of Arizona 2014, Not for Publication

Page 15: of supplemental LED vegetable propagationleds.hrt.msu.edu/assets/Uploads/PowerPoints/LEDs-in-veg-prop.pdf · Applications of supplemental LED lighting in vegetable propagation ...

15

Si l l f

Chlorophylls

(McCree, 1972; Sager et al.,1988)

Single leaf

Si l l f

Canopy (LAI =3)

Chloroplast

http://en.wikipedia.org

Single leaf

(Paradiso et al., 2011)

Light quality effect on plant growth can be photosynthetic or 

photomorphogenic.

Plant growth rate = Leaf photosynthetic ratep y

x Leaf area

University of Arizona 2014, Not for Publication

Page 16: of supplemental LED vegetable propagationleds.hrt.msu.edu/assets/Uploads/PowerPoints/LEDs-in-veg-prop.pdf · Applications of supplemental LED lighting in vegetable propagation ...

16

AcknowledgementsAcknowledgements

• Mark Kroggel (UA, CEAC)

• CCS, Inc. (Kyoto, Japan)

ORBITEC (WI USA)CEAC)

• Alex Dragotakes

• Neal Barto (UA, CEAC)

• Jose Pablo Santana

• ORBITEC (WI, USA)

• Bevo Farms

• USDA SCRI 

Greensys 2011, Greece

University of Arizona 2014, Not for Publication