Top Banner
I. INTRODUCTION o o o o o oo o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o Giant planet f rmati n is cl sely interrelated with star f rmati n, pr t planetary disks, the gr wth f dust and s lid planets in th se nebula disks, and finally nebula dispersal. M dels f the interi rs and ev luti n f giant planets in ur s lar system p int t a bulk enrichment f heavy elements m re than a fact r f 2 ab ve s lar c mp siti n and imply heavy element c res up t 17 times the mass f Earth. Detailed m dels f giant planet f rmati n explain the diversity f s lar system and extras lar giant planets by variati ns in the c re gr wth rates caused by a c upling f the dynamics f planetesimals and the c ntracti n f the massive envel pes int which they dive, as well as by changes in the hydr dynamical accreti n behavi r f the envel pes resulting fr m differences in nebula density, temperature, and rbital distance. [1081] o o o o o o o o o o o o o o o o o oo o o o o o o o o o o o o o oo o o o o o o o o o o o o o o o o o o o o o o o o o o o o oo o o oo Our f ur giant planets c ntain 99.5% f the angular m mentum f the s lar system but nly 0.13% f its mass. On the ther hand, m re than 99.5% f the mass f the planetary system is in th se f ur largest b d- ies. The angular m mentum distributi n can be underst d n the basis f the “nebula hyp thesis” (Kant 1755), which assumes c ncurrent f r- mati n f a planetary system and a star fr m a centrifugally supp rted flattened disk f gas and dust with a pressure-supp rted central c nden- sati n (Laplace 1796; Safr n v 1969; Lissauer 1993). The retical m dels f the c llapse f sl wly r tating m lecular cl ud c res have dem n- strated that such preplanetary nebulae are the c nsequence f the bserved cl ud c re c nditi ns and the hydr dynamics f radiating fl ws, pr vided there is a macr sc pic angular m mentum transfer pr cess (chapter by St ne et al., this v lume; Cassen and M sman 1981; M rfill et al. 1985; Laughlin and B denheimer 1994; P d sek and Cassen 1994). Assuming DR.RUPNATHJI( DR.RUPAK NATH )
30

Obser atoire de la Coˆte d’Azur v Institut fu¨r Astronomie ... · II. INTERIORS OF THE GIANT PLANETS 1082 G. WUCHTERL ET AL. vv the total mass of solar-composition material needed

Oct 19, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Obser atoire de la Coˆte d’Azur v Institut fu¨r Astronomie ... · II. INTERIORS OF THE GIANT PLANETS 1082 G. WUCHTERL ET AL. vv the total mass of solar-composition material needed

I. INTRODUCTION

o o o o o o oo o o oo o o o o o o o

o o o o o o o oo o o o o o

o o o o o oo o o o o

o o o o o o oo o o

o o oo

Giant planet f rmati n is cl sely interrelated with star f rmati n, pr t planetarydisks, the gr wth f dust and s lid planets in th se nebula disks, and finally nebuladispersal. M dels f the interi rs and ev luti n f giant planets in ur s lar systemp int t a bulk enrichment f heavy elements m re than a fact r f 2 ab ve s larc mp siti n and imply heavy element c res up t 17 times the mass f Earth.Detailed m dels f giant planet f rmati n explain the diversity f s lar system andextras lar giant planets by variati ns in the c re gr wth rates caused by a c uplingf the dynamics f planetesimals and the c ntracti n f the massive envel pes int

which they dive, as well as by changes in the hydr dynamical accreti n behavi rf the envel pes resulting fr m differences in nebula density, temperature, andrbital distance.

[1081]

v

v

Institut fur Astronomie der Uni ersitat Wien

Obser atoire de la Cote d’Azur

NASA-Ames Research Center

GIANT PLANET FORMATION

o o o o oo o o o o

o o o o oo o oo o

o o o oo o o o

o o oo o o o o

o o o o o o o o oo o o

o o o o o o o oo o o o

o o oo oo o o

¨GUNTHER WUCHTERL

TRISTAN GUILLOT

and

JACK J. LISSAUER

Our f ur giant planets c ntain 99.5% f the angular m mentum f thes lar system but nly 0.13% f its mass. On the ther hand, m re than99.5% f the mass f the planetary system is in th se f ur largest b d-ies. The angular m mentum distributi n can be underst d n the basisf the “nebula hyp thesis” (Kant 1755), which assumes c ncurrent f r-

mati n f a planetary system and a star fr m a centrifugally supp rtedflattened disk f gas and dust with a pressure-supp rted central c nden-sati n (Laplace 1796; Safr n v 1969; Lissauer 1993). The retical m delsf the c llapse f sl wly r tating m lecular cl ud c res have dem n-

strated that such preplanetary nebulae are the c nsequence f the bservedcl ud c re c nditi ns and the hydr dynamics f radiating fl ws, pr videdthere is a macr sc pic angular m mentum transfer pr cess (chapter bySt ne et al., this v lume; Cassen and M sman 1981; M rfill et al. 1985;Laughlin and B denheimer 1994; P d sek and Cassen 1994). Assuming

DR.RUPN

ATHJI(

DR.R

UPAK

NATH )

Page 2: Obser atoire de la Coˆte d’Azur v Institut fu¨r Astronomie ... · II. INTERIORS OF THE GIANT PLANETS 1082 G. WUCHTERL ET AL. vv the total mass of solar-composition material needed

II. INTERIORS OF THE GIANT PLANETS

1082 G. WUCHTERL ET AL.

v v

the total mass of solar-composition material neededto pro ide the obser ed planetary/satellite masses and compositions bycondensation and accumulation

a

o o o o o oo o o o

o o o o o oo o o o

o o o o o o o o oo o oo o o o

o o o o oo o o o o

oo o o o oo o o o o oo o o o o o

o o o o o oo o o o

o o o

o oo o o o o o

o oo o o o o o

o o o oo o o

o o oo

o o o oo o o

o o o oo o o o o

o o o o o oo o

o o o oo o o o o o o

o o o o oo o o o o o

o o o oo o o o o o

o o o oo o o o

o o o o o oo o o o

o o o o o o

turbulent visc sity t be that pr cess, dynamical m dels have sh wn h wmass and angular m mentum separate by accreti n thr ugh a visc us disknt a gr wing central pr t star (Tscharnuter 1987; Tscharnuter and B ss

1993; see chapter by St ne et al., this v lume, f r visc sity mechanisms).Th se calculati ns, h wever, d n t yet reach t the ev luti nary state fthe nebula where planet f rmati n is expected. Observati nally inferreddisk sizes and masses are verlapping the retical expectati ns and f rtifythe nebula hyp thesis. High-res luti n bservati ns at millimeter wave-lengths are n w sensitive t disk c nditi ns at rbital distances 50 AU(see, e.g., chapter by Wilner and Lay, this v lume; Dutrey et al. 1998;Guill teau and Dutrey 1998). H wever, bservati ns thus far pr vide lit-tle inf rmati n ab ut the physical c nditi ns in the respective nebulae nscales f 1 t 40 AU, where planet f rmati n is expected t ccur.

Planet f rmati n studies theref re btain plausible values f r disk c n-diti ns fr m nebulae that are rec nstructed fr m the present planetary sys-tem and disk physics. The s btained “minimum rec nstituted nebulamasses,” defined as

, are a few percent f the central b dy,b th f r the s lar nebula and f r the circumplanetary pr t satellite nebulae(Kusaka et al. 1970; Hayashi 1980; Stevens n 1982 ). The t tal angularm menta f the satellite systems, h wever, are nly ab ut 1% f the spinangular m menta f the respective giant planets (P d lak et al. 1993), instr ng c ntrast with the planetary system/Sun rati . Assembling planetsfr m a nebula disk and advecting the angular m mentum due t Keple-rian shear until the present giant planet masses are reached results in t talangular m menta verestimating the present spin angular m menta f the

¨giant planets nly by small fact rs (G tz 1993). Even if giant planets hadkept this angular m mentum, they still w uld n t r tate critically! Giantplanets, unlike stars, theref re d n t have an angular m mentum pr blem.This may justify why m st studies f pr t -giant planets neglect r tati nr treat it as a small perturbati n.

We discuss new results n interi r m dels in secti n II. We reviewrecent w rk n planetesimal f rmati n and gr wth f s lid planets in sec-ti n III. The “nucleated instability hyp thesis” is the nly m del f r thef rmati n f Uranus and Neptune at the m ment, whereas ther m delsals exist f r Jupiter and Saturn; in secti n IV, we review these vari usm dels. We put emphasis n envel pe ev luti n and gas accumulati n us-ing the “nucleated instability” m del in secti n V. We apply the f rmati nthe ries t extras lar planets in secti n VI.

Our kn wledge f the mechanisms that led t the f rmati n f the giantplanets is essentially based n numerical m dels and n the c nstraintspr vided by studies f the internal structure and c mp siti n f Jupiter,

DR.RUPN

ATHJI(

DR.R

UPAK

NATH )

Page 3: Obser atoire de la Coˆte d’Azur v Institut fu¨r Astronomie ... · II. INTERIORS OF THE GIANT PLANETS 1082 G. WUCHTERL ET AL. vv the total mass of solar-composition material needed

2

4 3

GIANT PLANET FORMATION 1083

fluid

b

o o o oo o o o o

o o o o o oo o o o o o o

o o o oo o o o

o o o o oo o

o o o o ooo o o o o o

o

o o o oo o o

o o oo o

o o o o oo o o o

o o oo o o

o o o o o o o oo o o ooo o o

o oo o o o o

o o oo o o o o oo o o o

o

o o o o o oo o o o

o o o oo o o o

o o o o oo o

o oo o

o o o o o o o

o o oo

o o oo o o o o o

o o oo o

o

Saturn, Uranus, and Neptune. This inv lves the calculati n f interi rm dels matching the bserved gravitati nal fields. Each f the f ur giantplanets f ur s lar system are thus believed t c nsist f a central, densec re and a surr unding envel pe c mp sed f hydr gen, helium, and smallam unts f heavy elements. The c res f Jupiter and Saturn are very smallc mpared t the t tal masses f the planets, whereas Uranus and Neptuneare m stly c re and p ssess small (i.e., l w-mass) envel pes.

The giant planets, with the excepti n f Uranus, emit significantlym re energy than received fr m the Sun, a c nsequence f their pr gres-sive c ling and c ntracti n. Tw imp rtant c nsequences can be drawnfr m this:

1. They have inner temperatures f a few th usand kelvins r m re;theref re, their hydr gen-helium envel pes are .

2. They are m stly c nvective (see Hubbard 1968; Stevens n andSalpeter 1977). The c nvective hyp thesis has been challenged(Guill t et al. 1994 ), but the regi ns where c nvecti n c uld besuppressed due t radiative transp rt are limited t a small fracti nf the envel pe, at temperatures between 1500 and 2000 K, r in

l w-temperature regi ns where the abundance f water is small.

These tw c nclusi ns are als expected t h ld f r Uranus f r essentiallytw reas ns: First, it is highly unlikely that its interi r has c led muchm re than that f Neptune (thus, ne can expect that its intrinsic heat fluxis small but larger than zer ; see Marley and McKay 1999); sec nd, itp ssesses a magnetic field f similar strength t that f the ther giantplanets, a sign f c nvective activity in its interi r.

It seems, theref re, l gical t assume that the envel pes f all f urgiant planets are h m gene usly mixed. S me caveats are necessary,h wever:

1. C ndensati n and chemical reacti ns alter chemical c mp siti n(these sh uld be c nfined t the external regi ns).

2. A first- rder phase transiti n (such as the ne between m lecular andmetallic hydr gen) imp ses an abundance disc ntinuity acr ss itself.

3. Hydr gen-helium phase separati n might ccur and lead t a variati nf the abundance f helium in the planet.

4. The envel pes f Uranus and Neptune are small and enriched in heavyelements; it is thus c nceivable that m lecular weight gradients in-hibit c nvecti n and yield n nh m gene us envel pes.

On this basis, a three-layer structure is generally ad pted f r the f urgiant planets (Fig. 1). In the case f the less massive Uranus and Nep-tune, in which hydr gen is believed t remain in m lecular phase, theplanets are divided int a “r ck” c re (a mixture f the m st refract ryelements including silicates and ir n), an “ice” layer (c nsisting f H O,CH , and NH ) and a hydr gen-helium envel pe. The latter is substan-tially enriched in heavier elements, as dem nstrated by the 30 times

DR.RUPN

ATHJI(

DR.R

UPAK

NATH )

Page 4: Obser atoire de la Coˆte d’Azur v Institut fu¨r Astronomie ... · II. INTERIORS OF THE GIANT PLANETS 1082 G. WUCHTERL ET AL. vv the total mass of solar-composition material needed

Uranus

Neptune

Saturn

Jupiter

+ helium

Ice layer

Metallic hydrogen+ helium

(1-3 Mbars) ?

Ice + rockcore ?

Molecular hydrogen+ helium + ices

Transition region

Molecular hydrogen

Rock core ?

Hydrogen-helium

Hydrogen-heliumphase separation ?

phase separation ?

Radiative zone ?

mixed with rocks ?mixed with hydrogen ?

2

4

2

o o o oo o o o oo o o o

o o o o o oo o o o o

o o o o o o oo o o

o

1084 G. WUCHTERL ET AL.

Figure 1. The interi rs f Jupiter, Saturn, Uranus, and Neptune, acc rding t thec nventi nal wisd m. The sizes and blatenesses f the planets are representedt scale. Inside Jupiter and Saturn, hydr gen, which is in m lecular f rm (H )at l w pressures, is th ught t bec me metallic in the 1- t 3-Mbar regi n. Thistransiti n c uld be abrupt r gradual. The equati n f state is very uncertainf r a substantial p rti n f the interi rs f b th planets. Uranus and Neptune,c ntain, in a relative sense, m re heavy elements. There are indicati ns thattheir interi rs are partially mixed (see text).

o o o o o oo o o

o oo o o o o oo o o o o

o o oo oo o o o o

oo o

o oo o

s lar enrichment in carb n, in the f rm f CH , spectr sc pically mea-sured in the tr p spheres f Uranus and Neptune (e.g., Fegley et al. 1991;Gautier et al. 1995). Other elements, in particular xygen (m stly in thef rm f H O), are als believed t be substantially enriched c mpared t as lar-c mp siti n mixture but are hidden deep in the atm sphere becausef c ndensati n.

Alth ugh the tw planets share many similarities (mass, magneticfield, atm spheric structure), several fact rs p int t ward s me differencesin their internal structure. Uranus emits scarcely m re energy than re-ceived fr m the Sun, whereas Neptune p ssesses a very significant in-trinsic heat flux, and Uranus’s gravitati nal field indicates that it is m recentrally c ndensed (see Hubbard et al. 1995). Furtherm re, three-layer

DR.RUPN

ATHJI(

DR.R

UPAK

NATH )

Page 5: Obser atoire de la Coˆte d’Azur v Institut fu¨r Astronomie ... · II. INTERIORS OF THE GIANT PLANETS 1082 G. WUCHTERL ET AL. vv the total mass of solar-composition material needed

2

GIANT PLANET FORMATION 1085

a

o o o o oo o o

o o o o

o o oo o

o o o o o oo o o o o o

o o oo o o o o o o o

o o o o oo o o o o

o o o o oo o o oo o o o o o

o o o oo

o o o o o o oo o o o o o

o o o o o o o oo o o o o o o

o o o o o o oo o o o o o oo o

o o o oo o o o o o o o o

o o o o oo o o o o

o oo o o o

o o oo o

o o o o oo o o

o o oo o o o

o o o o o o oo o o

o o oo o o o o

o o o o oo o o o

o o o o

o o o o o oo o o o o

m dels f these planets that assume h m geneity f each layer and adia-batic temperature pr files succeed in repr ducing Neptune’s gravitati nalfield but n t that f Uranus (P d lak et al. 1995). The difficulty is circum-vented by using slightly reduced (by 10%) densities in the ice layer,which is interpreted either as hydr gen mixed t the ice r as higher tem-peratures (superadiabatic temperature gradients). B th explanati ns im-ply that substantial parts f the planetary interi r are n t h m gene uslymixed. The existence f such c mp siti nal gradients c uld als explainthe fact that Uranus’s heat flux is s small: part f its internal heat w uldn t be all wed t escape t space by c nvecti n, but had t escape thr ugha much sl wer diffusive pr cess in the regi ns f high m lecular-weightgradient (P d lak et al. 1991). Such regi ns w uld als be present in Nep-tune, but deeper, thus all wing m re heat t be transp rted utward. Thisc uld als explain the fact that the magnetic fields f these tw planetsp ssess a very significant quadrup lar c mp nent, by all wing a hydr -magnetic dynam t f rm nly in a relatively thin shell rather than in asphere (Ruzmaikin and Starchenk 1991; Hubbard et al. 1995).

The existence f these n nh m gene us regi ns is further c nfirmedby the fact that if hydr gen is supp sed t be c nfined s lely t thehydr gen-helium envel pe, m dels predict ice/r ck rati s f the rder f10 r m re, much larger than the pr t s lar value f 2.5. On the therhand, if we imp se the c nstraint that the ice/r ck rati is pr t s lar, theverall c mp siti n f b th Uranus and Neptune is, by mass, ab ut 25%

r ck, 60–70% ices, and 5–15% hydr gen and helium (Hubbard and Mar-ley 1989; P d lak et al. 1991, 1995; Hubbard et al. 1995). The f rmati nf these n nh m gene us regi ns is certainly c ntemp rane us with the

accreti n f the planets (Hubbard et al. 1995). The imp rtance f st chas-tic pr cesses during that ep ch is sh wn by the 98 bliquity f Uranus,a str ng sign that giant impacts shaped the actual structure f these icegiants (Lissauer and Safr n v 1991; cf., h wever, Tremaine 1991 f r analternative explanati n f giant planet bliquities).

The structure f the much m re massive Jupiter and Saturn, whichare m stly f rmed fr m hydr gen and helium, is c mparatively simpler.M st interi r m dels (Hubbard and Marley 1989; Chabrier et al. 1992;Guill t et al. 1994 ) f these planets assume a three-layer structure: a c re,an inner envel pe where hydr gen is in metallic phase, and an uter newhere hydr gen is m stly in the f rm f H . M re c mplex m dels (e.g.,Zhark v and Gudk va 1991) can be calculated, but these further divisi nsint multiple layers d n t qualitatively affect the main results.

Each layer is assumed t be gl bally h m gene us (i.e., neglectingc ndensati n and chemical reacti ns), a c nsequence f efficient mixingby c nvecti n. Because less helium is bserved in the external layers fJupiter and Saturn than was present in the pr t s lar nebula (v n Zahnet al. 1998; Gautier and Owen 1989), it is believed that the metallic re-gi ns f these planets c ntain m re helium than the m lecular nes. Thedifference is th ught t be due t a first- rder m lecular-metallic phase

DR.RUPN

ATHJI(

DR.R

UPAK

NATH )

Page 6: Obser atoire de la Coˆte d’Azur v Institut fu¨r Astronomie ... · II. INTERIORS OF THE GIANT PLANETS 1082 G. WUCHTERL ET AL. vv the total mass of solar-composition material needed

1086 G. WUCHTERL ET AL.

b

separation

Galileo

o o o o o o oo o o

o o o oo o o o o o o

o o oo o o o o

oo o o o o o

o oo o o o ooo o o o o

o o oo o o

o o o oo o o o

o o o o oo o o o

o oo o o

o o oo o o o

oo o o o o

oo o o

o o oo o o o o o o

o o o o o o oo o o o o o o

o o oo o

o oo o

o o oo o o o o

o o o oo o o o o

o oo o o o o o o o o

o o o oo o o o

o o o o oo o o o

transiti n f hydr gen, a hydr gen-helium phase separati n, r b th (e.g.,Stevens n and Salpeter 1977; Hubbard and Marley 1989). B th phen m-ena are expected t ccur in similar regi ns (e.g., Stevens n 1982 ), andtheref re we d n t differentiate ne fr m the ther. We emphasize, h w-ever, that a first- rder transiti n such as that suggested by Saum n andChabrier (1989), w uld lead t a disc ntinuity f abundance f all chemi-cal elements, whereas a phase w uld principally affect heliumand ther min r species, such as ne n, that tend t be diss lved int heliumdr plets (unless, e.g., water is present in large en ugh abundances and canals separate fr m hydr gen). The lack f ne n measured by thePr be (Niemann et al. 1998) suggests that, in Jupiter, helium phase sepa-rati n has begun (R ulst n and Stevens n 1995), and that, c nsequently,it als ccurs in Saturn, which is c lder.

With these hyp theses, Guill t et al. (1997) and Guill t (1999) cal-culate the ensemble f interi r m dels f Jupiter and Saturn that matchthe gravitati nal m ments within the err r bars f the measurements.Using the inferred mass mixing rati f helium in the pr t s lar nebulaand the presently bserved ne in the atm spheres f Jupiter and Saturn,they retrieve the p ssible abundances f heavy elements in the metal-lic and m lecular regi ns. Their calculati ns include uncertainties in thehydr gen-helium and heavy elements equati ns f state, in the inner tem-perature pr file (c nvective/radiative), and regarding the internal r tati n(s lid/differential).

The resulting c nstraints n the c re mass and t tal mass f heavyelements in Jupiter, Saturn, Uranus and Neptune are summarized in Fig.2. (The cases f Uranus and Neptune are relatively trivial; these planetsc ntain little hydr gen and helium.) A first result is that the gravitati nalfields f Jupiter and Saturn d n t necessarily imply that these planetshave ice/r ck c res. In the case f Jupiter, m dels with ut a c re are b-tained nly in the case f the less fav red interp lated equati n f state fhydr gen, wh se calculati n is n t c mpletely therm dynamically c n-sistent (see Saum n et al. 1995). In the case f Saturn, it is difficult tdistinguish between heavy elements in the c re and th se in the metallicregi n, hence yielding an even larger uncertainty in the c re mass. As aresult, Jupiter has a c re wh se mass lies between 0 and 14 M , and Sat-urn’s c re is between 0 and 22 M . We stress, h wever, that larger c remasses are p ssible if gravitati nal layering ccurs and the c res, p ssiblyer ded by c nvective mixing, extend int the metallic envel pe.

A sec nd result c ncerns the t tal mass f heavy elements. The m delsf Saturn sh w that the planet is significantly enriched in heavy elements,

by a fact r f 10 t 15 c mpared t the s lar value (c rresp nding t 20–30 M , including the c re) and by at least a fact r f 5 when c nsideringnly the envel pe. The c nstraints are much weaker in the case f Jupiter

because f the larger metallic regi n, where the equati n f state is c nsid-erably m re uncertain. Figure 2 sh ws that Jupiter c ntains 10 t 42 M

DR.RUPN

ATHJI(

DR.R

UPAK

NATH )

Page 7: Obser atoire de la Coˆte d’Azur v Institut fu¨r Astronomie ... · II. INTERIORS OF THE GIANT PLANETS 1082 G. WUCHTERL ET AL. vv the total mass of solar-composition material needed

o o o oo o o o o oo o o o o oo o o o o

o o o o oo o o o o o

o o o o oo

GIANT PLANET FORMATION 1087

Figure 2. Limits n the abundances f heavy elements in the f ur j vian planetsin ur s lar system. F r each planet, the p int n the left represents the t talam unt f high- material, whereas the (l wer) p int n the right sh ws theam unt f heavy elements segregated int the planet’s c re. F r Jupiter andSaturn, the thick lines represent s luti ns with additi nal c nstraints btainedfr m ev luti n m dels. N te the high level f uncertainty, especially regardingthe c re masses f Jupiter and Saturn. M dels f Jupiter with small c res (i.e.,less than 2 M ) require significant enrichments in heavy elements (i.e., m rethan 20 M ).

b

Z

o o oo o o o o

o o oo o

oo

o o o o oo o o o o

o o o o oo o o o o

o o oo o o oo o o o

o o o o oo o o o

oo o o o

o o o o o o oo o o oo o o o o o

o o o oo o ooo o o o

f heavy elements, implying that it is m derately t significantly enrichedin heavy elements c mpared t the pr t s lar nebula.

Recent interi r m dels calculated with different assumpti ns (Hub-bard and Marley 1989; Zhark v and Gudk va 1991; Chabrier et al. 1992)generally predict c re masses and heavy-elements abundances that fallwithin the ranges given in Fig. 2. Larger c re masses (10–30 M ) weref und in previ us calculati ns (see Stevens n 1982 f r a review), but thelargest c re masses als yielded helium mass fracti ns well bel w the pr -t s lar value and theref re are unrealistic. The main reas n f r the discrep-ancy with t day’s values is, h wever, that the calculati n f c re masses,especially in the case f Jupiter, is very sensitive t changes in the equati nf state. At present, we can nly h pe that advances in ur understandingf the behavi r f hydr gen and helium at high pressures have led us in

the right directi n. Pr gress in c mpressi n experiments n liquid deu-terium (Weir et al. 1996; C llins et al. 1998) sh uld all w us t check thatasserti n in the near future.

In the case f Jupiter and Saturn, further c nstraints n t day’s in-ternal structure can be s ught fr m ev luti n m dels that acc unt f r thepr gressive sedimentati n f helium (Hubbard et al. 1999; Guill t 1999).M dels with small c res tend t require a m re pr n unced helium dif-ferentiati n and theref re yield l nger c ling times. The time t c lt the present temperature is c nstrained by the age f the s lar system

DR.RUPN

ATHJI(

DR.R

UPAK

NATH )

Page 8: Obser atoire de la Coˆte d’Azur v Institut fu¨r Astronomie ... · II. INTERIORS OF THE GIANT PLANETS 1082 G. WUCHTERL ET AL. vv the total mass of solar-composition material needed

3 4 5

2

III. FORMATION OF PLANETESIMALSAND GROWTH OF SOLID PLANETS

A. Formation of Planetesimals

1088 G. WUCHTERL ET AL.

v

GalileoInfrared Space Obser atory

. .

�� �

o o o o oo o o o

oo o o o o o o o o

o o oo o o o oo o o o o

o o o

o o o o oo o

o oo o o

o oo o o o o o

o o oo o o o o o o

o o o oo o o o o o

o o o ooo o o oo o o

o o o oo oo o o o o

o o o o o o oo

o o o o o oo oo o o o o o o oo o o o o o

o o o o o o o oo o o o

o oo o o o o oo o o o o

o o oo o o o o

o oo o o o

oo o o o

(4.56 Gyr). S me static s luti ns are thus ruled ut. Figure 2 sh ws thatan upper limit f 10 M is btained f r Jupiter’s c re, and that Saturn’sc re mass lies between 6 and 17 M .

Finally, bservati ns f the atm spheric c mp siti n give tw imp r-tant clues: First, the C/H rati steadily increases fr m Jupiter t Neptune,a fact that has t be explained by f rmati n m dels (we refer the reader tthe review by P d lak et al. 1993 f r further details). Sec nd, the D/H is -t pic rati s recently measured in Jupiter by the Pr be (Mahaffy etal. 1998), and in Saturn by the (ISO) (Griffinet al. 1996) are, within the err r bars, c nsistent with the pr t s lar valuederived fr m He/ He in the s lar wind, namely 2 1 0 5 10 (Geissand Gl ecker 1998), whereas they are ab ut three times larger in Uranusand Neptune (Feuchtgruber et al. 1999). This has t be c mpared t theD/H values measured in c mets Halley, Hyakutake, and Hale-B pp, which

´are all ab ut 10 times larger than the pr t s lar value (B ckelee-M rvanet al. 1998). If Uranus and Neptune c ntained mixtures f c metlike icesand pr t s lar H that were is t pically h m genized within these plan-ets, their large ice fracti ns w uld have pr duced a m re deuterium-richatm spheric c mp siti n than that bserved. Thus, either a significant is -t pic exchange between vap rized ices and hydr gen t k place in an earlyh t turbulent s lar nebula (Dr uart et al. 1999), r Uranus and Neptunef rmed fr m high-D/H, c metlike ices that had never been fully mixedwith hydr gen in their interi rs. The precise determinati n f D/H in thegiant planets is thus an imp rtant t l f r c nstraining their f rmati n. Weleave a m re th r ugh discussi n f this pr blem t the chapter by Lunineet al., this v lume.

Even a very sl wly r tating m lecular cl ud c re has far t much r ta-ti nal angular m mentum t c llapse d wn t an bject f stellar dimen-si ns, s a significant fracti n f the material in a c llapsing c re fallsnt a r tati nally supp rted disk in rbit ab ut the pressure-supp rted

star. Such a disk has the same elemental c mp siti n as the gr wing star;that is, primarily H and He, with 1–2% heavier elements. Sufficientlyfar fr m the central star, it is c l en ugh f r s me f this material t be ins lid f rm, either remnant interstellar grains r c ndensates f rmed withinthe disk. Dust aggl merates via inelastic c llisi ns and gradually settlest wards the disk midplane as particles gr w large en ugh t be able t driftrelative t the surr unding gas (Weidenschilling and Cuzzi 1993).

Alth ugh t a first appr ximati n the gas in the disk is centrifugallysupp rted in balance with the star’s gravity, negative radial pressure gra-dients pr vide a small, utwardly directed f rce that acts t reduce the

DR.RUPN

ATHJI(

DR.R

UPAK

NATH )

Page 9: Obser atoire de la Coˆte d’Azur v Institut fu¨r Astronomie ... · II. INTERIORS OF THE GIANT PLANETS 1082 G. WUCHTERL ET AL. vv the total mass of solar-composition material needed

B. Growth of Solid Planets

GIANT PLANET FORMATION 1089

o oo o o o oo o o o

o oo o o o o o

o o oo o

o o oo o o o

o oo o

o oo o

o o o o oo o o o o

o o o o oo o o o o o

o oo o o

o o o oo o o o o

o o o oo o o o o o

o o o o oo o o o o

o o o o o o oo oo o o o

o oo o o o o o o

o o o oo o o

o o o o oo o o o o

o o o o o oo o o o o o

o o o o o oo o o

o o o oo o o o o

o o o o oo o

o o o oo o o

o o o o o

effective gravity, s the gas r tates at slightly less than the Keplerian ve-l city. Small s lid b dies (dust grains) r tate with the gas. Large s lidb dies rbit at the Keplerian vel city, and medium-sized particles m veat a rate intermediate between the gas vel city and the Keplerian vel city;thus, macr sc pic s lid b dies are subjected t a headwind fr m the gas(Adachi et al. 1976). This headwind rem ves angular m mentum fr mthe particles, causing them t spiral inward t wards the central star. Thisinward drift can be very rapid, especially f r particles wh se c uplingtime t the gas is similar t their rbital peri d. Smaller particles drift lessrapidly because the headwind they face is n t as str ng, whereas largeparticles drift less because they have a greater mass-t -surface-area rati .Orbital decay times f r meter-sized particles at 1 AU fr m the Sun havebeen estimated t be nly 100 years (Weidenschilling 1977). The largeradial vel cities f b dies in this size range, relative t b th larger andsmaller particles, implies frequent c llisi ns, s it is p ssible that m sts lid b dies gr w thr ugh the critical size range quickly with ut substan-tial radial drift. H wever, it is als p ssible that a large am unt f s lidplanetary material is l st fr m the disk in this manner.

S lid b dies larger than 1 km in size face a headwind nly slightlyfaster than meter-sized bjects (f r parameters th ught t be representa-tive f the planetary regi n f the s lar nebula), and because f their muchgreater mass-t -surface-area rati they suffer far less rbital decay fr minteracti ns with the gas in their path. The gr wth f s lid b dies fr mthe meter-sized “danger z ne” t the kil meter-sized “safe z ne” c uldccur by c llective gravitati nal instabilities in a thin subdisk f s lids

(Safr n v 1960; G ldreich and Ward 1973) in regi ns f pr t planetarydisks that are n t t turbulent, r (m re likely) via c ntinued binary ac-creti n (Weidenschilling and Cuzzi 1993). Kil meter-sized planetesimalsappear t be reas nably safe fr m l ss (unless they are gr und d wn tsmaller sizes via disruptive c llisi ns) until s me f these planetesimalsgr w int planetary-sized b dies.

The primary perturbati ns n the Keplerian rbits f kil meter-sized andlarger b dies in pr t planetary disks are mutual gravitati nal interacti nsand physical c llisi ns (Safr n v 1969). These interacti ns lead t accre-ti n (and in s me cases er si n and fragmentati n) f planetesimals. Grav-itati nal enc unters are able t stir planetesimal rand m vel cities up tthe escape speed fr m the largest c mm n planetesimals in the swarm(Safr n v 1969). The m st massive planets have the largest gravitati n-ally enhanced c llisi n cr ss secti ns and accrete alm st everything withwhich they c llide. If the rand m vel cities f m st planetesimals remainmuch smaller than the escape speed fr m the largest b dies, then theselarge “planetary embry s” gr w extremely rapidly (Safr n v 1969; cf.Greenzweig and Lissauer 1990, 1992 f r three-b dy gr wth rates). Thesize distributi n f s lid b dies bec mes quite skewed, with a few large

DR.RUPN

ATHJI(

DR.R

UPAK

NATH )

Page 10: Obser atoire de la Coˆte d’Azur v Institut fu¨r Astronomie ... · II. INTERIORS OF THE GIANT PLANETS 1082 G. WUCHTERL ET AL. vv the total mass of solar-composition material needed

8

1/3

IV. GAS ACCUMULATION THEORIES

1090 G. WUCHTERL ET AL.

runaway accretion

M R a

MR a

�� �

o o o o o

o o o o oo o o oo o o o o

o oo o o o o o

o o oo o

o o o o oo

o o o o oo o o o o

o o o oo o o o

o o o o oo o

o o oo o o o o o o o

o o o o o oo o o o o o

o o oo o o o o o

o o o o o oo o o o o o o o

o o o o o oo o

oo o

o o oo o

o oo oo o o o o

o o o oo o o o o o o o

o o o o

b dies gr wing much faster than the rest f the swarm in a pr cess kn wnas (Greenberg et al. 1978; Wetherill and Stewart 1989;K kub and Ida 1996). Eventually, planetary embry s accrete m st f the(sl wly m ving) s lids within their gravitati nal reach, and the runawaygr wth phase ends. Planetary embry s can c ntinue t accumulate s lidsrapidly bey nd this limit if they migrate radially relative t planetesimalsas a result f interacti ns with the gase us c mp nent f the disk (Tanakaand Ida 1999).

The eccentricities f planetary embry s in the inner s lar systemwere subsequently pumped up by l ng-range mutual gravitati nal per-turbati ns; c llisi ns between these embry s eventually f rmed the ter-restrial planets (Wetherill 1990; Chambers and Wetherill 1998). H w-ever, timescales f r this type f gr wth in the uter s lar system (at least10 years; Safr n v 1969) are l nger than the lifetime f the gase us disk(cf. Lissauer et al. 1995). M re ver, unless the eccentricities f the gr w-ing embry s are damped substantially, embry s will eject ne an therfr m the star’s rbit (Levis n et al. 1998). Thus, runaway gr wth, p ssi-bly aided by migrati n (Tanaka and Ida 1999), appears t be the way bywhich s lid planets can bec me sufficiently massive t accumulate sub-stantial am unts f gas while the gase us c mp nent f the pr t planetarydisk is still present (Lissauer 1987).

M st m dels f the accumulati n f giant planet atm spheres haveassumed a c nstant accreti n rate f r planetesimals. The m dels f P llacket al. (1996) calculate the planetesimal accreti n rate t gether with that fgas; h wever, these m dels neglect gr wth f c mpeting planetary c res aswell as radial migrati n. M dels f giant planet gr wth will impr ve nceatm spheric accumulati n m dels are c upled t s phisticated m dels fs lid planet gr wth, such as the multiz ned numerical accreti n c de fWeidenschilling et al. (1997), and when radial migrati n f planetesimalsand planets is better underst d and included in the m dels.

The key pr blem in giant planet f rmati n is that preplanetary disks arenly weakly self-gravitating equilibrium structures, supp rted by cen-

trifugal f rces augmented by gas pressure (see chapters by St ne et al.,H llenbach et al., Calvet et al., and Beckwith et al., this v lume). Anyis lated, rbiting bject bel w the R che density is pulled apart by the stel-lar tides. Typical nebula densities are m re than tw rders f magnitudebel w the R che density, s c mpressi n is needed t c nfine a c ndensa-ti n f mass inside its tidal r Hill radius at rbital distance

(1)3 M

T

T

DR.RUPN

ATHJI(

DR.R

UPAK

NATH )

Page 11: Obser atoire de la Coˆte d’Azur v Institut fu¨r Astronomie ... · II. INTERIORS OF THE GIANT PLANETS 1082 G. WUCHTERL ET AL. vv the total mass of solar-composition material needed

Jup

6

Jup

Jup

5 7

A. Nebula Stability

GIANT PLANET FORMATION 1091

nucleated instability

disk instability

external perturber

fragmentationduring collapse

.

a posteriori

� �

o o o o o oo o o

o o

o o oo o o o

o o o oo

o o oo o o

o o o oo o o o o

o o o o

o oo o o

o o o oo o o o o o

o o o o o oo o o o o

oo o o o o

o o oo o o o o

o o o oo o

oo o o o o o

o oo o o o

o o oo o o

o o o o oo o o

o o oo

o o o oo o o o

o o o oo oo o o o o

oo o o

o o o oo o o o o

A l cal enhancement f self-gravity is needed t verc me the c unter-acting gas pressure. Giant planet f rmati n the ries may be classified byh w they pr vide this enhancement.

1. The m del relies n the extra gravity field f asufficiently large s lid c re (c ndensed material represents a gain ften rders f magnitude in density, and theref re self-gravity, c m-pared t the nebula gas).

2. A may perate n lengthscales between sh rt-scalepressure supp rt and l ng-scale tidal supp rt.

3. An c uld c mpress an therwise stable disk n itsl cal dynamical timescales, e.g., by accreti n f a clump nt the diskr rendezv us with a stellar c mpani n.

If the gravity enhancement is pr vided by a dynamical pr cess as in thelatter tw cases, the resulting nebula perturbati n (say, f a Jupiter mass,M , f material) is c mpressi nally heated, because it is ptically thickunder nebula c nditi ns. Giant planet f rmati n w uld then inv lve a tran-sient phase f tenu us giant gase us pr t planets, which w uld be essen-tially fully c nvective and w uld c ntract n a timescale f 10 yr (seeB denheimer 1985).

An ther mechanism f f rming stellar c mpani ns,, is plausible f r binary stars and p ssibly br wn dwarfs,

but it is unlikely t f rm bjects f planetary masses, because pacity lim-its the pr cess t masses ab ve 10 M (cf. the chapter by B denheimeret al. in this v lume; and B denheimer et al. 1993).

Preplanetary nebulae with minimum rec nstituted mass are stable. Sub-stantially m re massive disks resulting fr m the c llapse f cl ud c resare self-stabilizing by transfer f disk mass t the stabilizing centralpr t star (B denheimer et al. 1993). Nevertheless, a m derate-mass neb-ula disk might be f und that can devel p a disk instability leading t astr ng density perturbati n, especially when f rced with a finite externalperturbati n. Giant gase us pr t planets (GGPPs) might f rm when theinstability has devel ped int a clump (DeCampli and Camer n 1979;B denheimer 1985). B ss (1997, 1998) has c nstructed such an unstabledisk with 0 13 M within 10 AU and btained maximum density enhance-ments (by a fact r 20) with 10 M ab ve the backgr und f r a fewrbital peri ds. (The density enhancement at the surface f a 1-M c re

is between 10 and 10 , f r c mparis n.) These clumps, pr vided theyare stable n a few c ling times, are candidates t bec me pr t -giantplanets via an intermediate state as tenu us GGPPs.

A key issue, as in any the ry inv lving an instability f the disk gas,is then the f rmati n f a c re. Only metals that are presentinitially w uld rain ut t f rm a c re, whereas material added later by

DR.RUPN

ATHJI(

DR.R

UPAK

NATH )

Page 12: Obser atoire de la Coˆte d’Azur v Institut fu¨r Astronomie ... · II. INTERIORS OF THE GIANT PLANETS 1082 G. WUCHTERL ET AL. vv the total mass of solar-composition material needed

6

Jup

10 3 8 3

4

5

B. Nucleated Instability

1092 G. WUCHTERL ET AL.

aZ

nonturbulent

..

� �

� � � �� ��

� �

o o o o oo o o o o o o

o o o o o o oo

o o o o o oo o o

o o o o o o o oo o o o o o

o o o o o o oo o o

o o o oo o o oo o o o o

o oo o

o o o oo oo

o o oo o o o o

o o o oo o o

o o oo o o o o

o o o oo o o

o o oo o

oo o o o o

o o oo o o

o o oo o o o o

o o oo o o

o o o o oo o o o o o

o o oo o o o o

o oo o

o o o o o o o o oo

impacts f small b dies after the GGPP had f rmed w uld be s luble inthe envel pe (Stevens n 1982 ). B ss (1998) utlines h w a c re c rre-sp nding t the s lar-c mp siti n high- material (6 M and 2 M f rJupiter and Saturn mass, respectively) might f rm if the density enhance-ments are l ng-lived, need n m re pressure c nfinement, and ev lve intGGPPs that are . It sh uld be n ted here (see secti n II) thatalth ugh interi r m dels f Saturn d n t rule ut the p ssibility that theplanet has n c re ( r, equivalently a 2-M c re), this is n t the fav reds luti n. Als , GGPP m dels w uld pr bably predict that Jupiter sh uldhave a bigger c re than Saturn, which is nly marginally c nsistent withpresent interi r m dels. Finally, Jupiter and certainly Saturn c ntain a l tf heavy elements (see Fig. 2). T acc unt f r these bulk heavy element

c mp siti ns, planetesimal accreti n must ccur anyway after the GGPPshave f rmed their c res.

If GGPPs need pressure c nfinement, they als require the presencef an (undepleted) nebula and p se a lifetime c nstraint f r the nebula,

namely that nebula dispersal can begin nly after a c ling time, that is10 yr (B denheimer 1985). T determine whether GGPPs are c nvec-

tively stable, s that the n nturbulent c re gr wth scenari can be applied,a detailed calculati n f their thermal structure during c ntracti n is nec-essary. DeCampli and Camer n (1979) f und largely c nvective GGPPs.

One f us (G. W.) checked c nvective stability f GGPPs by a radi-ati n hydr dynamical calculati n. Alexander and Fergus n (1994) paci-ties and time-dependent MLT c nvecti n were used in the descripti n fenergy transfer. The initial c nditi n was a Jeans-critical nebula c nden-sati n f M and a temperature f 10 K. Initially the GGPP had similarpr perties as B ss’s (1998) banana-shaped density enhancements (meandensity 8 10 g cm , central density 3 3 10 g cm ). Acc rdingt the new calculati n, the GGPP needs 1 8 10 yr t c ntract int thetidal radius and is essentially fully c nvective fr m 100 yr t 2 10 yr,when a radiative z ne spreads ut fr m the planet’s center.

Planetesimals in the s lar nebula are small b dies surr unded by gas. Ararefied equilibrium atm sphere f rms ar und such bjects. Early w rk inthe nucleated instability hyp thesis, which assumes that such s lid “c res”trigger giant planet f rmati n, was m tivated by the idea that at a certaincritical c re mass the atm sphere c uld n t be sustained, and is thermal,sh ck-free accreti n (B ndi and H yle 1944; B ndi 1952) w uld set in.Determinati ns f this critical mass were made f r increasingly detaileddescripti n f the envel pes: adiabatic (Perri and Camer n 1974), is ther-mal (Sasaki 1989), is thermal-adiabatic (Harris 1978; Mizun et al. 1978),and with radiative and c nvective energy transfer (Mizun 1980). By then,m deling the f rmati n and ev luti n f a pr t -giant planet had bec meessentially a miniature stellar structure calculati n, with energy dissipa-

DR.RUPN

ATHJI(

DR.R

UPAK

NATH )

Page 13: Obser atoire de la Coˆte d’Azur v Institut fu¨r Astronomie ... · II. INTERIORS OF THE GIANT PLANETS 1082 G. WUCHTERL ET AL. vv the total mass of solar-composition material needed

o o

ooo

o

o o

0

c re c re

0

3/74 1/33c re0crit

c rec re 4c re

3crit critc re t t 4

� � �

.

.

GIANT PLANET FORMATION 1093

v

v

��

“the rate of gas accretion is determinednot by the rate of deli ery of mass to the planet [as in Bondi accretion]but by the energy losses from the contracting en elope.”

M

Protostars and Planets III

a

b

aM R

P T

b MM

G a R r

M M G

��

� �� � � �� ��

o o oo o

o o o o o o

o o oo o o o o

o o o oo o o o o

o o oo o o

o o o oo o

o o oo o o o o

o o o o o o oo o o o

o o o o o o o o oo o

o o o o oo o

o o o o oo o o o

o o o oo o oo o o o o o

oo o o o o

oo o o o oo o o o o o o

o oo o o o o o o o o

o o o oo o o

o o o o o o o oo o

o oo o o o o

o oo o o o

ti n f impacting planetesimals replacing the nuclear reacti ns as the en-ergy s urce. Present results n the critical mass are reviewed in the nextsecti n. Already, Safr n v and Rusk l (1982) p inted ut that, even afterthe instability at the critical mass,

The planet’s ac-creti n rate is limited by the delivery f mass nly when 100 M .C nsequently, the energy budget f the envel pe has been m deled m recarefully, taking int acc unt the heat generated by gravitati nal c ntrac-ti n (quasihydr static m dels by B denheimer and P llack 1986).

Maj r pr gress since the c nference hasbeen made by a detailed treatment f planetesimal accreti n t calculatethe c re gr wth rate and the capture, diss luti n, and sinking that deter-mines h w much and where in the envel pe the planetesimal kinetic en-ergy is liberated (P llack et al. 1996). That made p ssible the first study fthe c upling between gas accreti n and s lid accreti n. Additi nally, thedescripti n f the mechanics f c ntracti n has been impr ved by hydr -dynamic studies that determine the fl w vel city f the gas by s lving anequati n f m ti n f r the envel pe gas in the framew rk f c nvectiveradiati n-fluid dynamics (e.g., Wuchterl 1993, 1995 , 1999). That all wsthe study f c llapse f the envel pe, accreti n with finite Mach number,and an access t the study f linear adiabatic (Tajima and Nakagawa 1997)and n nlinear, n nadiabatic pulsati nal stability and pulsati ns f the en-vel pe. Furtherm re, the treatment f c nvective energy transfer has beenimpr ved by calculati ns using a time-dependent mixing length the ry fc nvecti n (Wuchterl 1995 , 1996, 1997) in hydr dynamics. The first hy-dr dynamic calculati ns with r tati n in the quasispherical appr ximati n

¨have been undertaken by G tz 1993.M st aspects f early envel pe gr wth, up t 10 M , can be un-

derst d n the basis f a simplified analytical m del given by Stevens n(1982 ) f r a pr t planet with c nstant pacity , c re mass accreti n rate

, and c re density , inside the tidal radius . The key pr pertiesf Stevens n’s m del c me fr m the “radiative zer s luti n” f r spheri-

cal pr t planets with static, fully radiative envel pes, in hydr static andthermal equilibrium. We present here the s luti n relevant t the structuref an envel pe in the gravitati nal p tential f a c nstant mass, f r zer

external temperature and pressure and using a generalized pacity law fthe f rm . The critical mass, defined as the largest mass twhich a c re can gr w while f rced t retain a static envel pe, is thengiven by

3 1 4 3 4(2)

4 1 34 ln /

where / ; and , , and den te the gas c nstant, the grav-itati nal c nstant, and the Stefan-B ltzmann c nstant, respectively. The

P

T

a b

T

DR.RUPN

ATHJI(

DR.R

UPAK

NATH )

Page 14: Obser atoire de la Coˆte d’Azur v Institut fu¨r Astronomie ... · II. INTERIORS OF THE GIANT PLANETS 1082 G. WUCHTERL ET AL. vv the total mass of solar-composition material needed

o

o

o

o o

o

Neb

Neb

c re

c re

1

4 3/21 3 1 3/2 1/2critc re Neb Neb2

1

2crit critc re t t 3

6 1c re

� �

��

.

.

.

1094 G. WUCHTERL ET AL.

v v

TR

a b

M

M

con ecti e

M TG

M M

and

M �

� �� �

� �

o o oo o oo o o o

o o o o o o o oo o

o o o oo o o o

o o o o oo o oo o o o o

o oo o o o

o o o o o o oo

o o o oo o o

o o o o o o o o oo o o o o o o oo o o

o o oo o o o

o o o oo o o o

oo o o o

o o o o o oo o o o o o

o o o oo o o o o

o o o o o oo o o

o o o oo o o o

o o oo o o o

o o o oo o o o o o o

o o o o o o oo o o o

o o

critical mass depends n neither the midplane density , n r n thetemperature f the nebula in which the c re is embedded. The uterradius, , enters nly l garithmically. The str ng dependence f the an-alytic s luti n n m lecular weight, , led Stevens n (1984) t pr p se“superganymedean puffballs” with atm spheres assumed t be enriched inheavy elements. Such bjects w uld have l w critical masses, pr viding away t f rm giant planets rapidly (see als Lissauer et al. 1995). Equati n(2) permits a glimpse f the effect f the run f pacity via the p wer lawexp nents and . Except f r the weak dependences discussed ab ve,a pr t -giant planet essentially has the same gl bal pr perties f r a givenc re wherever it is embedded in a nebula. Even the dependence n isrelatively weak; detailed radiative/c nvective envel pe m dels sh w thata variati n f a fact r f 100 in leads nly t a 2.6 variati n in thecritical c re mass.

This similarity in the static structure f pr t -giant envel pes yieldssimilar dynamical behavi rs characterized by pulsati n-driven mass l ssf r s lar-c mp siti n nebula pacities (see secti n V.B). H wever, therstatic s luti ns are f und f r pr t planets with uter envel pes,which ccur f r s mewhat larger midplane densities than in minimummass nebulae (Wuchterl 1993). These largely c nvective pr t -giant plan-ets have larger envel pes f r a given c re and a reduced critical c re mass.Their pr perties can be illustrated by a simplified analytical s luti n f rfully c nvective, adiabatic envel pes with c nstant first adiabatic exp -nent, :

1(3)

( 1)4

and / . In this case, the critical mass depends n the nebulagas pr perties and theref re the l cati n in the nebula, but it is indepen-dent f the c re accreti n rate. Of c urse, b th the radiative zer and fullyc nvective s luti ns are appr ximate, because they nly r ughly estimateenvel pe gravity, and all detailed calculati ns sh w radiative c nvec-tive regi ns in pr t -giant planets. In Fig. 3 the transiti n fr m “radiative”t “c nvective” pr t planets is sh wn by results fr m detailed static radia-tive/c nvective calculati ns f r 10 M yr (Wuchterl 1993).Nebula c nditi ns are varied fr m l w densities, resulting in radiativeuter envel pes, t enhanced densities that result in largely c nvective

pr t -giant planets. The critical mass can be as l w as 1 M , and sub-critical static envel pes can gr w t 48 M . Calculati ns with updatedpacity and impr ved, mixing-length c nvecti n (Wuchterl 1999) and the

¨inclusi n f r tati nal effects in the quasispherical appr ximati n (G tz1993) sh w a reducti n f the critical c re mass fr m 13 t 7 M f r the“radiative” pr t -giant planets at the l w nebula densities. The new, l wervalues are in better agreement with the new interi r m dels.

T

DR.RUPN

ATHJI(

DR.R

UPAK

NATH )

Page 15: Obser atoire de la Coˆte d’Azur v Institut fu¨r Astronomie ... · II. INTERIORS OF THE GIANT PLANETS 1082 G. WUCHTERL ET AL. vv the total mass of solar-composition material needed

V. DETAILED NUCLEATED INSTABILITY MODELSFOR THE GIANT PLANETS IN THE SOLAR SYSTEM

o o o o oo o o o

oo o o o o o

o o o o o oo

o oo o o o o

o o oo o o o o o

o o oo o o

o o o o

GIANT PLANET FORMATION 1095

Figure 3. Critical masses f static pr t planets as a functi n f nebula mid-plane density. Critical t tal mass and c re mass values are c nnected by a s lidand a dashed curve, respectively. Observe the increased envel pe masses anddecreased c re masses f r the c nvective uter envel pes ccurring at largernebula densities. The c nditi ns in the nebula c rresp nd t Mizun ’s minimum-mass nebula (Mizun 1980); densities at the Neptune, Uranus, Saturn, andJupiter p siti ns are labeled by N, U, S, and J, respectively. They illustrate thec nstancy f the critical mass in the case f radiative uter envel pes. Den-sities t the right f the d tted vertical line are arbitrarily enhanced relativet the minimum-mass values, s that the uter envel pes bec me c nvective(see text). The s lid vertical line gives an estimate f r the critical density fa Jupiter-mass nebula fragment at Jupiter’s p siti n. The value pl tted is themean density f a c ndensati n that is Jeans critical fits int its Hill sphere.

Protostars and Planets III

and

o o o o oo o o o o

o o o o o oo o o

oo o o o

o o oo o o o o

o o o o o oo o o o o o o o

o o o o o o

o oo o o o o

o o o o

The early phases f giant planet f rmati n discussed ab ve are d mi-nated by the gr wth f the c re. The envel pes adjust rapidly t the chang-ing size and gravity f the c re. As a result, the envel pes f pr t -giantplanets remain very cl se t static and in equilibrium bel w the criticalmass (Mizun 1980; Wuchterl 1993). This must change when the en-vel pes bec me m re massive and cann t reequilibrate as rapidly as thec res gr w. The nucleated instability was assumed t set in at the criticalmass, riginally as a hydr dynamic instability anal g us t the Jeans insta-bility. With the rec gniti n that energy l sses fr m the pr t -giant planetenvel pes c ntr l the further accreti n f gas, it f ll wed that quasihydr -static c ntracti n f the envel pes w uld play a key r le.

Maj r pr gress has been made since by calcu-lating the gr wth f the c res fr m planetesimal dynamics and the gr wthf the envel pes using hydr dynamics. We review these results bel w.

DR.RUPN

ATHJI(

DR.R

UPAK

NATH )

Page 16: Obser atoire de la Coˆte d’Azur v Institut fu¨r Astronomie ... · II. INTERIORS OF THE GIANT PLANETS 1082 G. WUCHTERL ET AL. vv the total mass of solar-composition material needed

A. Quasihydrostatic Models with Detailed Core Accretion

1096 G. WUCHTERL ET AL.

o o o oo o o o o o o o

o o o oo o o o o o o oo o o o o

o o o oo o o o o o o o

o o o oo o o o o o

o oo o o o o o o o o

o o oo o o o o o

o o o o o oo o o

oo o o o o o

oo o o o

o o o o o oo o o o o

o o oo o o o o o o

o o o o oo o o o o

o o o o oo o o o o

o o o o o o o oo o o o o o

oo o

o o o o o o oo o o o o o o

o o o o o o oo o

o o o

o o o o o oo

o o oo o o o o

o o o o oo o o o o

P llack et al. (1996) c nstructed m dels in which they simulated the c n-current accreti n rates f b th the gase us and s lid c mp nents f giantplanets. P llack et al. (1996) used an ev luti nary m del having three ma-j r c mp nents: a calculati n f the three-b dy accreti n rate f a singled minant-mass pr t planet surr unded by a large number f planetesi-mals, a calculati n f the interacti n f accreted planetesimals with thegase us envel pe f the gr wing giant pr t planet, and a calculati n fthe gas accreti n rate using a sequence f quasihydr static m dels hav-ing a c re/envel pe structure. These three c mp nents f the calculati nwere updated every time step in a self-c nsistent fashi n in which relevantinf rmati n fr m ne c mp nent was used in the ther c mp nents.

The m del f P llack et al. (1996) is very detailed in many respects(c re accreti n rate, planetesimal diss luti n in the envel pe, treatment fenergy l ss via radiati n and c nvecti n, equati n f state), but it includesthe f ll wing simplifying assumpti ns:

1. The planet is assumed t be spherically symmetric.2. Hydr dynamic effects are n t c nsidered in the ev luti n f the en-

vel pe.3. The pacity in the uter envel pe is determined by a s lar mixture

f small grains in m st f the simulati ns. S lar abundances are alsused t calculate the pacity in deeper regi ns f the envel pe, wherem lecular pacities d minate.

4. The equati n f state f r the envel pe is that f r a s lar mixture felements.

5. During the entire peri d f gr wth f a giant planet, it is assumed t bethe s le d minant mass in the regi n f its feeding z ne, i.e., there aren c mpeting embry s, and planetesimal sizes and rand m vel citiesremain small. A c r llary f this assumpti n is that accreti n can bedescribed as a quasic ntinu us pr cess, as pp sed t a disc ntinu usne inv lving the ccasi nal accreti n f a massive planetesimal.

6. Planetesimals are assumed t be well-mixed within the planet’s feed-ing z ne, which gr ws as the planet’s mass increases, but planetes-imals are n t all wed t migrate int r ut f the planet’s feedingz ne as a c nsequence f their wn m ti n. Tidal interacti n betweenthe pr t planet and the disk, r migrati n f the pr t planet (see thechapters by Lub w and Artym wicz, Ward and Hahn, and Lin et al.in this v lume), are n t c nsidered.

It is n t at all bvi us that these vari us assumpti ns are valid, but n well-defined, quantitatively justifiable alternative assumpti ns are available.

The parameters in the calculati ns f P llack et al. (1996) were ad-justed t fit the pr perties f giant planets in the s lar system and bserva-ti ns f disks ar und y ung stars. They judged the applicability f a givensimulati n t planets in ur s lar system using tw basic criteria. One cri-

DR.RUPN

ATHJI(

DR.R

UPAK

NATH )

Page 17: Obser atoire de la Coˆte d’Azur v Institut fu¨r Astronomie ... · II. INTERIORS OF THE GIANT PLANETS 1082 G. WUCHTERL ET AL. vv the total mass of solar-composition material needed

sn

sn7

sn

5

2

2

GIANT PLANET FORMATION 1097

gast

tt

ZM M

Z

Z

dM dt dM dt

dM dtdM dt

dM dt dM dtdM dt dM dt

dM dt dM dt

r

o o o oo o o o

o o o o oo o o o

o o o o oo o o o o o

o oo o o o o o

o o o oo o

o o o o oo o

o o o o oo o o o

o oo o o o

o o o oo o o o

o oo o o o

o oo o o o

o oo o o

o o o o oo

oo o o o

o

o oo o o

o oo o o o

o o o o oo o o o

o o o oo o o o

o o o oo o o

o o o o o o o oo o oo o o

o o o o oo o

o o o o o o

teri n is pr vided by the time required t reach the runaway gas accreti nphase. This time interval sh uld be less than the lifetime f the c mp -nent f the s lar nebula, , f r successful m dels f Jupiter and Saturn andgreater than f r successful m dels f Uranus and Neptune. Limited b-servati ns f accreti n disks ar und y ung stars suggest that 10 yr,based n bservati ns f the dust c mp nent (see the chapters by Calvetet al., Natta et al., and Lagrange et al., this v lume). The lifetime f thegas c mp nent is less well c nstrained bservati nally (Str m et al. 1993).See the chapter by Wadhwa and Russell, this v lume, and see als P d sekand Cassen (1994) f r a review f nebula-lifetime estimates.

A sec nd criteri n is pr vided by the am unt f high- mass accreted,. In the case f Jupiter and Saturn, at the end f a successful sim-

ulati n sh uld be c mparable t , but s mewhat smaller than, the currenthigh- masses f these planets, because additi nal accreti n f planetes-imals ccurred between the time they started runaway gas accreti n andthe time they c ntracted t their current dimensi ns and were able t scat-ter planetesimals gravitati nally ut f the s lar system. Updated valuesf the c nstraints n high- material in the j vian planets are discussed in

secti n II f this chapter.In the m dels f P llack et al. (1996), there are three main phases t

the accreti n f Jupiter and Saturn. Phase 1 is characterized by rapidlyvarying rates f planetesimal and gas accreti n. Thr ugh ut phase 1,

/ exceeds the rate f gas accumulati n, / . Initially, thereis a very large difference (many rders f magnitude) between these twrates. H wever, they bec me pr gressively m re c mparable as timeadvances. Over much f phase 1, / increases steeply. After a max-imum at 5 10 years, it declines sharply. Meanwhile, / gr wssteadily fr m its extremely l w initial value. Phase 2 f accreti n is char-acterized by relatively time-invariant values f / and / ,with / / . Finally, phase 3 is defined by rapidly increasingrates f gas and planetesimal accreti n, with / exceeding /by steadily increasing am unts. The accreti n f Uranus and Neptunewas terminated during phase 2, presumably as a result f the dissipati nr dispersal f the gas in the pr t planetary disk.

The m dels f P llack et al. (1996) imply that the cr ss ver mass,at which the s lid and gas c mp nents f the planet are equal in mass,depends alm st exclusively n the surface mass density f s lids and thedistance fr m the Sun. The cr ss ver time is a rapidly decreasing functi nf the initial surface mass density f s lids. A surface mass density f10 g cm at Jupiter yields b th a small en ugh c ndensables mass and

rapid en ugh gas accreti n t be c nsistent with bservati ns f r n minalvalues f ther parameters. G d fits f r Saturn and Uranus are btainedif surface density f s lids dr ps ff with distance fr m the Sun as .C nstraints n the surface density are quite restrictive in the “baseline”case, but a l wer value is all wed if the pacity f the uter envel pe is

Z Z

Z XY

Z

XY

Z XY

XY Z

XY Z

DR.RUPN

ATHJI(

DR.R

UPAK

NATH )

Page 18: Obser atoire de la Coˆte d’Azur v Institut fu¨r Astronomie ... · II. INTERIORS OF THE GIANT PLANETS 1082 G. WUCHTERL ET AL. vv the total mass of solar-composition material needed

B. Hydrodynamic Accretion beyond the Critical Mass

1098 G. WUCHTERL ET AL.

Protostarsand Planets III

aa priori

determine

a,b

oo o o o

o o o o o oo o o o o

o o o oo o o o o

o o oo

o o oo o o o o

o o o o o oo o

o o o oo o o o o o

o oo o o o o o

o o oo o o

o o oo

o o oo o o o o o oo o oo o o o o o o oo o

o o o o o oo o o o o o

o oo o o o o o o o

o o oo o o o

o o oo o o o o

o o o o oo o o o o

o o o o o o

o o oo

o o o o o oo o o o

o o o oo o o o o o

l w because grains sink, if planetesimal heating is reduced because ac-creted planetesimals diss lve well ab ve the c re and their residue d esn t sink t the c re, r if planetesimal accreti n st ps during phase 2, e.g.,as a result f accreti n by neighb ring embry s (P llack et al. 1996). In-creasing the mean m lecular weight f the envel pe als increases the gasaccreti n rate [cf. equati n (4)], but this parameter variati n was n t m d-eled by P llack et al. (1996). The m del results are relatively insensitive tm derately large changes in the gas density and temperature. Planetesimalsize (which affects the vel city dispersi n) is imp rtant in determining thedurati n f phase 1; f r n minal parameters this has a small effect n theverall gr wth time f r Jupiter, but the accreti n time f Uranus is m re

pr f undly affected by changes in planetesimal size.

The static and quasihydr static m dels discussed s far rely n theassumpti ns that gas accreti n fr m the nebula nt the c re is verysubs nic and that the inertia f the gas and dynamical effects such asdissipati n f kinetic energy d n t play a r le. T check whether hy-dr static equilibrium is achieved and whether it h lds, especially bey ndthe critical mass, hydr dynamical investigati ns are necessary. Tw typesf hydr dynamical investigati ns have been undertaken since

: (1) linear adiabatic dynamical stability analysis f en-vel pes ev lving quasihydr statically (Tajima and Nakagawa 1997) and(2) n nlinear, c nvective radiati n hydr dynamical calculati ns f c re-envel pe pr t -giant planets (Wuchterl 1993, 1995 , 1996, 1997, 1999)that f ll w the ev luti n f a pr t -giant planet with ut assuminghydr static equilibrium and which whether envel pes are hy-dr static, pulsate, r c llapse and at what rates mass fl ws nt the planet.Wuchterl’s m dels s lve the fl w equati ns f r the envel pe gas, essen-tially assuming nly that spherical symmetry h lds. They determine thenet gain and l ss f mass fr m the equati ns f m ti n f r the gas in spher-ical symmetry, whereas quasihydr static calculati ns add mass acc rdingt s me prescripti n and then calculate the structure f r the updated mass,yielding a new equilibrium. Alth ugh the ther assumpti ns made in thehydr dynamic calculati ns agree with th se listed in the previ us secti nf r the quasihydr static m dels, there is a sec nd imp rtant difference:The c re accreti n rate is, f r simplicity, assumed t be either c nstantr calculated acc rding t the particle-in-a-b x appr ximati n (see, e.g.,

Lissauer 1993).The first hydr dynamical calculati n f the nucleated instability

(Wuchterl 1989, 1991 ) started at the static critical mass and br ught asurprise: Instead f c llapsing, the pr t -giant planet envel pe begins tpulsate after a very sh rt c ntracti n phase (see Wuchterl 1990 f r a sim-ple discussi n f the driving mechanism). The pulsati ns f the innerpr t planetary envel pe expanded the uter envel pe, and the utward-

DR.RUPN

ATHJI(

DR.R

UPAK

NATH )

Page 19: Obser atoire de la Coˆte d’Azur v Institut fu¨r Astronomie ... · II. INTERIORS OF THE GIANT PLANETS 1082 G. WUCHTERL ET AL. vv the total mass of solar-composition material needed

o

7 5 1

8 6 1c re

9 3

.

GIANT PLANET FORMATION 1099

a,b

a

. M

a

a

.

� �

� � �

� � �

� �

o o oo o o o

o o oo

o oo o o o

o o o o o o oo o o o o

o o o oo

o o o o o o oo o o o o o o

o o o o o oo o o o o o

o oo o o o o o

o o o o o oo o o o o

o o oo o o

o o o o oo o

o o o o oo o o o o o o

o o o o oo o o o o o o o

o o o o o oo o o

o oo o o o o o o o

o o o oo o o o o

o ooo o o

o o o oo o o o o o

o o o o o oo o o o

o o oo o o

o o oo o

o o o oo o o o o o

o o o o

traveling waves caused by the pulsati ns resulted in a mass l ss fr m theenvel pe int the nebula. The pr cess can be described as a pulsati n-driven wind. After a large fracti n f the envel pe mass has been pushedback int the nebula, the dynamical activity fades, and a new quasiequi-librium state is f und that resembles Uranus and Neptune in c re and en-vel pe mass (Wuchterl 1991 ). The mass l ss pr cess ccurs in a verysimilar way f r nebula c nditi ns at Jupiter t Neptune p siti ns and f rc re mass accreti n rates fr m 10 t 10 M yr . Starting the hydr -dynamics at l w c re mass rather than at the critical mass d es n t changethe eventual mass l ss (Wuchterl 1995 ).

Pulsati ns and mass l ss d n t ccur when “n dust,” zer -metallicitypacities are used; the lack f dust makes c nditi ns m st fav rable f r

energy l ss fr m the envel pe and theref re f r accreti n. It is interest-ing t n te that even f r zer -metallicity pacities the static critical c remass is between 1 5 and 3 M f r 10 t 10 M yr , re-spectively. Envel pe accreti n bec mes independent f c re accreti n atab ut 15 M ; the quasihydr static assumpti ns h ld until infl w vel ci-ties reach a Mach number f 0.01 at ab ut 50 M . At a t tal mass f ab ut100 M the nebula gas influx appr aches the B ndi accreti n rate, and at300 M the envel pe c llapses verall (cf. Wuchterl 1995 ). This resultsh ws that there must be an pacity-dependent transiti n fr m pulsati n-driven winds t efficient gas accreti n at the critical mass.

The main questi n c ncerning the hydr dynamics was then t ask f rc nditi ns that all w gas accreti n (i.e., damp envel pe pulsati ns) f r“realistic” s lar-c mp siti n pacities that include dust. Wuchterl (1993)derived c nditi ns f r the breakd wn f the radiative zer s luti n bydetermining nebula c nditi ns that w uld make the uter envel pe f a“radiative” critical mass pr t -giant planet c nvectively unstable. The re-sulting criteri n gives a minimum nebula density that is necessary f r ac nvective uter envel pe. Pr t planets that gr w under nebula c nditi nsab ve that density have larger envel pes f r a given c re and a reducedcritical mass as described in secti n IV.B. C nvecti n is f great imp r-

¨tance in damping stellar pulsati ns f RR Lyrae and -Cepheıd stars atthe c l, s -called “red” end f the stellar instability strip; similar behav-i r may be expected in pr t -giant planet envel pes. Wuchterl (1995 )calculated the gr wth f giant planets fr m l w c re masses hydr dy-namically f r a set f nebula c nditi ns ranging fr m bel w the criticaldensity t s mewhat ab ve. As the density was increased, the envel pesbecame increasingly m re c nvective at the critical mass but still sh wedthe mass l ss. At a nebula density f 10 g cm (i.e., greater by a fact rf 6 7 than Mizun ’s (1980) minimum rec nstituted mass nebula value),

the dynamical behavi r was different: The pulsati ns were damped, andrapid accreti n f gas set in and pr ceeded t 300 M . Apparently thespreading f c nvecti n in the uter envel pe had damped the pulsati ns,thereby inhibiting the nset f a wind and leading t accreti n. The critical

DR.RUPN

ATHJI(

DR.R

UPAK

NATH )

Page 20: Obser atoire de la Coˆte d’Azur v Institut fu¨r Astronomie ... · II. INTERIORS OF THE GIANT PLANETS 1082 G. WUCHTERL ET AL. vv the total mass of solar-composition material needed

VI. FORMATION OF EXTRASOLAR PLANETS

1100 G. WUCHTERL ET AL.

v v v

aImpro ed Con ecti e Energy Transfer and Opacities.

b

b

o o o o o o o oo

oo o o o o o

o oo o o o

o o oo o o

o o o o o o oo o o o

o o o o oo o o

o o o o oo o

o oo o o o oo o o o

o o o o oo o o o o

o o o oo o o

o o o o oo o o o

o o o oo

o o o oo o o o o

o o o o o o o oo o o o o o

o o oo o o o

o oo o o o o o

o o o o oo o

o o oo o o oo o o

o o o o oo o

c re masses required f r the f rmati n f this class f pr t -giant planetsare significantly smaller than f r the Uranus/Neptune-type (see Wuchterl1993, 1995 ).

M st giantplanet f rmati n studies use zer -entr py-gradient c nvecti n; that is,they set the temperature gradient t the adiabatic value in c nvectivelyunstable layers f the envel pe. That is d ne f r simplicity but can beinaccurate, especially when the ev luti n is rapid and hydr dynamicalwaves are present (see Wuchterl 1991 ). It was, theref re, imp rtant tdevel p a time-dependent the ry f c nvecti n that can be s lved t getherwith the equati ns f radiati n hydr dynamics. Such a time-dependentc nvecti n m del (Kuhfuß 1987) has been ref rmulated f r self-adaptivegrid radiati n hydr dynamics (Wuchterl 1995 ) and applied t giant

¨planet f rmati n (G tz 1993; Wuchterl 1996, 1997). In a ref rmulati nby Wuchterl and Feuchtinger (1998), it cl sely appr ximates standardmixing length the ry in a static l cal limit and accurately describes thes lar c nvecti n z ne and RR Lyrae light curves. In additi n, updatedm lecular pacities (Alexander and Fergus n 1994) are used in a c mpi-

¨lati n by G tz (1993) t impr ve the accuracy f radiative transfer in thepr t -giant planet envel pes. The effect f these impr vements in energytransfer is that the c re mass needed t initiate gas accreti n t a fewhundred Earth masses at vari us rbital radii is reduced t 8.30, 9.48, and9.56 M at 0.052, 5.2, and 17.2 AU, respectively (see Fig. 4), even in aminimum-mass nebula.

M re than a d zen planets have thus far been disc vered t rbit main-sequence stars ther than the Sun; all f these bjects are m re massivethan Saturn, and m st are m re massive than Jupiter (May r and Quel z1995; chapter by Marcy et al., this v lume, and references therein). Theextras lar planets currently kn wn all rbit nearer t their stars than Jupiterd es t the Sun (this is primarily an bservati nal selecti n effect; high-precisi n radial vel city surveys have n t been in perati n l ng en ugh thave bserved a full rbit f m re distant planets). S me f these planetsrbit n highly eccentric paths, suggesting that after they f rmed they were

subjected t cl se enc unters with ther giant planets (Weidenschillingand Marzari 1996; Lin and Ida 1997; Levis n et al. 1998) r, in the casef the c mpani n t 16 Cygni B, secular perturbati ns fr m the star 16 Cyg

A (H lman et al. 1997). S me f the extras lar planets are separated fr mtheir stars by less than 1% f the Jupiter-Sun distance. Guill t et al. (1996)sh wed that giant planets are stable ver the main-sequence lifetime f a1-M star even if they are as cl se as 0.05 AU. M dels inv lving migrati ncaused by disk-planet interacti ns are fav red by many researchers f r thef rmati n f these bjects (e.g., Lin et al. 1996; Trilling et al. 1998; see alsthe chapters by Ward and Hahn and by Lin et al., this v lume). H wever,

DR.RUPN

ATHJI(

DR.R

UPAK

NATH )

Page 21: Obser atoire de la Coˆte d’Azur v Institut fu¨r Astronomie ... · II. INTERIORS OF THE GIANT PLANETS 1082 G. WUCHTERL ET AL. vv the total mass of solar-composition material needed

6 3 10 3

13 3 6

2 2

2

A. Hydrostatic Models for FormationIn Situ

o o o o o o oo o o o o o o

o o o o o oo o o

o

o o

GIANT PLANET FORMATION 1101

Figure 4. Ev luti n f pr t -giant planets with mixing length c nvecti n. Enve-l pe masses as btained fr m hydr dynamic accreti n calculati ns are pl ttedas functi ns f c re mass f r l cati ns at 0.05 AU in the Hayashi et al. (1985)nebula (full) and f r Mizun ’s (1980) “Jupiter” (dashed) and “Neptune” (d t-ted) cases. Nebula temperatures and densities f r the three cases are “Vulcan”:1252 K, 5 3 10 g/cm ; “Jupiter”: 97 K, 1 5 10 g/cm ; and “Neptune”:45 K, 3 0 10 g/cm . The c re accreti n rate is 10 M /yr.

� ��

. ..

� �� �

��� �

o o o o o oo o o o

o o o o o o oo o o o o

o o oo o o o o

o o o o oo o o o o o o o

o o o oo o o o o o o

o oo o o o o o o

o o oo o o

o o o oo o o o o

oo oo o o

o o o ooo o o o

simulati ns als sh w that it may be p ssible t f rm giant planets verycl se t stars, and we review these m dels in this secti n.

B denheimer et al. (2000) have m deled the f rmati n and ev luti n fthe planets recently disc vered in rbit ab ut the stars 51 Pegasi, C r -nae B realis, and 47 Ursae Maj ris, assuming that these planets f rmed inr near their current rbits. They used updated versi ns f the quasihydr -

static c des devel ped by B denheimer and P llack (1986) and P llacket al. (1996). The is lated pr t planet/n migrati n m del f P llack etal. (1996) requires high surface mass density f s lids f r giant planets tf rm cl se t stars within the bserved lifetimes f pr t planetary disks.The primary cause f this restricti n is that the larger Kepler shear near thestar decreases the s lid c re’s is lati n mass unless the am unt f s lids islarge; the increase in temperature cl ser t the star has nly a very smalleffect (Mizun 1980; B denheimer and P llack 1986), and the higher den-sity f gas acts in the pp site sense (Wuchterl 1996). The planet rbiting2.1 AU fr m 47 UMa can f rm in 2 Myr f r a surface density f c n-densed material 90 g cm but requires 18 Myr f r 50 g cm(B denheimer et al. 2000). A value f 90 g cm at 2.1 AU is wellab ve that used by P llack et al. (1996), but still well bel w that requiredf r l cal axisymmetric gravitati nal instabilities (T mre 1964), assuminga s lar-c mp siti n mix.

� �

� �

DR.RUPN

ATHJI(

DR.R

UPAK

NATH )

Page 22: Obser atoire de la Coˆte d’Azur v Institut fu¨r Astronomie ... · II. INTERIORS OF THE GIANT PLANETS 1082 G. WUCHTERL ET AL. vv the total mass of solar-composition material needed

5 1 6

Jup

B. Hydrodynamical Models of Giant Planet Formation Near Stars

1102 G. WUCHTERL ET AL.

adhoc

Z�

� � �

��

� �� �

o o o oo o

o o o o o oo o o o

o o o o o o o oo o o o

o o o o o o o oo o o o o

o oo o o

o oo o o o

o o o o o o oo o o

o o

o o o o oo o o

o o o oo o o

o o o oo o o

o o o o o oo

o o o o o o oo o o o o oo o o o o

o o

o o o oo o o o o o o

o o o oo o o o o o o

o o o o oo o o o o o

o o o oo o o o o

o oo o o

o o o oo o o o o

o o o o o o oo o o

o o o

The surface mass density f s lids required t f rm giant planets at0.23 AU ( CrB) and 0.05 AU (51 Peg) is pr hibitively large unless rbitaldecay f planetesimals is inc rp rated int the m dels. On the ther hand,Ruzmaikina (1998) has given a m del t pr vide the required am untsf b th gas and s lids. As n well-c nstrained meth d t quantify c re

gr wth cl se t stars is available, B denheimer et al. (2000) made theassumpti n f a c nstant rate f s lid-b dy accreti n f r these inner

planets. M del results f r 51 Peg indicate that if the gr wth rate f the c reis 1 10 M yr , then the planet takes 4 10 years t f rm and has afinal high- mass f 40 M . Using the same definiti n f r the planetaryradius and the same planetesimal accreti n rate as used by B denheimeret al. (2000), Wuchterl btained, in a c mparis n calculati n undertakenf r this w rk, a critical c re mass f ab ut 25 M . The tw gr ups arecurrently attempting t res lve this discrepancy, an eff rt that will includecalculati ns with identical pacities.

A maj r result f the hydr dynamical studies is that pr t -giant planetsmay pulsate and devel p pulsati n-driven mass l ss. Only if the pulsa-ti ns are damped can gas accreti n pr duce Jupiter-mass envel pes. Sinceall extras lar planets disc vered s far have minimum masses 0.5 M ,they pr bably require efficient gas accreti n and sh uld satisfy the c n-vective uter envel pe criteri n (Wuchterl 1993). A glance at Wuchterl’s(1993) Fig. 2 sh ws that pr t -giant planets l cated s mewhat inside fMercury’s rbit in the Hayashi et al. (1985) minimum-mass nebula ful-fill this c nditi n. C nvective radiati n hydr dynamical calculati ns fc re-envel pe gr wth at 0.05 AU, f r particle-in-a-b x c re mass accre-ti n at nebula temperatures f 1250 and 600 K, sh w gas accreti n bey nd300 M at c re masses f 13.5 M and 7.5 M , respectively (Wuchterl1996, 1997).

It is interesting t apply the arguments based n the c nvecti n-c ntr lled bifurcati n in hydr dynamic accreti nal behavi r t an en-semble f preplanetary nebula m dels, t simulate a variety f initialc nditi ns f r planet f rmati n that might have been present ar und therstars. Wuchterl (1993) has sh wn that alm st all nebula c nditi ns, fr ma literature c llecti n f nebula m dels, result in radiative uter envel pesat the critical mass. N nlinear radiati n hydr dynamical calculati ns withzer -entr py gradient c nvecti n sh w that Uranus/Neptune-type giantplanets are pr duced under such circumstances (secti n V.B). Jupiter-mass planets sh uld then be the excepti n. The first calculati ns withtime-dependent mixing length c nvecti n, discussed in secti n V.B, sh wgas accreti n t bey nd a Jupiter mass f r a much wider range f neb-ula c nditi ns. Apparently the impr ved descripti n f c nvecti n (andthe updated pacities) have shifted the instability strip f r pulsati ns andmass l ss at the critical mass. Further calculati ns and a reanalysis f

DR.RUPN

ATHJI(

DR.R

UPAK

NATH )

Page 23: Obser atoire de la Coˆte d’Azur v Institut fu¨r Astronomie ... · II. INTERIORS OF THE GIANT PLANETS 1082 G. WUCHTERL ET AL. vv the total mass of solar-composition material needed

VII. CONCLUSIONS

GIANT PLANET FORMATION 1103

a

in situ

other than the Sun

��

o o o o o o oo o o o

o o o o oo o o o

o o o oo o o o o

o o o o oo o o o o o o

o oo o o o o

o o oo o

o o o oo o o

o o o o o o o oo o

o o oo o o o

o o oo o o o

o o oo o o o o

o o oo o o o

o o oo o o o o

o o o o o

o o o oo o o o o o

o o oo o o o

o o o oo o o

o o o o oo o o o o o o

o o oo o o

o o oo o o o o o o

the c nditi ns f r efficient gas accreti n f r mixing length c nvecti n havet be undertaken bef re an updated expectati n c ncerning the mass dis-tributi n f extras lar planets can be given. An imp rtant requirement f rthat is an extensive the retical and bservati nal study f plausible pre-planetary nebulae.

Jupiter and Saturn are c mp sed primarily f hydr gen and helium, yetthe heavy elements that they c ntain may h ld the key t the pr blem ftheir f rmati n. The density pr files f these planets derived fr m inte-ri r m dels, as well as the c mp siti n f their atm spheres, clearly in-dicate a significantly larger fracti n f heavy elements than was presentin the pr t s lar gas. Were the heavy elements the first t accrete, r didthe enrichment ccur at later stages? Depending n the scenari , Jupiterand Saturn might have received very different am unts f planetesimals,thereby pr viding a way t differentiate a very rapid f rmati n (such asin the nebula instability mechanism) fr m a sl wer ne (such as in thenucleated instability).

Interi r and ev luti n m dels f r Jupiter and Saturn tend t fav r c remasses that lie within the range f acceptable critical c re masses pre-dicted within the nucleated instability hyp thesis. The m dels based nthis hyp thesis als explain why Uranus and Neptune are m stly c re:either because (i) gas accreti n is limited t 1 M by a hydr dynamicinstability that perates under certain nebula c nditi ns, l w gas densitybeing the d minant fact r (Wuchterl 1993, 1995 ); (ii) their c res grewm re sl wly than th se f Jupiter and Saturn because rbital timescalesare l nger farther fr m the Sun, and thus they did n t achieve sufficientmass t accrete large quantities f gas bef re the s lar nebula gas was dis-persed (P llack et al. 1996); r (iii) the gas in the Uranus/Neptune regi nf the nebula was dispersed rapidly via ph t evap rati n, whereas gas re-

mained in the Jupiter/Saturn regi n f r a much l nger peri d f time (Shuet al. 1993).

The nucleated instability hyp thesis thus pr vides a viable m del f rthe f rmati n f the giant planets bserved in ur s lar system and be-y nd. Presently kn wn extras lar planets may have accreted if theirpreplanetary nebulae pr vided sufficient am unts f gas and s lids. Al-ternatively, acc rding t studies f disk-induced migrati n (chapters byWard and Hahn and by Lin et al., this v lume) and gravitati nal enc un-ters with ther planets, they c uld have f rmed elsewhere and m ved intthe present p siti ns. In that case the rbits f m st if n t all planets kn wnt be b und t main-sequence stars suffered substantialrbital ev luti n.

The next few years will be dedicated t the devel pment f a syn-ptic understanding f giant planet f rmati n pr cesses f r a variety f

DR.RUPN

ATHJI(

DR.R

UPAK

NATH )

Page 24: Obser atoire de la Coˆte d’Azur v Institut fu¨r Astronomie ... · II. INTERIORS OF THE GIANT PLANETS 1082 G. WUCHTERL ET AL. vv the total mass of solar-composition material needed

REFERENCES

oo o o o o o o

o o o o

o o oo o o

oo oo o o o o

o o o oo o o

o o o o o oo o o o o

oo o o o

o o o

o o oo o o o

o o

o o o o

o o o o o o o o

o o o o o o o oo o

oo o o o o o

o oo o o o

oo o o o

1104 G. WUCHTERL ET AL.

Adachi, I., Hayashi, C., and Nakazawa, K. 1976. The gas drag effect n the ellipticm ti n f a s lid b dy in the prim rdial s lar nebula.56:1756–1771.

Alexander, D. R., and Fergus n, J. W. 1994. L w-temperature R sseland paci-ties. 437:879–891

´B ckelee-M rvan, D., Gautier, D., Lis, D. C., Y ung, K., Keene, J., Phillips, T.,Owen, T., Cr visier, J., G ldsmith, P. F., Bergin, E. A., Desp is, D., andW tten, A. 1998. Deuterated water in c met C/1996 B2 (Hyakutake) andits implicati ns f r the rigin f c mets. 133:147–162.

B denheimer, P. 1985. Ev luti n f the giant planets. In ,ed. D. C. Black and M. S. Matthews (Tucs n: University f Ariz na Press),pp. 493–533.

B denheimer, P., and P llack, J. B. 1986. Calculati ns f the accreti n and ev -luti n f giant planets: The effects f s lid c res. 67:391–408.

B denheimer, P., Ruzmaikina, T., and Mathieu, R. D. 1993. Stellar multiple sys-tems: C nstraints n the mechanism f rigin. In ,ed. E. H. Levy and J. I. Lunine (Tucs n: University f Ariz na Press), pp.367–404.

B denheimer, P., Hubickyj, O., and Lissauer, J. J. 2000. M dels f thef rmati n f detected extras lar giant planets. , in press.

B ndi, H. 1952. On spherically symmetric accreti n.112:195–204.

B ndi, H., and H yle, F. 1944. On the mechanism f accreti n by stars.104:273–282.

B ss, A. P. 1997. F rmati n f giant gase us pr t planets by gravitati nal insta-bility. 276:1836–1839.

B ss, A. P. 1998. Ev luti n f the s lar nebula IV—giant gase us pr t planetf rmati n. 503:923–937.

Cassen, P. M., and M sman, A. 1981. On the f rmati n f pr t stellar disks.48:353–376.

Chabrier, G., Saum n, D., Hubbard, W. B., and Lunine, J. I. 1992. The m lecular-metallic transiti n f hydr gen and the structure f Jupiter and Saturn.

391:817–826.Chambers, J., and Wetherill, G. 1998. Making the terrestrial planets: N-b dy in-

tegrati ns f planetary embry s in three dimensi ns. 136:304–327.

Acknowledgments

Prog. Theor. Phys.

Astrophys. J.

IcarusProtostars and Planets II

Icarus

Protostars and Planets III

in situIcarus

Mon. Not. Roy. Astron. Soc.

Mon. Not.Roy. Astron. Soc.

Science

Astrophys. J.

Icarus

Astro-phys. J.

Icarus

o o o o o oo o o o o o

o o o

o oo o o o

o o o o oo o o

o oo o o

preplanetary nebulae t w rk ut predictive elements f the f rmati n the-ries. These the ries will be c nfr nted by a representative bservati nal

census f giant planets rbiting neighb ring stars.

T. G.’s w rk is supp rted by CNRS (UMR 6529)´and the Pr gramme Nati nal de Planet l gie. T. G. thanks Daniel Gautier

f r stimulating discussi ns and c mments. G. W.’s w rk n this article has¨ ¨been supp rted by the Osterreichischer F nds zur F rderung der wissen-

schaftlichen F rschung (FWF) under pr ject numbers S-7305-AST, S-7307-AST. We thank W. B. Hubbard f r a c nstructive review f thismanuscript.

DR.RUPN

ATHJI(

DR.R

UPAK

NATH )

Page 25: Obser atoire de la Coˆte d’Azur v Institut fu¨r Astronomie ... · II. INTERIORS OF THE GIANT PLANETS 1082 G. WUCHTERL ET AL. vv the total mass of solar-composition material needed

o o oo

o o o o o o

o o o o oo o o

o oo o o o o

o oo o o

o

o oo o o

o o o

oo o o o

o o oo o o o o o

o o o o

oo o o o

o oo o

o o o oo o o o

o o o oo o o o o o

o o o oo o

o o o o o o o

o o

o o o oo o oo

o oo o o

oo o

o o o o

o o o o o o

o o o ooo o

o

GIANT PLANET FORMATION 1105

C llins, G. W., Da Silva, L. B., Celliers, P., G ld, D. M., F rd, M. E., Wallace,R. J., Ng, A., Weber, S. V., Budil, K. S., and Cauble, R. 1998. Measurementsf the equati n f state f deuterium at the fluid insulat r-metal transiti n.

282:89–92.DeCampli, W. M., and Camer n, A. G. W. 1979. Structure and ev luti n f is -

lated giant gase us pr t planets. 38:367–391.Dr uart, A., Dubrulle, B., Gautier, D., and R bert, F. 1999. Structure and trans-

p rt in the s lar nebula fr m c nstraints n deuterium enrichment and giantplanets f rmati n. , submitted.

Dutrey, A., Guill teau, S., Prat , L., Sim n, M., Duvert, G., Schuster, K., and´Menard, F. 1998. CO study f the GM Aurigae Keplerian disk.

339:467–476.Fegley, B., Jr., Gautier, D., Owen, T., and Prinn, R. G. 1991. Spectr sc py and

chemistry f the atm sphere f Uranus. In , ed. J. T. Bergstralh, E.D. Miner, and M. S. Matthews (Tucs n: University f Ariz na Press), pp.147–203.

´Feuchtgruber, H., Lell uch, E., Bezard, B., Encrenaz, T., De Graauw, T., andDavis, G. R. 1999. Detecti n f HD in the atm spheres f Uranus and Nep-tune: A new determinati n f the D/H rati . 341:L17–L21.

Gautier, D., and Owen, T. 1989. C mp siti n f uter planet atm spheres. In, ed. S. K. Atreya,

J. B. P llack, and M. S. Matthews (Tucs n: University f Ariz na Press), pp.487–512.

Gautier, D., C nrath, B. J., Owen, T., De Pater, I., and Atreya, S. K. 1995. Thetr p sphere f Neptune. In , ed. D. P. Cruikshank (Tucs n:University f Ariz na Press), pp. 547–611.

Geiss, J., and Gl ecker, G. 1998. Abundances f deuterium and helium-3 in thepr t s lar cl ud. 84:239-250.

G ldreich, P., and Ward, W. R. 1973. The f rmati n f planetesimals.183:1051–1061.

¨G tz, M. 1993. Die Entwicklung v n Pr t -Gasplaneten mit Drehimpuls—Strahl-ungshydr dynamische Rechnungen [The ev luti n f pr t -giant planetswith angular m mentum—Radiati n-hydr dynamical calculati ns], Disser-tati n, University f Heidelberg.

Greenberg, R., Hartmann, W. K., Chapman, C. R., and Wacker, J. F. 1978. Plan-etesimals t planets—numerical simulati n f c llisi nal ev luti n.35:1–26.

Greenzweig, Y., and Lissauer, J. J. 1990. Accreti n rates f planets. 87:40–77.

Greenzweig, Y., and Lissauer, J. J. 1992. Accreti n rates f pr t planets. II. Gaus-sian distributi n f planetesimal vel cities. 100:440–463.

Griffin, M. J., Nayl r, D. A., Davis, G. R., Ade, P. A. R., Oldham, P. G., Swinyard,B. M., Gautier, D., Lell uch, E., Ort n, G. S., Encrenaz, T., De Graauw, T.,Furniss, H., Smith, I., Armand, C., Burgd rf, M., Di Gi rgi , A., Ewart, D.,Gry, C., King, K. J., Lim, T., M linari, S., Price, M., Sidher, S., Smith, A.,Texier, D., Trams, N., Unger, S. J., and Salama, A. 1996. First detecti n fthe 56- m r tati nal line f HD in Saturn’s atm sphere.

315:L389–L392.Guill t, T. 1999. A c mparis n f the interi rs f Jupiter and Saturn.

, in press.Guill t, T., Chabrier, G., M rel, P., and Gautier, D. 1994 . N n-adiabatic m dels

f Jupiter and Saturn. 112:354–367.Guill t, T., Gautier, D., Chabrier, G., and M sser, B. 1994 . Are the giant planets

fully c nvective? 112:337–353.

Science

Icarus

Icarus

Astron. As-trophys.

Uranus

Astron. Astrophys.Ori-

gin and E olution of Planetary and Satellite Atmospheres

Neptune and Triton

Space Sci. Re .Astrophys.

J.

Icarus

Icarus

Icarus

Astron. Astrophys.Lett.

Planet. SpaceSci.

aIcarus

bIcarus

v

v

DR.RUPN

ATHJI(

DR.R

UPAK

NATH )

Page 26: Obser atoire de la Coˆte d’Azur v Institut fu¨r Astronomie ... · II. INTERIORS OF THE GIANT PLANETS 1082 G. WUCHTERL ET AL. vv the total mass of solar-composition material needed

o o oo

o o o oo o o o o o o

o o o oo

o o o o

o o o oo o o

o o o o

o o oo o o o

o oo

o oo o o o o

o o o

o o oo o o o

oo

o ooo o o o

o o o oo o o o o o

oo o o o

o oo

o o o

o o o o o o

o o oo

o o

o o o oo o o o o o

o o oo o

o oo o o o o o

o o

1106 G. WUCHTERL ET AL.

Guill t, T., Burr ws, A., Hubbard, W. B., Lunine, J. I., and Saum n, D. 1996.Giant planets at small rbital distances 459:L35–L38.

Guill t, T., Gautier, D., and Hubbard, W. B. 1997. New c nstraints n the c m-p siti n f Jupiter fr m Galile measurements and interi r m dels.130:534–539.

Guill teau, S., and Dutrey, A. 1998. Physical parameters f the Keplerian pr t -planetary disk f DM Tau. 339:467–476.

Harris, A. W. 1978. The f rmati n f the uter planets (abstract).9:459–461.

Hayashi, C. 1980. Structure f the s lar nebula, gr wth and decay f magneticfields and effects f turbulent and magnetic visc sity n the nebula.

70:35–53.Hayashi, C., Nakazawa, K., and Nakagawa, Y. 1985. F rmati n f the s lar sys-

tem. In , ed. D. C. Black and M. S. Matthews (Tuc-s n: University f Ariz na Press), pp. 1100–1153.

H lman, M., T uma, J., and Tremaine, S. 1997. Cha tic variati ns in the eccen-tricity f the planet rbiting 16 Cyg B. 386:254–256.

Hubbard, W. B. 1968. Thermal structure f Jupiter. 152:745–753.Hubbard, W. B., and Marley, M. S. 1989. Optimized Jupiter, Saturn and Uranus

interi r m dels. 78:102–118.Hubbard, W. B., P d lak, M., and Stevens n, D. J. 1995. The interi r f Neptune.

In , ed. D. P. Cruikshank (Tucs n: University f Ariz naPress), pp. 109–138.

Hubbard, W. B., Guill t, T., Marley, M. S., Burr ws, A., Lunine, J. I., and Saum n,D. 1999. C mparative ev luti n f Jupiter and Saturn. , inpress.

¨Kant, I. 1755. (K nigsbergund Leipzig: J hann Friederich Petersen). English trans. W. Hastie,

. In , (NewY rk: Greenw d Publishing), 1968.

K kub , E., and Ida, S. 1996. On runaway gr wth f planetesimals.123:80–191.

¨Kuhfuß, R. 1987. Ein M dell fur zeitabhangige, nichtl kale K nvekti n in Ster-¨nen [A m del f r time-dependent, n n-l cal c nvecti n in stars], Ph.D. The-sis, Technical University f Munich.

Kusaka, T., Nakan , T., and Hayashi, C. 1970. Gr wth f s lid particles in theprim rdial s lar nebula. 44:1580–1596.

Laplace, P. S. 1796. (Paris: Circle-S ciale), En-glish trans. J. P nd, (L nd n: Richard Phillips),1809.

Laughlin, G., and B denheimer, P. 1994. N naxisymmetric ev luti n in pr t stel-lar disks. 436:335–354.

Levis n, H. F., Lissauer, J. J., and Duncan, M. J. 1998. M deling the diversity futer planetary systems. 116:1998–2014.

Lin, D. N. C., and Ida, S. 1997. On the rigin f massive eccentric planets.477:781–791.

Lin, D. N. C., B denheimer, P., and Richards n, D. 1996. Orbital migrati n f theplanetary c mpani n f 51 Pegasi t its present l cati n. 380:606–607.

Lissauer, J. J. 1987. Timescales f r planetary accreti n and the structure f thepr t planetary disk. 69:249–265.

Lissauer, J. J. 1993. Planet f rmati n. 31:129–174.Lissauer, J. J., and Safr n v, V. S. 1991. The rand m c mp nent f planetary

r tati n. 93:288–297.

Astrophys. J. Lett.

Icarus

Astron. Astrophys.Lunar Planet.

Sci.

Prog.Theor. Phys. Suppl.

Protostars and Planets II

NatureAstrophys. J.

Icarus

Neptune and Triton

Planet Space Sci.

Allgemeine Naturgeschichte und Theorie des HimmelsUni er-

sal Natural History and Theories of the Hea ens Kant’s Cosmology

Icarus

Prog. Theor. Phys.Exposition du systeme du monde

The System of the World

Astrophys. J.

Astron. J.Astro-

phys. J.

Nature

IcarusAnn. Re . Astron. Astrophys.

Icarus

v

v

v

DR.RUPN

ATHJI(

DR.R

UPAK

NATH )

Page 27: Obser atoire de la Coˆte d’Azur v Institut fu¨r Astronomie ... · II. INTERIORS OF THE GIANT PLANETS 1082 G. WUCHTERL ET AL. vv the total mass of solar-composition material needed

3 4

o o oo o

o o ooo o o o

o o

o o o o o o

o o o oo o o

o o o o o o

o o oo o o o

o o o

oo

o o o o o oo o

o o o oo o

o o o o oo

o o oo o o o o

o o oo o o

o o o o o

o o o o o o oo o o

o o o oo o o o o

o oo o o o o o o

oo o o

o o o

o o oo o o o

o oo o o

o o o o o

o o o oo o o o o o

GIANT PLANET FORMATION 1107

Lissauer, J. J., P llack, J. B., Wetherill, G. W., and Stevens n, D. J. 1995. F r-mati n f the Neptune system. In , ed. D. P. Cruikshank(Tucs n: University f Ariz na Press), pp. 37–108.

Mahaffy, P. R., D nahue, T. M., Atreya, S. K., Owen, T. C., and Niemann, H. B.,1998. Galile pr be measurements f D/H and He/ He in Jupiter’s atm -sphere. 84:251–263.

Marley, M. S., and McKay, C. P. 1999. Thermal structure f Uranus’ atm sphere.138:268–286.

May r, M., and Quel z, D. 1995. A Jupiter-mass c mpani n t a s lar-type star.378:355–359.

Mizun , H. 1980. F rmati n f the giant planets. 64:544–557.Mizun , H., Nakazawa, K., and Hayashi, C. 1978. Instability f a gase us enve-

l pe surr unding a planetary c re and f rmati n f giant planets.60:699–710.

¨M rfill, G., Tscharnuter, W. M., and V lk, H. 1985. Dynamical and chemical ev -luti n f the pr t planetary nebula. In , ed. D. C.Black and M. S. Matthews (Tucs n: University f Ariz na Press), pp. 493–533.

Niemann, H. B., Atreya, S. K., Carignan, G. R., D nahue, T. M., Haberman, J.A., Harp ld, D. N., Hartle, R. E., Hunten, D. M., Kasprzak, W. T., Mahaffy,P. R., Owen, T. C., and Way, S. H. 1998. The c mp siti n f the j vian atm -sphere as determined by the pr be mass spectr meter.

103:22831–22846.Perri, F., and Camer n, A. G. W. 1974. Hydr dynamic instability f the s lar neb-

ula in the presence f a planetary c re. 22:416–425P d lak, M., Hubbard, W. B., and Stevens n, D. J. 1991. M dels f Uranus’ inte-

ri r and magnetic field. In , ed. J. T. Bergstralh, E. D. Miner, and M.S. Matthews (Tucs n: University f Ariz na Press), pp. 29–61.

P d lak, M., Hubbard, W. B., and P llack, J. B. 1993. Gase us accreti n and thef rmati n f giant planets. In , ed. E. H. Levy andJ. I. Lunine (Tucs n: University f Ariz na Press), pp. 1109–1147.

P d lak, M., Weizman, A., and Marley, M. S. 1995. C mparative m dels fUranus and Neptune. 43:1517–1522.

P d sek, F. A., and Cassen, P. 1994. The retical, bservati nal, and is t pic esti-mates f the lifetime f the s lar nebula. 29:6–25.

P llack, J. B., Hubickyj, O., B denheimer, P., Lissauer, J. J., P d lak, M., andGreenzweig, Y. 1996. F rmati n f the giant planets by c ncurrent accreti nf s lids and gases. 124:62–85.

R ulst n, M. S., and Stevens n, D. J. 1995. Predicti n f ne n depleti n inJupiter’s atm sphere. 76:343.

Ruzmaikin, A. A., and Starchenk , S. V. 1991. On the rigin f the Uranus andNeptune magnetic fields. 93:82–87.

Ruzmaikina, T. V. 1998. F rmati n f 51 Peg type systems (abstract).29:1873.

Safr n v, V. S. 1960. On the gravitati nal instability in flattened systems withaxial symmetry and n n-unif rm r tati n. 23:901–904.

Safr n v, V. S. 1969.(M sc w: Nauka Press) (Als NASA–TT–F–677,

1972.)Safr n v, V. S., and Rusk l, E. L. 1982. On the rigin and initial temperature f

Jupiter and Saturn. 49:284-296.Sasaki, S. 1989. Minimum planetary size f r f rming uter J vian-type planets:

Stability f an is thermal atm sphere surr unding a pr t planet.215:177–180.

Neptune and Triton

Space Sci. Re .

Icarus

NatureProg. Theor. Phys.

Prog. Theor.Phys.

Protostars and Planets II

Galileo J. Geophys.Res.

Icarus

Uranus

Protostars and Planets III

Planet. Space Sci.

Meteoritics

Icarus

EOS

IcarusLunar

Planet. Sci. Abs.

Ann. d’Astrophys.E olution of the Protoplanetary Cloud and Formation of

the Earth and Planets

Icarus

Astron. As-trophys.

v

v

DR.RUPN

ATHJI(

DR.R

UPAK

NATH )

Page 28: Obser atoire de la Coˆte d’Azur v Institut fu¨r Astronomie ... · II. INTERIORS OF THE GIANT PLANETS 1082 G. WUCHTERL ET AL. vv the total mass of solar-composition material needed

o o o o oo

o o o o oo

o o o o o o o o oo o o

o o o o

o o o

o o

o oo

o o o oo o

oo o

o o oo o o

o o o o

oo o o o

o o o o o

o oo o o o o o

o o o o

o o o o o o oo

o oo o

o o o

o o o o o

o o oo

o o oo o

o o

o o o oo o

o oo o o

o o o

o o o o o oo o o o o o

1108 G. WUCHTERL ET AL.

Saum n, D., and Chabrier, G. 1989. Pressure i nizati n f hydr gen: the plasmaphase transiti n. 62:2397–2400.

Saum n, D., Chabrier, G., and Van H rn, H. M. 1995. An equati n f state f rl w-mass stars and giant planets. 99:713–741.

Shu, F. H., J hnst ne, D., and H llenbach, D. 1993. Ph t evap rati n f the s larnebula and the f rmati n f the giant planets. 106:92–101.

Stevens n, D. J. 1982 . F rmati n f the giant planets. 30:755–764.

Stevens n, D. J. 1982 . Interi rs f the giant planets.10:257–295.

Stevens n, D. J. 1984. On f rming the giant planets quickly (“superganymedeanpuffballs”) (abstract) 15:822–823.

Stevens n, D. J., and Salpeter, E. E. 1977. The dynamics and helium distributi nin hydr gen-helium fluid planets. 35:239–261.

Str m, S. E., Edwards, S., and Skrutskie, M. F. 1993. Ev luti nary timescales f rcircumstellar disks ass ciated with intermediate and s lar-type stars. In

, ed. E. H. Levy and J. I. Lunine (Tucs n: Universityf Ariz na Press), pp. 837–866.

Tajima, N., and Nakagawa, Y. 1995. Ev luti n and dynamical stability f thepr t -giant-planet envel pe. 126:282–292.

Tanaka, H., and Ida, S. 1999. Gr wth f a migrating pr t planet. 139:350–366.

T mre, A. 1964. On the gravitati nal stability f a disk f stars.139:1217–1238.

Tremaine, S. 1991. On the rigin f the bliquities f the uter planets.89:85–92.

Trilling, D., Benz, W., Guill t, T., Lunine, J. I., Hubbard, W. B., and Burr ws, A.1998. Orbital ev luti n and migrati n f giant planets: M deling extras larplanets. 500:428–439.

Tscharnuter, W. M. 1987. A c llapse m del f the turbulent pres lar nebula.188:55–73.

Tscharnuter, W. M., and B ss, A. P. 1993. F rmati n f the pr t s lar nebula. In, ed. E. H. Levy and J. I. Lunine (Tucs n: Univer-

sity f Ariz na Press), pp. 921–938.v n Zahn, U., Hunten, D. M., and Lehmacher, G. 1998. Helium in Jupiter’s atm -

sphere: Results fr m the Pr be helium interfer meter experiment.103:22815–22830.

Weidenschilling, S. J. 1977. Aer dynamics f s lid b dies in the s lar nebula.180:57–70.

Weidenschilling, S. J., and Cuzzi, J. N. 1993. F rmati n f planetesimals in thes lar nebula. In , ed. E. H. Levy and J. I. Lunine,(Tucs n: University f Ariz na Press), pp. 1031–1060.

Weidenschilling, S. J., and Marzari, F. 1996. Gravitati nal scattering as a p ssiblerigin f r giant planets at small stellar distances. 384:619–621.

Weidenschilling, S. J., Spaute, D., Davis, D. R., Marzari, F., and Ohtsuki, K. 1997.Accreti nal ev luti n f a planetesimal swarm. 128:429–455.

Weir, S. T., Mitchell, A. C., and Nellis, W. J. 1996. Metallizati n f fluidm lecular-hydr gen at 140 GPa (1.4 Mbar). 76:1860–1863.

Wetherill, G. W. 1990. F rmati n f the Earth.18:205–256.

Wetherill, G. W., and Stewart, G. R. 1989. Accumulati n f a swarm f smallplanetesimals. 77:330–357.

Wuchterl, G. 1989. Zur Entstehung der Gasplaneten. Kugelsymmetrische Gas-¨str mungen auf Pr t planeten [On the f rmati n f giant planets. Spherically

¨symmetric gas fl ws nt pr t planets], Dissertati n, Universitat Wien.

Phys. Re . Lett.

Astrophys. J. Suppl.

Icarusa Planet. Space Sci.

b Ann. Re . Earth Planet. Sci.

Lunar Planet. Sci.

Astrophys. J. Suppl.

Pro-tostars and Planets III

IcarusIcarus

Astrophys. J.

Icarus

Astrophys. J.As-

tron. Astrophys.

Protostars and Planets III

Galileo J.Geophys. Res.

Mon. Not. Roy. Astron. Soc.

Protostars and Planets III

Nature

Icarus

Phys. Re . Lett.Ann. Re . Earth Planet. Sci.

Icarus

v

v

v

v

DR.RUPN

ATHJI(

DR.R

UPAK

NATH )

Page 29: Obser atoire de la Coˆte d’Azur v Institut fu¨r Astronomie ... · II. INTERIORS OF THE GIANT PLANETS 1082 G. WUCHTERL ET AL. vv the total mass of solar-composition material needed

o o o o

o o o o oo

o o o o

o o o oo o o

o o o o o

o o o

o o o o o

o o o o

o o o oo o

o o o oo

o o o oo o o o

o o o o

GIANT PLANET FORMATION 1109

Wuchterl, G. 1990. Hydr dynamics f giant planet f rmati n. I: Overviewing the-mechanism. 238:83–94.

Wuchterl, G. 1991 . Hydr dynamics f giant planet f rmati n. II: M del equa-ti ns and critical mass. 91:39–52.

Wuchterl, G. 1991 . Hydr dynamics f giant planet f rmati n. III: Jupiter’s nu-cleated instability. 91:53–64.

Wuchterl, G. 1993. The critical mass f r pr t planets revisited: Massive envel pesthr ugh c nvecti n. 106:323–334.

Wuchterl, G. 1995 . Giant planet f rmati n: A c mparative view f gas accreti n.67:51–65.

Wuchterl, G. 1995 . Time-dependent c nvecti n n self-adaptive grids.89:119–126.

Wuchterl, G. 1996. F rmati n f giant planets cl se t stars.28:1108.

Wuchterl, G. 1997. Giant planet f rmati n and the masses f extras lar planets.In ed. F. Paresce (Berlin: Springer) pp.64–71.

Wuchterl, G. 1999. C nvecti n and giant planet f rmati n. In(D rdrecht: Kluwer), in press. (Special issue f

)Wuchterl, G., and Feuchtinger, M. U. 1998. A simple c nvecti n m del f r self-

gravitating fluid dynamics—time-dependent c nvective energy transfer inpr t stars and n nlinear stellar pulsati ns. 340:419–430.

Zhark v, V. N., and Gudk va, T. V. 1991. M dels f giant planets with a variablerati f ice t r ck. 9:357–366.

Astron. Astrophys.a

Icarusb

Icarus

Icarusa

Earth Moon Planetsb Comp.

Phys. Commun.Bull. Am. Astron.

Soc.

Science with the VLT Interferometer,

Euroconference onExtrasolar Planets Earth,Moon and Planets.

Astron. Astrophys.

Ann. Geophys.

DR.RUPN

ATHJI(

DR.R

UPAK

NATH )

Page 30: Obser atoire de la Coˆte d’Azur v Institut fu¨r Astronomie ... · II. INTERIORS OF THE GIANT PLANETS 1082 G. WUCHTERL ET AL. vv the total mass of solar-composition material needed

DR.RUPN

ATHJI(

DR.R

UPAK

NATH )