Top Banner
OBJ CUT M. Pawan Kumar Philip Torr Andrew Zisserman UNIVERSITY OF OXFORD
61

O BJ C UT

Dec 30, 2015

Download

Documents

preston-nunez

UNIVERSITY OF OXFORD. O BJ C UT. M. Pawan Kumar Philip Torr Andrew Zisserman. Aim. Given an image, to segment the object. Object Category Model. Segmentation. Cow Image. Segmented Cow. Segmentation should (ideally) be shaped like the object e.g. cow-like - PowerPoint PPT Presentation
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: O BJ  C UT

OBJ CUT

M. Pawan Kumar

Philip Torr

Andrew Zisserman

UNIVERSITYOF

OXFORD

Page 2: O BJ  C UT

Aim• Given an image, to segment the object

Segmentation should (ideally) be• shaped like the object e.g. cow-like• obtained efficiently in an unsupervised manner• able to handle self-occlusion

Segmentation

ObjectCategory

Model

Cow Image Segmented Cow

Page 3: O BJ  C UT

Challenges

Self Occlusion

Intra-Class Shape Variability

Intra-Class Appearance Variability

Page 4: O BJ  C UT

MotivationMagic Wand

Current methods require user intervention• Object and background seed pixels (Boykov and Jolly, ICCV 01)• Bounding Box of object (Rother et al. SIGGRAPH 04)

Cow Image

Object Seed Pixels

Page 5: O BJ  C UT

MotivationMagic Wand

Current methods require user intervention• Object and background seed pixels (Boykov and Jolly, ICCV 01)• Bounding Box of object (Rother et al. SIGGRAPH 04)

Cow Image

Object Seed Pixels

Background Seed Pixels

Page 6: O BJ  C UT

MotivationMagic Wand

Current methods require user intervention• Object and background seed pixels (Boykov and Jolly, ICCV 01)• Bounding Box of object (Rother et al. SIGGRAPH 04)

Segmented Image

Page 7: O BJ  C UT

MotivationMagic Wand

Current methods require user intervention• Object and background seed pixels (Boykov and Jolly, ICCV 01)• Bounding Box of object (Rother et al. SIGGRAPH 04)

Cow Image

Object Seed Pixels

Background Seed Pixels

Page 8: O BJ  C UT

MotivationMagic Wand

Current methods require user intervention• Object and background seed pixels (Boykov and Jolly, ICCV 01)• Bounding Box of object (Rother et al. SIGGRAPH 04)

Segmented Image

Page 9: O BJ  C UT

Problem • Manually intensive

• Segmentation is not guaranteed to be ‘object-like’

Non Object-like Segmentation

Motivation

Page 10: O BJ  C UT

Our Method• Combine object detection with segmentation

– Borenstein and Ullman, ECCV ’02– Leibe and Schiele, BMVC ’03

• Incorporate global shape priors in MRF

• Detection provides– Object Localization– Global shape priors

• Automatically segments the object– Note our method is completely generic– Applicable to any object category model

Page 11: O BJ  C UT

Outline

• Problem Formulation

• Form of Shape Prior

• Optimization

• Results

Page 12: O BJ  C UT

Problem• Labelling m over the set of pixels D

• Shape prior provided by parameter

• Energy E (m, ) = ∑x(D|mx)+x(mx| ) + ∑xy(mx,my)+ (D|mx,my)

• Unary terms– Likelihood based on colour– Unary potential based on distance from

• Pairwise terms– Prior– Contrast term

• Find best labelling m* = arg min ∑ wi E (m, i)– wi is the weight for sample i

Unary terms Pairwise terms

Page 13: O BJ  C UT

MRF

Probability for a labelling consists of• Likelihood

• Unary potential based on colour of pixel• Prior which favours same labels for neighbours (pairwise potentials)

D (pixels)

m (labels)

Image Plane

x

y

mx

my Unary Potential

x(D|mx)

Pairwise Potential

xy(mx, my)

Page 14: O BJ  C UT

Example

Cow Image Object SeedPixels

Background SeedPixels

Prior

x …

y …

x …

y …

x(D|obj)

x(D|bkg) xy(mx,my)

Likelihood Ratio (Colour)

Page 15: O BJ  C UT

Example

Cow Image Object SeedPixels

Background SeedPixels

PriorLikelihood Ratio (Colour)

Page 16: O BJ  C UT

Contrast-Dependent MRF

Probability of labelling in addition has• Contrast term which favours boundaries to lie on image edges

D (pixels)

m (labels)

Image Plane

Contrast Term (D|mx,my)

x

y

mx

my

Page 17: O BJ  C UT

Example

Cow Image Object SeedPixels

Background SeedPixels

Prior + Contrast

x …

y …

x …

y …

Likelihood Ratio (Colour)

x(D|obj)

x(D|bkg) xy(mx,my)+

xy(D|mx,my)

Page 18: O BJ  C UT

Example

Cow Image Object SeedPixels

Background SeedPixels

Prior + ContrastLikelihood Ratio (Colour)

Page 19: O BJ  C UT

Our Model

Probability of labelling in addition has• Unary potential which depend on distance from (shape parameter)

D (pixels)

m (labels)

(shape parameter)

Image Plane

Object CategorySpecific MRFx

y

mx

my

Unary Potentialx(mx|)

Page 20: O BJ  C UT

Example

Cow Image Object SeedPixels

Background SeedPixels

Prior + ContrastDistance from

Shape Prior

Page 21: O BJ  C UT

Example

Cow Image Object SeedPixels

Background SeedPixels

Prior + ContrastLikelihood + Distance from

Shape Prior

Page 22: O BJ  C UT

Example

Cow Image Object SeedPixels

Background SeedPixels

Prior + ContrastLikelihood + Distance from

Shape Prior

Page 23: O BJ  C UT

Outline

• Problem Formulation– Energy E (m, ) = ∑x(D|mx)+x(mx| ) + ∑xy(mx,my)+ (D|mx,my)

• Form of Shape Prior

• Optimization

• Results

Page 24: O BJ  C UT

Layered Pictorial Structures (LPS)• Generative model

• Composition of parts + spatial layout

Layer 2

Layer 1

Parts in Layer 2 can occlude parts in Layer 1

Spatial Layout(Pairwise Configuration)

Page 25: O BJ  C UT

Layer 2

Layer 1

Transformations

1

P(1) = 0.9

Cow Instance

Layered Pictorial Structures (LPS)

Page 26: O BJ  C UT

Layer 2

Layer 1

Transformations

2

P(2) = 0.8

Cow Instance

Layered Pictorial Structures (LPS)

Page 27: O BJ  C UT

Layer 2

Layer 1

Transformations

3

P(3) = 0.01

Unlikely Instance

Layered Pictorial Structures (LPS)

Page 28: O BJ  C UT

LPS for Detection• Learning

– Learnt automatically using a set of videos– Part correspondence using Shape Context

Shape Context Matching

Multiple Shape Exemplars

Page 29: O BJ  C UT

LPS for Detection• Detection

– Putative parts found using tree cascade of classifiers(x,y)

Page 30: O BJ  C UT

LPS for Detection

• MRF over parts

• Labels represent putative poses

• Prior (pairwise potential) - Robust Truncated Model

• Match LPS by obtaining MAP configuration

Potts Model Linear Model Quadratic Model

Page 31: O BJ  C UT

LPS for DetectionEfficient Belief Propagation

j

i

k

• Likelihood i(xi)• tree cascade of classifiers

• Prior ij(xi,xj)• fij(xi,xj), if xi Ci(xj)• ij , otherwise

• Pr(x) i(xi) ij(xi,xj)

xi

xj

xk

ij

jk

ki

i

j

k

Messages

mj->i

Page 32: O BJ  C UT

LPS for DetectionEfficient Belief Propagation

j

i

k

• Likelihood i(xi)• tree cascade of classifiers

• Prior ij(xi,xj)• fij(xi,xj), if xi Ci(xj)• ij , otherwise

• Pr(x) i(xi) ij(xi,xj)

xi

xj

xk

Messages calculated as

Page 33: O BJ  C UT

LPS for DetectionEfficient Generalized Belief Propagation

j

i

k

• Likelihood i(xi)• tree cascade of classifiers

• Prior ij(xi,xj)• fij(xi,xj), if xi Ci(xj)• ij , otherwise

• Pr(x) i(xi) ij(xi,xj)

xi

xj

xk

ij

jk

ki

i

j

k

Messages

mk->ij

ijk

Page 34: O BJ  C UT

LPS for DetectionEfficient Generalized Belief Propagation

j

i

k

• Likelihood i(xi)• tree cascade of classifiers

• Prior ij(xi,xj)• fij(xi,xj), if xi Ci(xj)• ij , otherwise

• Pr(x) i(xi) ij(xi,xj)

xi

xj

xk

Messages calculated as

Page 35: O BJ  C UT

LPS for DetectionSecond Order Cone Programming Relaxations

j

i

k

• Likelihood i(xi)• tree cascade of classifiers

• Prior ij(xi,xj)• fij(xi,xj), if xi Ci(xj)• ij , otherwise

• Pr(x) i(xi) ij(xi,xj)

xi

xj

xk

Page 36: O BJ  C UT

LPS for DetectionSecond Order Cone Programming Relaxations

j

i

k

• Likelihood i(xi)• tree cascade of classifiers

• Prior ij(xi,xj)• fij(xi,xj), if xi Ci(xj)• ij , otherwise

• Pr(x) i(xi) ij(xi,xj)

0

1

0

0

0

1

1

0

0

m - Concatenation of all binary vectors

l - Likelihood vector

P - Prior matrix

Page 37: O BJ  C UT

LPS for DetectionSecond Order Cone Programming Relaxations

j

i

k

0

1

0

0

0

1

1

0

0

Page 38: O BJ  C UT

LPS for DetectionSecond Order Cone Programming Relaxations

j

i

k

0

1

0

0

0

1

1

0

0

Page 39: O BJ  C UT

LPS for DetectionSecond Order Cone Programming Relaxations

j

i

k

0

1

0

0

0

1

1

0

0

Page 40: O BJ  C UT

Outline

• Problem Formulation

• Form of Shape Prior

• Optimization

• Results

Page 41: O BJ  C UT

Optimization

• Given image D, find best labelling as m* = arg max p(m|D)

• Treat LPS parameter as a latent (hidden) variable

• EM framework– E : sample the distribution over – M : obtain the labelling m

Page 42: O BJ  C UT

E-Step

• Given initial labelling m’, determine p( | m’,D)

• Problem Efficiently sampling from p( | m’,D)

• Solution• We develop efficient sum-product Loopy Belief

Propagation (LBP) for matching LPS.

• Similar to efficient max-product LBP for MAP estimate

Page 43: O BJ  C UT

Results

• Different samples localize different parts well.• We cannot use only the MAP estimate of the LPS.

Page 44: O BJ  C UT

M-Step

• Given samples from p( |m’,D), get new labelling mnew

• Sample i provides– Object localization to learn RGB distributions of object and background– Shape prior for segmentation

• Problem– Maximize expected log likelihood using all samples– To efficiently obtain the new labelling

Page 45: O BJ  C UT

M-Step

Cow Image Shape 1

w1 = P(1|m’,D)

RGB Histogram for Object RGB Histogram for Background

Page 46: O BJ  C UT

Cow Image

M-Step

1

Image PlaneD (pixels)

m (labels)

• Best labelling found efficiently using a Single Graph Cut

Shape 1

w1 = P(1|m’,D)

Page 47: O BJ  C UT

Segmentation using Graph Cuts

x …

y … … …

z … …

Obj

Bkg

Cutx(D|bkg) + x(bkg|)

m

z(D|obj) + z(obj|)

xy(mx,my)+

xy(D|mx,my)

Page 48: O BJ  C UT

Segmentation using Graph Cuts

x …

y … … …

z … …

Obj

Bkg

m

Page 49: O BJ  C UT

M-Step

Cow Image

RGB Histogram for BackgroundRGB Histogram for Object

Shape 2

w2 = P(2|m’,D)

Page 50: O BJ  C UT

M-Step

Cow Image2

Image PlaneD (pixels)

m (labels)

• Best labelling found efficiently using a Single Graph Cut

Shape 2

w2 = P(2|m’,D)

Page 51: O BJ  C UT

M-Step

2

Image Plane

1

Image Plane

w1 + w2 + ….

• Best labelling found efficiently using a Single Graph Cut

m* = arg min ∑ wi E (m,i)

Page 52: O BJ  C UT

Outline

• Problem Formulation

• Form of Shape Prior

• Optimization

• Results

Page 53: O BJ  C UT

SegmentationImage

ResultsUsing LPS Model for Cow

Page 54: O BJ  C UT

In the absence of a clear boundary between object and background

SegmentationImage

ResultsUsing LPS Model for Cow

Page 55: O BJ  C UT

SegmentationImage

ResultsUsing LPS Model for Cow

Page 56: O BJ  C UT

SegmentationImage

ResultsUsing LPS Model for Cow

Page 57: O BJ  C UT

SegmentationImage

ResultsUsing LPS Model for Horse

Page 58: O BJ  C UT

SegmentationImage

ResultsUsing LPS Model for Horse

Page 59: O BJ  C UT

Our Method Leibe and SchieleImage

Results

Page 60: O BJ  C UT

AppearanceShape Shape+Appearance

Results

Without x(D|mx) Without x(mx|)

Page 61: O BJ  C UT

• Conclusions

– New model for introducing global shape prior in MRF– Method of combining detection and segmentation– Efficient LBP for detecting articulated objects

• Future Work

– Other shape parameters need to be explored– Method needs to be extended to handle multiple

visual aspects