Top Banner
OBJ CUT M. Pawan Kumar Philip Torr Andrew Zisserman UNIVERSITY OF OXFORD
61

O BJ C UT M. Pawan Kumar Philip Torr Andrew Zisserman UNIVERSITY OF OXFORD.

Mar 28, 2015

Download

Documents

Vanessa Baker
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: O BJ C UT M. Pawan Kumar Philip Torr Andrew Zisserman UNIVERSITY OF OXFORD.

OBJ CUT

M. Pawan Kumar

Philip Torr

Andrew Zisserman

UNIVERSITYOF

OXFORD

Page 2: O BJ C UT M. Pawan Kumar Philip Torr Andrew Zisserman UNIVERSITY OF OXFORD.

Aim• Given an image, to segment the object

Segmentation should (ideally) be• shaped like the object e.g. cow-like• obtained efficiently in an unsupervised manner• able to handle self-occlusion

Segmentation

ObjectCategory

Model

Cow Image Segmented Cow

Page 3: O BJ C UT M. Pawan Kumar Philip Torr Andrew Zisserman UNIVERSITY OF OXFORD.

Challenges

Self Occlusion

Intra-Class Shape Variability

Intra-Class Appearance Variability

Page 4: O BJ C UT M. Pawan Kumar Philip Torr Andrew Zisserman UNIVERSITY OF OXFORD.

MotivationMagic Wand

Current methods require user intervention• Object and background seed pixels (Boykov and Jolly, ICCV 01)• Bounding Box of object (Rother et al. SIGGRAPH 04)

Cow Image

Object Seed Pixels

Page 5: O BJ C UT M. Pawan Kumar Philip Torr Andrew Zisserman UNIVERSITY OF OXFORD.

MotivationMagic Wand

Current methods require user intervention• Object and background seed pixels (Boykov and Jolly, ICCV 01)• Bounding Box of object (Rother et al. SIGGRAPH 04)

Cow Image

Object Seed Pixels

Background Seed Pixels

Page 6: O BJ C UT M. Pawan Kumar Philip Torr Andrew Zisserman UNIVERSITY OF OXFORD.

MotivationMagic Wand

Current methods require user intervention• Object and background seed pixels (Boykov and Jolly, ICCV 01)• Bounding Box of object (Rother et al. SIGGRAPH 04)

Segmented Image

Page 7: O BJ C UT M. Pawan Kumar Philip Torr Andrew Zisserman UNIVERSITY OF OXFORD.

MotivationMagic Wand

Current methods require user intervention• Object and background seed pixels (Boykov and Jolly, ICCV 01)• Bounding Box of object (Rother et al. SIGGRAPH 04)

Cow Image

Object Seed Pixels

Background Seed Pixels

Page 8: O BJ C UT M. Pawan Kumar Philip Torr Andrew Zisserman UNIVERSITY OF OXFORD.

MotivationMagic Wand

Current methods require user intervention• Object and background seed pixels (Boykov and Jolly, ICCV 01)• Bounding Box of object (Rother et al. SIGGRAPH 04)

Segmented Image

Page 9: O BJ C UT M. Pawan Kumar Philip Torr Andrew Zisserman UNIVERSITY OF OXFORD.

Problem • Manually intensive

• Segmentation is not guaranteed to be ‘object-like’

Non Object-like Segmentation

Motivation

Page 10: O BJ C UT M. Pawan Kumar Philip Torr Andrew Zisserman UNIVERSITY OF OXFORD.

Our Method• Combine object detection with segmentation

– Borenstein and Ullman, ECCV ’02– Leibe and Schiele, BMVC ’03

• Incorporate global shape priors in MRF

• Detection provides– Object Localization– Global shape priors

• Automatically segments the object– Note our method is completely generic– Applicable to any object category model

Page 11: O BJ C UT M. Pawan Kumar Philip Torr Andrew Zisserman UNIVERSITY OF OXFORD.

Outline

• Problem Formulation

• Form of Shape Prior

• Optimization

• Results

Page 12: O BJ C UT M. Pawan Kumar Philip Torr Andrew Zisserman UNIVERSITY OF OXFORD.

Problem• Labelling m over the set of pixels D

• Shape prior provided by parameter

• Energy E (m, ) = ∑x(D|mx)+x(mx| ) + ∑xy(mx,my)+ (D|mx,my)

• Unary terms– Likelihood based on colour– Unary potential based on distance from

• Pairwise terms– Prior– Contrast term

• Find best labelling m* = arg min ∑ wi E (m, i)– wi is the weight for sample i

Unary terms Pairwise terms

Page 13: O BJ C UT M. Pawan Kumar Philip Torr Andrew Zisserman UNIVERSITY OF OXFORD.

MRF

Probability for a labelling consists of• Likelihood

• Unary potential based on colour of pixel• Prior which favours same labels for neighbours (pairwise potentials)

D (pixels)

m (labels)

Image Plane

x

y

mx

my Unary Potential

x(D|mx)

Pairwise Potential

xy(mx, my)

Page 14: O BJ C UT M. Pawan Kumar Philip Torr Andrew Zisserman UNIVERSITY OF OXFORD.

Example

Cow Image Object SeedPixels

Background SeedPixels

Prior

x …

y …

x …

y …

x(D|obj)

x(D|bkg) xy(mx,my)

Likelihood Ratio (Colour)

Page 15: O BJ C UT M. Pawan Kumar Philip Torr Andrew Zisserman UNIVERSITY OF OXFORD.

Example

Cow Image Object SeedPixels

Background SeedPixels

PriorLikelihood Ratio (Colour)

Page 16: O BJ C UT M. Pawan Kumar Philip Torr Andrew Zisserman UNIVERSITY OF OXFORD.

Contrast-Dependent MRF

Probability of labelling in addition has• Contrast term which favours boundaries to lie on image edges

D (pixels)

m (labels)

Image Plane

Contrast Term (D|mx,my)

x

y

mx

my

Page 17: O BJ C UT M. Pawan Kumar Philip Torr Andrew Zisserman UNIVERSITY OF OXFORD.

Example

Cow Image Object SeedPixels

Background SeedPixels

Prior + Contrast

x …

y …

x …

y …

Likelihood Ratio (Colour)

x(D|obj)

x(D|bkg) xy(mx,my)+

xy(D|mx,my)

Page 18: O BJ C UT M. Pawan Kumar Philip Torr Andrew Zisserman UNIVERSITY OF OXFORD.

Example

Cow Image Object SeedPixels

Background SeedPixels

Prior + ContrastLikelihood Ratio (Colour)

Page 19: O BJ C UT M. Pawan Kumar Philip Torr Andrew Zisserman UNIVERSITY OF OXFORD.

Our Model

Probability of labelling in addition has• Unary potential which depend on distance from (shape parameter)

D (pixels)

m (labels)

(shape parameter)

Image Plane

Object CategorySpecific MRFx

y

mx

my

Unary Potentialx(mx|)

Page 20: O BJ C UT M. Pawan Kumar Philip Torr Andrew Zisserman UNIVERSITY OF OXFORD.

Example

Cow Image Object SeedPixels

Background SeedPixels

Prior + ContrastDistance from

Shape Prior

Page 21: O BJ C UT M. Pawan Kumar Philip Torr Andrew Zisserman UNIVERSITY OF OXFORD.

Example

Cow Image Object SeedPixels

Background SeedPixels

Prior + ContrastLikelihood + Distance from

Shape Prior

Page 22: O BJ C UT M. Pawan Kumar Philip Torr Andrew Zisserman UNIVERSITY OF OXFORD.

Example

Cow Image Object SeedPixels

Background SeedPixels

Prior + ContrastLikelihood + Distance from

Shape Prior

Page 23: O BJ C UT M. Pawan Kumar Philip Torr Andrew Zisserman UNIVERSITY OF OXFORD.

Outline

• Problem Formulation– Energy E (m, ) = ∑x(D|mx)+x(mx| ) + ∑xy(mx,my)+ (D|mx,my)

• Form of Shape Prior

• Optimization

• Results

Page 24: O BJ C UT M. Pawan Kumar Philip Torr Andrew Zisserman UNIVERSITY OF OXFORD.

Layered Pictorial Structures (LPS)• Generative model

• Composition of parts + spatial layout

Layer 2

Layer 1

Parts in Layer 2 can occlude parts in Layer 1

Spatial Layout(Pairwise Configuration)

Page 25: O BJ C UT M. Pawan Kumar Philip Torr Andrew Zisserman UNIVERSITY OF OXFORD.

Layer 2

Layer 1

Transformations

1

P(1) = 0.9

Cow Instance

Layered Pictorial Structures (LPS)

Page 26: O BJ C UT M. Pawan Kumar Philip Torr Andrew Zisserman UNIVERSITY OF OXFORD.

Layer 2

Layer 1

Transformations

2

P(2) = 0.8

Cow Instance

Layered Pictorial Structures (LPS)

Page 27: O BJ C UT M. Pawan Kumar Philip Torr Andrew Zisserman UNIVERSITY OF OXFORD.

Layer 2

Layer 1

Transformations

3

P(3) = 0.01

Unlikely Instance

Layered Pictorial Structures (LPS)

Page 28: O BJ C UT M. Pawan Kumar Philip Torr Andrew Zisserman UNIVERSITY OF OXFORD.

LPS for Detection• Learning

– Learnt automatically using a set of videos– Part correspondence using Shape Context

Shape Context Matching

Multiple Shape Exemplars

Page 29: O BJ C UT M. Pawan Kumar Philip Torr Andrew Zisserman UNIVERSITY OF OXFORD.

LPS for Detection• Detection

– Putative parts found using tree cascade of classifiers(x,y)

Page 30: O BJ C UT M. Pawan Kumar Philip Torr Andrew Zisserman UNIVERSITY OF OXFORD.

LPS for Detection

• MRF over parts

• Labels represent putative poses

• Prior (pairwise potential) - Robust Truncated Model

• Match LPS by obtaining MAP configuration

Potts Model Linear Model Quadratic Model

Page 31: O BJ C UT M. Pawan Kumar Philip Torr Andrew Zisserman UNIVERSITY OF OXFORD.

LPS for DetectionEfficient Belief Propagation

j

i

k

• Likelihood i(xi)• tree cascade of classifiers

• Prior ij(xi,xj)• fij(xi,xj), if xi Ci(xj)• ij , otherwise

• Pr(x) i(xi) ij(xi,xj)

xi

xj

xk

ij

jk

ki

i

j

k

Messages

mj->i

Page 32: O BJ C UT M. Pawan Kumar Philip Torr Andrew Zisserman UNIVERSITY OF OXFORD.

LPS for DetectionEfficient Belief Propagation

j

i

k

• Likelihood i(xi)• tree cascade of classifiers

• Prior ij(xi,xj)• fij(xi,xj), if xi Ci(xj)• ij , otherwise

• Pr(x) i(xi) ij(xi,xj)

xi

xj

xk

Messages calculated as

Page 33: O BJ C UT M. Pawan Kumar Philip Torr Andrew Zisserman UNIVERSITY OF OXFORD.

LPS for DetectionEfficient Generalized Belief Propagation

j

i

k

• Likelihood i(xi)• tree cascade of classifiers

• Prior ij(xi,xj)• fij(xi,xj), if xi Ci(xj)• ij , otherwise

• Pr(x) i(xi) ij(xi,xj)

xi

xj

xk

ij

jk

ki

i

j

k

Messages

mk->ij

ijk

Page 34: O BJ C UT M. Pawan Kumar Philip Torr Andrew Zisserman UNIVERSITY OF OXFORD.

LPS for DetectionEfficient Generalized Belief Propagation

j

i

k

• Likelihood i(xi)• tree cascade of classifiers

• Prior ij(xi,xj)• fij(xi,xj), if xi Ci(xj)• ij , otherwise

• Pr(x) i(xi) ij(xi,xj)

xi

xj

xk

Messages calculated as

Page 35: O BJ C UT M. Pawan Kumar Philip Torr Andrew Zisserman UNIVERSITY OF OXFORD.

LPS for DetectionSecond Order Cone Programming Relaxations

j

i

k

• Likelihood i(xi)• tree cascade of classifiers

• Prior ij(xi,xj)• fij(xi,xj), if xi Ci(xj)• ij , otherwise

• Pr(x) i(xi) ij(xi,xj)

xi

xj

xk

Page 36: O BJ C UT M. Pawan Kumar Philip Torr Andrew Zisserman UNIVERSITY OF OXFORD.

LPS for DetectionSecond Order Cone Programming Relaxations

j

i

k

• Likelihood i(xi)• tree cascade of classifiers

• Prior ij(xi,xj)• fij(xi,xj), if xi Ci(xj)• ij , otherwise

• Pr(x) i(xi) ij(xi,xj)

0

1

0

0

0

1

1

0

0

m - Concatenation of all binary vectors

l - Likelihood vector

P - Prior matrix

Page 37: O BJ C UT M. Pawan Kumar Philip Torr Andrew Zisserman UNIVERSITY OF OXFORD.

LPS for DetectionSecond Order Cone Programming Relaxations

j

i

k

0

1

0

0

0

1

1

0

0

Page 38: O BJ C UT M. Pawan Kumar Philip Torr Andrew Zisserman UNIVERSITY OF OXFORD.

LPS for DetectionSecond Order Cone Programming Relaxations

j

i

k

0

1

0

0

0

1

1

0

0

Page 39: O BJ C UT M. Pawan Kumar Philip Torr Andrew Zisserman UNIVERSITY OF OXFORD.

LPS for DetectionSecond Order Cone Programming Relaxations

j

i

k

0

1

0

0

0

1

1

0

0

Page 40: O BJ C UT M. Pawan Kumar Philip Torr Andrew Zisserman UNIVERSITY OF OXFORD.

Outline

• Problem Formulation

• Form of Shape Prior

• Optimization

• Results

Page 41: O BJ C UT M. Pawan Kumar Philip Torr Andrew Zisserman UNIVERSITY OF OXFORD.

Optimization

• Given image D, find best labelling as m* = arg max p(m|D)

• Treat LPS parameter as a latent (hidden) variable

• EM framework– E : sample the distribution over – M : obtain the labelling m

Page 42: O BJ C UT M. Pawan Kumar Philip Torr Andrew Zisserman UNIVERSITY OF OXFORD.

E-Step

• Given initial labelling m’, determine p( | m’,D)

• Problem Efficiently sampling from p( | m’,D)

• Solution• We develop efficient sum-product Loopy Belief

Propagation (LBP) for matching LPS.

• Similar to efficient max-product LBP for MAP estimate

Page 43: O BJ C UT M. Pawan Kumar Philip Torr Andrew Zisserman UNIVERSITY OF OXFORD.

Results

• Different samples localize different parts well.• We cannot use only the MAP estimate of the LPS.

Page 44: O BJ C UT M. Pawan Kumar Philip Torr Andrew Zisserman UNIVERSITY OF OXFORD.

M-Step

• Given samples from p( |m’,D), get new labelling mnew

• Sample i provides– Object localization to learn RGB distributions of object and background– Shape prior for segmentation

• Problem– Maximize expected log likelihood using all samples– To efficiently obtain the new labelling

Page 45: O BJ C UT M. Pawan Kumar Philip Torr Andrew Zisserman UNIVERSITY OF OXFORD.

M-Step

Cow Image Shape 1

w1 = P(1|m’,D)

RGB Histogram for Object RGB Histogram for Background

Page 46: O BJ C UT M. Pawan Kumar Philip Torr Andrew Zisserman UNIVERSITY OF OXFORD.

Cow Image

M-Step

1

Image PlaneD (pixels)

m (labels)

• Best labelling found efficiently using a Single Graph Cut

Shape 1

w1 = P(1|m’,D)

Page 47: O BJ C UT M. Pawan Kumar Philip Torr Andrew Zisserman UNIVERSITY OF OXFORD.

Segmentation using Graph Cuts

x …

y … … …

z … …

Obj

Bkg

Cutx(D|bkg) + x(bkg|)

m

z(D|obj) + z(obj|)

xy(mx,my)+

xy(D|mx,my)

Page 48: O BJ C UT M. Pawan Kumar Philip Torr Andrew Zisserman UNIVERSITY OF OXFORD.

Segmentation using Graph Cuts

x …

y … … …

z … …

Obj

Bkg

m

Page 49: O BJ C UT M. Pawan Kumar Philip Torr Andrew Zisserman UNIVERSITY OF OXFORD.

M-Step

Cow Image

RGB Histogram for BackgroundRGB Histogram for Object

Shape 2

w2 = P(2|m’,D)

Page 50: O BJ C UT M. Pawan Kumar Philip Torr Andrew Zisserman UNIVERSITY OF OXFORD.

M-Step

Cow Image2

Image PlaneD (pixels)

m (labels)

• Best labelling found efficiently using a Single Graph Cut

Shape 2

w2 = P(2|m’,D)

Page 51: O BJ C UT M. Pawan Kumar Philip Torr Andrew Zisserman UNIVERSITY OF OXFORD.

M-Step

2

Image Plane

1

Image Plane

w1 + w2 + ….

• Best labelling found efficiently using a Single Graph Cut

m* = arg min ∑ wi E (m,i)

Page 52: O BJ C UT M. Pawan Kumar Philip Torr Andrew Zisserman UNIVERSITY OF OXFORD.

Outline

• Problem Formulation

• Form of Shape Prior

• Optimization

• Results

Page 53: O BJ C UT M. Pawan Kumar Philip Torr Andrew Zisserman UNIVERSITY OF OXFORD.

SegmentationImage

ResultsUsing LPS Model for Cow

Page 54: O BJ C UT M. Pawan Kumar Philip Torr Andrew Zisserman UNIVERSITY OF OXFORD.

In the absence of a clear boundary between object and background

SegmentationImage

ResultsUsing LPS Model for Cow

Page 55: O BJ C UT M. Pawan Kumar Philip Torr Andrew Zisserman UNIVERSITY OF OXFORD.

SegmentationImage

ResultsUsing LPS Model for Cow

Page 56: O BJ C UT M. Pawan Kumar Philip Torr Andrew Zisserman UNIVERSITY OF OXFORD.

SegmentationImage

ResultsUsing LPS Model for Cow

Page 57: O BJ C UT M. Pawan Kumar Philip Torr Andrew Zisserman UNIVERSITY OF OXFORD.

SegmentationImage

ResultsUsing LPS Model for Horse

Page 58: O BJ C UT M. Pawan Kumar Philip Torr Andrew Zisserman UNIVERSITY OF OXFORD.

SegmentationImage

ResultsUsing LPS Model for Horse

Page 59: O BJ C UT M. Pawan Kumar Philip Torr Andrew Zisserman UNIVERSITY OF OXFORD.

Our Method Leibe and SchieleImage

Results

Page 60: O BJ C UT M. Pawan Kumar Philip Torr Andrew Zisserman UNIVERSITY OF OXFORD.

AppearanceShape Shape+Appearance

Results

Without x(D|mx) Without x(mx|)

Page 61: O BJ C UT M. Pawan Kumar Philip Torr Andrew Zisserman UNIVERSITY OF OXFORD.

• Conclusions

– New model for introducing global shape prior in MRF– Method of combining detection and segmentation– Efficient LBP for detecting articulated objects

• Future Work

– Other shape parameters need to be explored– Method needs to be extended to handle multiple

visual aspects