Top Banner
Urs Schreiber (New York University, Abu Dhabi & Czech Academy of Science, Prague) Microscopic brane physics from Cohomotopy talk at M-Theory and Mathematics NYU AD 2020 based on joint work with H. Sati ncatlab.org/schreiber/show/Microscopic+Brane+Physics+from+Cohomotopy
64

NYU AD 2020 H. Sati

May 19, 2022

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: NYU AD 2020 H. Sati

Urs Schreiber

(New York University, Abu Dhabi & Czech Academy of Science, Prague)

Microscopic brane physics from Cohomotopy

talk atM-Theory and Mathematics

NYU AD 2020

based on joint work with

H. Sati

ncatlab.org/schreiber/show/Microscopic+Brane+Physics+from+Cohomotopy

Page 2: NYU AD 2020 H. Sati

0) Introduction

1) Microscopic Brane Charge

2) Orientifold Tadpole Cancellation

3) D6⊥D8D6⊥D8D6⊥D8 -Brane Intersections

4) Hanany-Witten Theory

5) Chan-Paton Data

6) BMN Matrix Model States

7) M2/M5 Brane Bound States

Page 3: NYU AD 2020 H. Sati

(0)

Introduction

Open Problem M and Hypothesis H

back to top

3

Page 5: NYU AD 2020 H. Sati

Open problem QCD’t Hooft doubling

Confined QCD“Millennium problem”- QCD-cosmology- nucleosynthesis- form factors- · · ·

Flavored QCD“Flavor problem”

Hig

gsse

ctor - cosm. constant

- EW hierarchy- vacuum stability- Vcb-puzzle- flavour anomalies

Leptoquark=====⇒ GUT

- · · ·

braneworld geometric engineering

AdS/QCD correspondence

Solution

??? ???

IIA super-gravitynear blackintersecting branes

flavor branes

colo

rbra

nes

. . .

Page 6: NYU AD 2020 H. Sati

Open problem QCDsmall Nc ’t Hooft doubling

Nc = 3quark colors

Confined QCD“Millennium problem”- QCD-cosmology- nucleosynthesis- form factors- · · ·

Flavored QCD“Flavor problem”

Hig

gsse

ctor - cosm. constant

- EW hierarchy- vacuum stability- Vcb-puzzle- flavour anomalies

Leptoquark=====⇒ GUT

- · · ·

braneworld geometric engineering

AdS/QCD correspondence

Solution

??? ???

IIA super-gravitynear blackintersecting branes

flavor branes

colo

rbra

nes

. . .

Page 7: NYU AD 2020 H. Sati

Open problem QCDsmall Nc ’t Hooft doubling

Nc = 3quark colors

Confined QCD“Millennium problem”- QCD-cosmology- nucleosynthesis- form factors- · · ·

Flavored QCD“Flavor problem”

Hig

gsse

ctor - cosm. constant

- EW hierarchy- vacuum stability- Vcb-puzzle- flavour anomalies

Leptoquark=====⇒ GUT

- · · ·

braneworld geometric engineering

AdS/QCD correspondence

Solution

??? ???

M-theorywith microscopicintersecting branes

flavor branes

colo

rbra

nes

. . .

Page 8: NYU AD 2020 H. Sati

Open problem QCD Open problem Msmall Nc ’t Hooft doubling

Confined QCD“Millennium problem”- QCD-cosmology- nucleosynthesis- form factors- · · ·

Flavored QCD“Flavor problem”

Hig

gsse

ctor - cosm. constant

- EW hierarchy- vacuum stability- Vcb-puzzle- flavour anomalies

Leptoquark=====⇒ GUT

- · · ·

braneworld geometric engineering

AdS/QCD correspondence

Solution

???

Hyp

othe

sis

H

M-theorywith microscopicintersecting branes

flavor branes

colo

rbra

nes

. . .

Page 12: NYU AD 2020 H. Sati

Open problem QCD Open problem Msmall Nc ’t Hooft doubling

first consider large g2YMNc

+3 11d supergravity

CovariantPhaseSpace11d SuGra

=

spacetimes

formalized as: GADE

–orbi R10, 1|32

–foldssuper-orbifold

(X )

equipped with: 0) gravity 1) C-field

formalized as: Pin+-structuresuper-vielbein

(E,Ψ) differential formsflux densities

(G4, G7)

subject to: Einstein equations Page equation

equivalent to: super-torsion = 0Candiello-Lechner 93, Howe 97

flux is in rationalizedJ-twisted CohomotopySati 13, Fiorenza-Sati-S. 19a

Page 13: NYU AD 2020 H. Sati

Open problem QCD Open problem Msmall Nc ’t Hooft doubling

& large g2YMNc

+3 11d supergravitycharge-quantizedin Cohomotopy

CovariantPhaseSpace11d SuGra

=

spacetimes

formalized as: GADE

–orbi R10, 1|32

–foldssuper-orbifold

(X )

equipped with: 0) gravity 1) C-field

formalized as: Pin+-structuresuper-vielbein

(E,Ψ) differential formsflux densities

(G4, G7)

subject to: Einstein equations Page equation

equivalent to: super-torsion = 0Candiello-Lechner 93, Howe 97

flux is in rationalizedJ-twisted CohomotopySati 13, Fiorenza-Sati-S. 19a

Page 15: NYU AD 2020 H. Sati

Discrepancies?

Salvageable?

Looks like M-theory?

Compare implicationsof Hypothesis Hto M-folklore.

today:

Adjust fine-printin Hypothesis H(e.g. differential refinement)

Solve1) Millennium problem2) Vacuum selection problem3) Flavor problem

...

(for later)

15

Page 16: NYU AD 2020 H. Sati

Implications of Hypothesis H

on on on

curved but smoothspacetimes

flat but orbi-singularspacetimes

spacetimeswith horizons

FSS 19b, FSS 19c, GS20 BSS 18, SS 19a SS 19c

topologicalanomaly cancellation:

equivariantanomaly cancellation

Dp ⊥ D(p + 2)worldvolume QFT

- shifted C-field flux quantization- C-field tadpole cancellation- M5 Hopf-WZ level quantization- DMW anomaly cancellation- C-field integral eom...

- M5/MO5 anomaly cancellation- RR-field tadpole cancellation- no irractional D-brane charge

- fuzzy funnels- BLG 3-algebras- BMN matrix model- M2/M5 bound states- AdS3-holography- Coulomb branch indices- Hanany-Witten rules- ...

H. Sati’s talkD. Fiorenza’s talk my talk

at M-Theory and Mathematics 2020

16

Page 18: NYU AD 2020 H. Sati

18

Page 19: NYU AD 2020 H. Sati

19

Page 20: NYU AD 2020 H. Sati

20

Page 21: NYU AD 2020 H. Sati

21

Page 22: NYU AD 2020 H. Sati

22

Page 23: NYU AD 2020 H. Sati

23

Page 24: NYU AD 2020 H. Sati

24

Page 25: NYU AD 2020 H. Sati

25

Page 26: NYU AD 2020 H. Sati

(2)

Orientifold Tadpole Cancellation

implied by

Hypothesis H with Equivariant Hopf Degree Theorem

Sati-Schreiber 19a [arXiv:1909.12277]

back to top

26

Page 27: NYU AD 2020 H. Sati

27

Page 28: NYU AD 2020 H. Sati

28

Page 29: NYU AD 2020 H. Sati

29

Page 30: NYU AD 2020 H. Sati

30

Page 31: NYU AD 2020 H. Sati

31

Page 32: NYU AD 2020 H. Sati

32

Page 33: NYU AD 2020 H. Sati

33

Page 34: NYU AD 2020 H. Sati

34

Page 35: NYU AD 2020 H. Sati

The following four slides showtechnical detail of therealization of this mechanism forMO5-planes atADE-singularities in heterotic M-theory

Skip over technical detailahead to section (3).

35

Page 36: NYU AD 2020 H. Sati

36

Page 37: NYU AD 2020 H. Sati

37

Page 38: NYU AD 2020 H. Sati

38

Page 40: NYU AD 2020 H. Sati

Cohomotopycocycle space

ππππ

boldface!

4(X) :=

pointedmapping space

Maps∗/(X,S4

)

π0

(ππππ4(X)

)=

Cohomotopycohomology

classes

= πnot

boldface

4(X) Cohomotopyset

π1

(ππππ4(X)

)=

Cohomotopygauge

transformations

π2

(ππππ4(X)

)=

Cohomotopygauge of gaugetransformations

...

40

Page 41: NYU AD 2020 H. Sati

Cohomotopy cocycle spacevanishing at ∞ on Euclidean 3-space

ππππ4((R3)cpt

) hmtpy'←−−−−assign unit charge

in Cohomotopyto each point

Conf(R3,D1

)May-Segal theorem

configuration space of pointsin R3 × R1

which are:1) unordered

2) distinct after projection to R3

3) allowed to vanish to ∞ along R1

=

R3×0 R3×∞R3×∞

projection to R3point

in R3×R1point

disappearedto infinity

along R1

41

Page 42: NYU AD 2020 H. Sati

ππππ4((Rd)cpt ∧ (R4−d)+

)oo hmtpy'

hence: a form of differential Cohomotopy

ππππ4diff

((Rd)cpt ∧ (R4−d)+

):=

assigns configuration spaces:

Conf(Rd,D4−d)

42

Page 43: NYU AD 2020 H. Sati

Lemma:

43

Page 44: NYU AD 2020 H. Sati

=

Lemma:

44

Page 45: NYU AD 2020 H. Sati

Consequence: assumingHypothesis H:

differential Cohomotopy cocycle spacereflecting D6⊥D8 -charges

45

Page 47: NYU AD 2020 H. Sati

higher co-observables on D6⊥D8 -intersections

H•

topologicalphase space

t[c]

Ωc ππππ4diff

' H•

(t

Nf∈NConf1,· · ·, Nf

(R3))

(by the above)

' ⊕Nf∈NApb

NfFadell-Husseini

theorem

are algebra of horizontal chord diagrams:

47

Page 48: NYU AD 2020 H. Sati

Horizontal chord diagrams form algebra under concatenation of strands.

tik tij = tiktij

This is universal enveloping algebra of the infinitesimal braid Lie algebra (Kohno):

[tij, tkl] = 0

[tij, tik + tjk] = 0

48

Page 49: NYU AD 2020 H. Sati

Consider the subspace of skew-symmetric co-observables,

denote elements as follows:

49

Page 50: NYU AD 2020 H. Sati

In the subspace of skew-symmetric co-observables we find:

the 2T relationsbecome theordering constraint

=form of anynon-vanishing element

skew-symmetrybecomes thes-rule

the 4T relationsbecome thebreaking rule

50

Page 51: NYU AD 2020 H. Sati

these are the rules of Hanany-Witten theoryfor NS5 ⊥ Dp ⊥ D(p + 2)-brane intersections

if we identify horizontal chord diagrams as follows:

51

Page 53: NYU AD 2020 H. Sati

higher co-states on D6⊥D8 -intersections

H•

topologicalphase space

t[c]

Ωc ππππ4diff

' H•(t

Nf∈NConf1,· · ·, Nf

(R3))

(by the above)

' ⊕Nf∈NWpb

NfKohno & Cohen-Gitler

theorem

are horizontal weight systems:

53

Page 54: NYU AD 2020 H. Sati

All horizontal weight systems w : Apb → C come from Chan-Paton data:1) metric Lie representations ρ 2) stacks of coincident strands 3) winding monodromies:

w

Bar-Natantheorem

54

Page 56: NYU AD 2020 H. Sati

(6)

BMN Matrix Model States

implied by

Hypothesis H

back to top

56

Page 58: NYU AD 2020 H. Sati

,0) Radius fluctuation observables on N -bit fuzzy 2-spheres S2

Nare N ∈ su(2)CMetricReps weight systems on chord diagrams:

58

Page 59: NYU AD 2020 H. Sati

1,2) weight system wρ is the observable aspect of matrix model state ρ:

linear combinations offinite-dim suC-representations

Span(su(2)CMetricReps

)naive funnel- / susy-states of

DBI model / BMN matrix model

ρ 7→wρ//

weight systems onhorizontal chord diagrams

Wpb

states of DBI model / BMN matrix modeas observed by invariant multi-trace observables

59

Page 60: NYU AD 2020 H. Sati

(7)

M2/M5 Brane Bound States

implied by

Hypothesis H

back to top

60

Page 61: NYU AD 2020 H. Sati

Given a sequence of susy states in the BMN matrix model

M2/M5-brane state(finite-dim su(2)C-rep)︷ ︸︸ ︷

(V, ρ) := ⊕i︸︷︷︸

stacks of coincident branes(direct sum over irreps)

(M2/M5-brane charge in ith stack

(ith irrep with multiplicity)︷ ︸︸ ︷N

(M2)

i ·N(M5)

i

)∈ su(2)CMetricReps/∼

this is argued to converge to macroscopic M2- or M5-branesdepending on how the sequence behaves in the large N limit:

Stacks of macroscopic...

M2-branes M5-branes

If for all i N(M5)

i →∞ N(M2)

i →∞(

the relevantlarge N limit)

)

with fixed N(M2)

i N(M5)

i

(the number of coincident branes

in the ith stack

)

and fixed N(M2)i /N N

(M5)i /N

(the charge/light-cone momentum

carried by the ith stack

)

61

Page 62: NYU AD 2020 H. Sati

Given a sequence of susy states in the BMN matrix model

M2/M5-brane state(finite-dim su(2)C-rep)︷ ︸︸ ︷

(V, ρ) := ⊕i︸︷︷︸

stacks of coincident branes(direct sum over irreps)

(M2/M5-brane charge in ith stack

(ith irrep with multiplicity)︷ ︸︸ ︷N

(M2)

i ·N(M5)

i

)∈ su(2)CMetricReps/∼

the large Nlimit does not exist

here:

Span(su(2)CMetricReps

) ρ 7→wρ//

butdoes exist in weight systems

Wpb

if we normalize by the scale of the fuzzy 2-sphere geometry:

4π 22n((N

(M5))2−1)1/2+n wN

(M5)

︸ ︷︷ ︸Single M2-brane state in BMN model

(multiple of suC-weight system)

∈ Wpb

states as seen by multi-trace observables(weight systems on chord diagrams)

62

Page 63: NYU AD 2020 H. Sati

M2/M5-brane bound statesas emergent under Hypothesis H

63

Page 64: NYU AD 2020 H. Sati

End.

back to top

64