Top Banner
Nutrition, Culture, and Metabolism of Microorganisms, Part II 01-27-15
28

NutCultCatab II

Jan 07, 2016

Download

Documents

Duane Hall

Nutrition Catabolism
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: NutCultCatab II

7/17/2019 NutCultCatab II

http://slidepdf.com/reader/full/nutcultcatab-ii 1/28

Nutrition, Culture, and

Metabolism of Microorganisms,

Part II

01-27-15

Page 2: NutCultCatab II

7/17/2019 NutCultCatab II

http://slidepdf.com/reader/full/nutcultcatab-ii 2/28

IV. Essentials of Catabolism

• 3.8 Glycolysis

• 3.9 Fermentative Diversity and the

Respiratory Option

• 3.10 Respiration: Electron Carriers

• 3.11 Respiration: The Proton Motive Force

• 3.12 Respiration: Citric Acid Cycle

• 3.13 Catabolic Diversity

Page 3: NutCultCatab II

7/17/2019 NutCultCatab II

http://slidepdf.com/reader/full/nutcultcatab-ii 3/28

3.8 Glycolysis

•Two reaction series are linked to energyconservation in chemoorganotrophs:

fermentation and respiration

Differ in mechanism of ATP synthesis – Fermentation: substrate-level

phosphorylation; ATP directly synthesized

from an energy-rich intermediate

 – Respiration: oxidative phosphorylation; ATP

produced from proton motive force formed by

transport of electrons

Page 4: NutCultCatab II

7/17/2019 NutCultCatab II

http://slidepdf.com/reader/full/nutcultcatab-ii 4/28

Energy-rich

intermediates   ADP

BA B P P DC~ ~

P i

Substrate-level phosphorylation

Oxidative phosphorylation

ADP   P i

Energizedmembrane

Less energized

membrane

Dissipation of proton

motive force coupled

to ATP synthesis

+

ATP

ATP

Page 5: NutCultCatab II

7/17/2019 NutCultCatab II

http://slidepdf.com/reader/full/nutcultcatab-ii 5/28

3.8 Glycolysis

• Fermented substance is both an electrondonor and an electron acceptor 

• Glycolysis (Embden-

Meyerhof pathway): acommon pathway for catabolism of glucose

 – Anaerobic process

 – Three stages

• Overview

 –Glucose consumed

 – Two ATPs produced

 – Fermentation products generated• Some harnessed by humans for consumption

Page 6: NutCultCatab II

7/17/2019 NutCultCatab II

http://slidepdf.com/reader/full/nutcultcatab-ii 6/28

Page 7: NutCultCatab II

7/17/2019 NutCultCatab II

http://slidepdf.com/reader/full/nutcultcatab-ii 7/28

3.9 Fermentative Diversity and the

Respiratory Option

• Fermentations classified by products

formed

 – Ethanol

 – Lactic acid

 – Propionic acid

 – Mixed acids

 – Butyric acid

 – Butanol

Page 8: NutCultCatab II

7/17/2019 NutCultCatab II

http://slidepdf.com/reader/full/nutcultcatab-ii 8/28

3.9 Fermentative Diversity and the

Respiratory Option

• Fermentations classified by substratefermented – Usually NOT glucose

 –

 Amino acids – Purines and pyrimidines

 – Aromatic compounds

• Saccharomyces cerevisiae can carry out

fermentation or respiration – Carries out the one most beneficial

• Respiration generates more ATP

• Fermentation occurs when conditions are anoxic

Page 9: NutCultCatab II

7/17/2019 NutCultCatab II

http://slidepdf.com/reader/full/nutcultcatab-ii 9/28

3.10 Respiration: Electron Carriers

• Aerobic Respiration – Oxidation using O2 as the terminal electron

acceptor 

 –Higher ATP yield than fermentations

•  ATP produced at the expense of the proton motive

force, which is generated by electron transport

Page 10: NutCultCatab II

7/17/2019 NutCultCatab II

http://slidepdf.com/reader/full/nutcultcatab-ii 10/28

3.10 Respiration: Electron Carriers

• Electron Transport Systems – Membrane associated

 – Mediate transfer of electrons

 –

Conserve some of the energy released duringtransfer and use it to synthesize ATP

 – Many oxidation –reduction enzymes areinvolved in electron transport•

NADH dehydrogenases• flavoproteins

• iron –sulfur proteins

• cytochromes

Page 11: NutCultCatab II

7/17/2019 NutCultCatab II

http://slidepdf.com/reader/full/nutcultcatab-ii 11/28

3.10 Respiration: Electron Carriers

Isoalloxazine ring

Ribitol

Oxidized (FMN)

Reduced (FMNH2)

E 0′ of FMN/FMNH2 (or FAD/FADH2) = – 0.22 V

• NADH dehydrogenases

 – proteins bound to inside surface of cytoplasmicmembrane

 – active site binds NADH and accepts 2 electrons

and 2 protons that are passed to flavoproteins• Flavoproteins

 – contains flavin prostheticgroup (e.g., FMN, FAD)

that accepts 2 electronsand 2 protons butonly donates theelectrons to the next

protein in the chain

Page 12: NutCultCatab II

7/17/2019 NutCultCatab II

http://slidepdf.com/reader/full/nutcultcatab-ii 12/28

Porphyrinring

Pyrrole

Heme (a porphyrin)

Histidine-N

Cysteine-S

Amino acid   Amino acid

S-Cysteine

N-Histidine

Protein

Cytochrome

3.10 Respiration: Electron Carriers

Cytochromes – Proteins that contain

heme prosthetic

groups

 – Accept and donate a

single electron via

the iron atom

in heme

Page 13: NutCultCatab II

7/17/2019 NutCultCatab II

http://slidepdf.com/reader/full/nutcultcatab-ii 13/28

Cysteine

Cysteine

Cysteine

Cysteine

Cysteine

Cysteine

Cysteine

Cysteine

3.10 Respiration: Electron Carriers

Iron –

Sulfur Proteins – Contain clusters of iron

and sulfur 

• Example: ferredoxin

 – Reduction potentials

vary depending on

number and position of

Fe and S atoms – Carry electrons

Page 14: NutCultCatab II

7/17/2019 NutCultCatab II

http://slidepdf.com/reader/full/nutcultcatab-ii 14/28

Oxidized

Reduced

3.10 Respiration: Electron Carriers

• Quinones

 – Hydrophobic non-protein-containing

molecules that participate in electron

transport

 – Accept electrons andprotons but pass

along electrons

only

Page 15: NutCultCatab II

7/17/2019 NutCultCatab II

http://slidepdf.com/reader/full/nutcultcatab-ii 15/28

3.11 Respiration: The Proton Motive Force

• Electron transport system oriented incytoplasmic membrane so that electronsare separated from protons

• Electron carriers arranged in membrane inorder of their reduction potential

The final carrier in the chain donates theelectrons and protons to the terminalelectron acceptor 

Page 16: NutCultCatab II

7/17/2019 NutCultCatab II

http://slidepdf.com/reader/full/nutcultcatab-ii 16/28

Page 17: NutCultCatab II

7/17/2019 NutCultCatab II

http://slidepdf.com/reader/full/nutcultcatab-ii 17/28

3.11 The Proton Motive Force

• During electron transfer, several protonsare released on outside of the membrane

 – Protons originate from NADH and thedissociation of water 

• Results in generation of pH gradient and anelectrochemical potential across themembrane (the proton motive force)

 – The inside becomes electrically negative andalkaline

 – The outside becomes electrically positive andacidic

Page 18: NutCultCatab II

7/17/2019 NutCultCatab II

http://slidepdf.com/reader/full/nutcultcatab-ii 18/28

CYTOPLASM    E    N    V    I    R     O    N    M    E    N

    T

Complex II

Succinate

Fumarate

Qcycle

 0.22

0.0

 0.1

 0.36

 0.39

E 0(V)

E 0(V)

3.11 The Proton Motive Force• Complex I ( NADH:quinone

oxidoreductase) – NADH donates e to FMN

 – FMNH2 donates e to quinone

• Complex II (succinate dehydrogenasecomplex)

 – Bypasses Complex I – Feeds e and H+ from FADH directly to

quinone pool

• Complex III (cytochrome bc 1 com plex) – Transfers e from quinones to

cytochrome c  – Cytochrome c shuttles e to

cytochromes a and a3

• Complex IV (cytochromes a and a3 ) – Terminal oxidase; reduces O2 to H2O

Page 19: NutCultCatab II

7/17/2019 NutCultCatab II

http://slidepdf.com/reader/full/nutcultcatab-ii 19/28

MembraneOut

In

F1

Foc12

b2

a

 

3.11 The Proton Motive Force

• ATP synthase (ATPase):complex that convertsproton motive force into ATP

• Two components – F 1: multiprotein

extramembrane complex,faces cytoplasm

 – Fo: proton-conductingintramembrane channel

• Reversible; dissipatesproton motive force

Page 20: NutCultCatab II

7/17/2019 NutCultCatab II

http://slidepdf.com/reader/full/nutcultcatab-ii 20/28

3.12 The Citric Acid Cycle

•Citric acid cycle (CAC): pathway throughwhich pyruvate is completely oxidized toCO2

 – Initial steps (glucose to pyruvate) same as

glycolysis – Per glucose molecule, 6 CO2 molecules

released and NADH and FADH generated

 – Plays a key role in catabolism and

biosynthesis• Energetics advantage to aerobic

respiration

Page 21: NutCultCatab II

7/17/2019 NutCultCatab II

http://slidepdf.com/reader/full/nutcultcatab-ii 21/28

Page 22: NutCultCatab II

7/17/2019 NutCultCatab II

http://slidepdf.com/reader/full/nutcultcatab-ii 22/28

Page 23: NutCultCatab II

7/17/2019 NutCultCatab II

http://slidepdf.com/reader/full/nutcultcatab-ii 23/28

3.12 The Citric Acid Cycle

• The citric acid cycle generates manycompounds available for biosynthetic purposes

 –    -Ketoglutarate and oxalacetate (OAA):

precursors of several amino acids; OAA also

converted to phosphoenolpyruvate, a precursor

of glucose

 – Succinyl-CoA: required for synthesis of

cytochromes, chlorophyll, and other tetrapyrrolecompounds

 –  Acetyl-CoA: necessary for fatty acid biosynthesis

Page 24: NutCultCatab II

7/17/2019 NutCultCatab II

http://slidepdf.com/reader/full/nutcultcatab-ii 24/28

3.13 Catabolic Diversity

• Microorganisms demonstrate a wide rangeof mechanisms for generating energy

 – Fermentation

 –  Aerobic respiration –  Anaerobic respiration

 – Chemolithotrophy

 –

Phototrophy

Page 25: NutCultCatab II

7/17/2019 NutCultCatab II

http://slidepdf.com/reader/full/nutcultcatab-ii 25/28

Electron donor 

(organic compound)

Organic e –

acceptors

Electron

acceptors

Electron

acceptors

Light

Fermentation

    C    h   e   m   o    t   r   o   p    h   s

Aerobic

respiration

Anaerobic respiration

Chemoorganotrophy

Anaerobic respiration

Aerobic respiration

Chemolithotrophy

    P    h   o    t   o    t   r   o   p    h   s

Electron

transport

Generation of pmf

Organic

compound

Cell materialCell material

Photoheterotrophy   Photoautotrophy

Phototrophy

Electron transport/

generation of pmf 

Electron transport/

generation of pmf 

Page 26: NutCultCatab II

7/17/2019 NutCultCatab II

http://slidepdf.com/reader/full/nutcultcatab-ii 26/28

3.13 Catabolic Diversity

• Anaerobic Respiration – The use of electron acceptors other than

oxygen• Examples include nitrate (NO3

), ferric iron

(Fe3+), sulfate (SO42), carbonate (CO32

),certain organic compounds

 – Less energy released compared toaerobic respiration

 – Dependent on electron transport,generation of a proton motive force, and

 ATPase activity

Page 27: NutCultCatab II

7/17/2019 NutCultCatab II

http://slidepdf.com/reader/full/nutcultcatab-ii 27/28

3.13 Catabolic Diversity

• Chemolithotrophy  – Uses inorganic chemicals as electron donors

• Examples include hydrogen sulfide (H2S), hydrogengas (H2), ferrous iron (Fe2+), ammonia (NH3)

 – Typically aerobic – Begins with oxidation of inorganic electron

donor 

 – Uses electron transport chain and protonmotive force

 – Autotrophic; uses CO2 as carbon source

Page 28: NutCultCatab II

7/17/2019 NutCultCatab II

http://slidepdf.com/reader/full/nutcultcatab-ii 28/28

3.13 Catabolic Diversity

• Phototrophy : uses light as energysource

 – Photophosphorylation: light-mediated ATP

synthesis – Photoautotrophs: use ATP for assimilation

of CO2 for biosynthesis

 – Photoheterotrophs: use ATP for

assimilation of organic carbon for

biosynthesis