Top Banner
NuSTAR CIT JPL Columbia LLNL DSRI UCSC SLAC Spectrum The Nuclear Spectroscopic Telescope Array (NuSTAR) Hard X-ray (5 - 80 keV) Small Explorer (SMEX) mission Selected 11/2003 for a Phase A study Downselection 11/2005 Caltech, JPL, Columbia, LLNL, DSRI, UCSC, SLAC, Spectrum Astro
12

NuSTAR CIT JPL Columbia LLNL DSRI UCSC SLAC Spectrum The Nuclear Spectroscopic Telescope Array (NuSTAR) Hard X-ray (5 - 80 keV) Small Explorer (SMEX) mission.

Dec 16, 2015

Download

Documents

Justin Dobry
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: NuSTAR CIT JPL Columbia LLNL DSRI UCSC SLAC Spectrum The Nuclear Spectroscopic Telescope Array (NuSTAR) Hard X-ray (5 - 80 keV) Small Explorer (SMEX) mission.

NuSTAR

CIT JPL Columbia LLNL DSRI UCSC SLAC Spectrum

The Nuclear Spectroscopic Telescope Array (NuSTAR)

Hard X-ray (5 - 80 keV) Small Explorer (SMEX) mission

Selected 11/2003 for a Phase A study

Downselection 11/2005

Caltech, JPL, Columbia, LLNL, DSRI, UCSC, SLAC, Spectrum Astro

Page 2: NuSTAR CIT JPL Columbia LLNL DSRI UCSC SLAC Spectrum The Nuclear Spectroscopic Telescope Array (NuSTAR) Hard X-ray (5 - 80 keV) Small Explorer (SMEX) mission.

NuSTAR

CIT JPL Columbia LLNL DSRI UCSC SLAC Spectrum

NuSTAR the first focusing mission above 10 keV

brings unparalleled sensitivity, angular resolution, and spectral resolution

to the hard x-ray band

and opens an entirely new region of the electromagnetic spectrum for sensitive study

Page 3: NuSTAR CIT JPL Columbia LLNL DSRI UCSC SLAC Spectrum The Nuclear Spectroscopic Telescope Array (NuSTAR) Hard X-ray (5 - 80 keV) Small Explorer (SMEX) mission.

NuSTAR

CIT JPL Columbia LLNL DSRI UCSC SLAC Spectrum

NuSTAR has three primary science goals:

NuSTAR will discover collapsed stars and black holes on all scales as a pathfinder for the Beyond Einstein missions

Identify massive black holes in the NDWFS (wide - 9 deg2) and GOODS (deep-500’2) survey fields

Characterize compact stellarremnants near the Galactic center

Page 4: NuSTAR CIT JPL Columbia LLNL DSRI UCSC SLAC Spectrum The Nuclear Spectroscopic Telescope Array (NuSTAR) Hard X-ray (5 - 80 keV) Small Explorer (SMEX) mission.

NuSTAR

CIT JPL Columbia LLNL DSRI UCSC SLAC Spectrum

NuSTAR will map the remnants of recent supernova explosions, testing theories of where the elements are born

SN 1987A

NuSTAR will measure and map the 44Ti lines at 68 and 78 keV in historic remnants: Tycho, Kepler, Cas A and SN1987A

Page 5: NuSTAR CIT JPL Columbia LLNL DSRI UCSC SLAC Spectrum The Nuclear Spectroscopic Telescope Array (NuSTAR) Hard X-ray (5 - 80 keV) Small Explorer (SMEX) mission.

NuSTAR

CIT JPL Columbia LLNL DSRI UCSC SLAC Spectrum

NuSTAR will explore the most extreme physical environments in the Universe, teaming with GLAST and Chandra to span the high-energy spectrum

Example: GLAST’s measurements of Compton radiation in the blazar Markarian 501 are compromised without NuSTAR’s simultaneous measurements of the time variable synchrotron peak (SSC model is shown). Together, they strongly constrain physical models.

NuSTAR will test our understanding of all types of black-hole powered active galaxies

Page 6: NuSTAR CIT JPL Columbia LLNL DSRI UCSC SLAC Spectrum The Nuclear Spectroscopic Telescope Array (NuSTAR) Hard X-ray (5 - 80 keV) Small Explorer (SMEX) mission.

NuSTAR

CIT JPL Columbia LLNL DSRI UCSC SLAC Spectrum

Other objectives:

Study cosmic ray acceleration in young SNR

Measure high-energy diffuse Galactic emission

Detect hard X-ray emission from galaxy clusters

Map pulsar winds in the Crab

Measure cyclotron lines in Her X-1

Unravel physics of GRBs through followup of Glast events

Test models of Type 1a Sne

Page 7: NuSTAR CIT JPL Columbia LLNL DSRI UCSC SLAC Spectrum The Nuclear Spectroscopic Telescope Array (NuSTAR) Hard X-ray (5 - 80 keV) Small Explorer (SMEX) mission.

NuSTAR

CIT JPL Columbia LLNL DSRI UCSC SLAC Spectrum

Core collapse events

SNe lightcurves powered by radioactive decay of elements produced in non-equilibrium conditions of explosion

Following gamma-ray emission lines after core-collapse provides critical tests of explosion models - difficult in core-collapse events

Imaging gamma-ray emisison in a young remnant, before they enter the Sedov phase also provides a detailed understanding of the explostion dynamics.

Page 8: NuSTAR CIT JPL Columbia LLNL DSRI UCSC SLAC Spectrum The Nuclear Spectroscopic Telescope Array (NuSTAR) Hard X-ray (5 - 80 keV) Small Explorer (SMEX) mission.

NuSTAR

CIT JPL Columbia LLNL DSRI UCSC SLAC Spectrum

SN 1987A• 44Ti - ( = 85 yr) - produced near the mass cut during -rich freeze-out

• Production and ejection very sensitive to explosion mechanism and ejecta dynamics.

• Believed to now power the 1987A lightcurve

•Gamma-ray lines at 68/78 keV, 1157 keV (detected by Comptel in Cas A

Flux measurement: 44Ti yield (inferred to be high in 1987a)

Mapping remnants: measure global asymmetries, ejecta mixing from velocity measurements

Page 9: NuSTAR CIT JPL Columbia LLNL DSRI UCSC SLAC Spectrum The Nuclear Spectroscopic Telescope Array (NuSTAR) Hard X-ray (5 - 80 keV) Small Explorer (SMEX) mission.

NuSTAR

CIT JPL Columbia LLNL DSRI UCSC SLAC Spectrum

Remnant Age Dist Size 67.9 keV flux (yr) (kpc) (‘) (x 10-6 ph/cm2/s)

SN 1987a 20 50 0 2.5Cas A 327 3.4 3.6 15Kepler 403 2.9 3.5 8.4 (?)Tycho 435 2.3 8x5 9.2

Line flux sensitivity - ~2 x 10-7 ph/cm2/s (106 s)

Map 3 young remnants Measure asymmetry, velocity distributionClumpyness

Measure flux from SN1987a

Page 10: NuSTAR CIT JPL Columbia LLNL DSRI UCSC SLAC Spectrum The Nuclear Spectroscopic Telescope Array (NuSTAR) Hard X-ray (5 - 80 keV) Small Explorer (SMEX) mission.

NuSTAR

CIT JPL Columbia LLNL DSRI UCSC SLAC Spectrum

Type 1a SupernovaeType 1a Supernovae

SNe 1a widely believed to result from thermonuclear incineration of an accreting C/O white dwarf. We don’t know: nature and evolution of the progenitor system

mass of dwarf at ignitionphysics of subsequent nuclear burningreason for the (empirical) width-optical luminosity relation

The lightcurve is believed to be powered by the decay of 56NiA SN 1a has never been observed in the X-ray/gamma-ray

Observations of the time evolution of the 56Ni line (158 keV) would provide important constraints on the explosion mechanism and dynamics

Page 11: NuSTAR CIT JPL Columbia LLNL DSRI UCSC SLAC Spectrum The Nuclear Spectroscopic Telescope Array (NuSTAR) Hard X-ray (5 - 80 keV) Small Explorer (SMEX) mission.

NuSTAR

CIT JPL Columbia LLNL DSRI UCSC SLAC Spectrum

Prompt Decay of Prompt Decay of 5656Ni i Type Ia SNeNi i Type Ia SNe

Evolution of the 56Ni in Type Ia SNe is sensitive to the explosion mechanism and mixing. For example, Mch and sub-Mch models can be easily distinguished.

NuSTAR can measure evolution of down-scattered HXR photons to Virgo.

Page 12: NuSTAR CIT JPL Columbia LLNL DSRI UCSC SLAC Spectrum The Nuclear Spectroscopic Telescope Array (NuSTAR) Hard X-ray (5 - 80 keV) Small Explorer (SMEX) mission.

NuSTAR

CIT JPL Columbia LLNL DSRI UCSC SLAC Spectrum

ReadyReady

The four NuSTAR telescopes have direct heritage to the completed HEFT flight optics.

The 9m NuSTAR mast is a direct adaptation of the 60m mast successfully flown on SRTM.

NuSTAR det-ector modules are the HEFT flight units.

Based on the Spectrum Astro SA200-S bus, the NuSTAR spacecraft has extensive heritage. NuSTAR will be launched into an equatorial orbit from Kwajalein.

Although it brings new capabilities to space, NuSTAR is solidly based on existing hardware developed in a 9 years in a NASA SR&T program