Top Banner
V.Havránek Laboratory of IBA at NPI NuPECC Prague 2011 Laboratory of Ion Beam Analysis at NPI Vladimír Havránek Nuclear Physics Institute ASCR v.v.i, 250 68 Řež u Prahy, Czech Republic
28

NuPECC Prague 2011 V.Havránek Laboratory of IBA at NPI Laboratory of Ion Beam Analysis at NPI Vladimír Havránek Nuclear Physics Institute ASCR v.v.i,

Mar 27, 2015

Download

Documents

Maria Howell
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: NuPECC Prague 2011 V.Havránek Laboratory of IBA at NPI Laboratory of Ion Beam Analysis at NPI Vladimír Havránek Nuclear Physics Institute ASCR v.v.i,

V.Havránek Laboratory of IBA at NPINuPECC Prague 2011

Laboratory of Ion Beam Analysis at NPI

Vladimír Havránek

Nuclear Physics Institute ASCR v.v.i, 250 68 Řež u Prahy, Czech Republic

Page 2: NuPECC Prague 2011 V.Havránek Laboratory of IBA at NPI Laboratory of Ion Beam Analysis at NPI Vladimír Havránek Nuclear Physics Institute ASCR v.v.i,

V.Havránek Laboratory of IBA at NPINuPECC Prague 2011

Presentation outline

Facilities - 3.5 MV Van de Graaff accelerator (since 1964) - 3 MV HVEE Tandetron accelerator (since 2005) - Activities at LWR-15 research reactor

Analytical Techniques - RBS, PIXE, ERDA, PIGE, PESA, NDP, PGAA - High energy ion implantation - Ion microanalysis

Applications - Material research, biology, environment, history and art, modification of materials with energetic ions, etc.

Page 3: NuPECC Prague 2011 V.Havránek Laboratory of IBA at NPI Laboratory of Ion Beam Analysis at NPI Vladimír Havránek Nuclear Physics Institute ASCR v.v.i,

V.Havránek Laboratory of IBA at NPINuPECC Prague 2011

Our electrostatic accelerators

VdG 1964 Tandetron 2005

Page 4: NuPECC Prague 2011 V.Havránek Laboratory of IBA at NPI Laboratory of Ion Beam Analysis at NPI Vladimír Havránek Nuclear Physics Institute ASCR v.v.i,

V.Havránek Laboratory of IBA at NPINuPECC Prague 2011

Tandetron MC 4130 AcceleratorAccelerator

PIXE, PIGE

Ion microprobe

Ion implantation

RBS, RBS-C, ERDA-TOF

Page 5: NuPECC Prague 2011 V.Havránek Laboratory of IBA at NPI Laboratory of Ion Beam Analysis at NPI Vladimír Havránek Nuclear Physics Institute ASCR v.v.i,

V.Havránek Laboratory of IBA at NPINuPECC Prague 2011

Interaction of MeV ions with the sample and corresponding analytical techniques

Základní procesy

Page 6: NuPECC Prague 2011 V.Havránek Laboratory of IBA at NPI Laboratory of Ion Beam Analysis at NPI Vladimír Havránek Nuclear Physics Institute ASCR v.v.i,

V.Havránek Laboratory of IBA at NPINuPECC Prague 2011

Van de Graaff and Tandetron 4130 MC accelerators(H-Au ions with energies 0.4-20 MeV and intensities up to several microamps)

Methods and main research fieldsRBS, RBS-channeling, ERDA, ERDA-TOFAnalyses of composition and structure of layered, nano-structured materials, hard coatings, metal- polymer composites, optoelectronics and microelectronics materials, oxidation and corrosion processes, diffusion and migration of atoms in solids, processes of self organization (e.g. metal-carbon allotropes composites) Ion microsonde3D mapping of composition and structure of materials with lateral resolution of 1 micrometer, study of biological objects ( recently Tycho de Brahe’s hairs), ancient ceramics, minerals. In 2010 first experimentswith ion writingPIXE, PIGEEnvironmental studies, mostly analyses of aerosols and micro-particles accumulated on filters Ion implantationModification of solids (e.g. improvement of properties of selected microelectronics components), simulations of radiation degradation of materials (e.g. polymers)

Devices installed on thermal neutron beam from LWR-15 research reactorMethods and main research fieldsNeutron depth profiling (NDP)Analyses of few light elements (He, Li, B, N..), study of diffusion processes in solids (e.g. inmaterials important for nuclear technologies and fusion programs), study of radiation degradationof solids (e.g. polymers), development of polymer based sensorsPrompt gamma analysis (PGA)Analyses of composition of materials (e.g. analyses of boron in biological samples for Neutron capturetumor therapy). Method complementary to Neutron activation analysis.

Page 7: NuPECC Prague 2011 V.Havránek Laboratory of IBA at NPI Laboratory of Ion Beam Analysis at NPI Vladimír Havránek Nuclear Physics Institute ASCR v.v.i,

V.Havránek Laboratory of IBA at NPINuPECC Prague 2011

Page 8: NuPECC Prague 2011 V.Havránek Laboratory of IBA at NPI Laboratory of Ion Beam Analysis at NPI Vladimír Havránek Nuclear Physics Institute ASCR v.v.i,

V.Havránek Laboratory of IBA at NPINuPECC Prague 2011

Příklady aplikace metod PIXE a PIGE

Page 9: NuPECC Prague 2011 V.Havránek Laboratory of IBA at NPI Laboratory of Ion Beam Analysis at NPI Vladimír Havránek Nuclear Physics Institute ASCR v.v.i,

V.Havránek Laboratory of IBA at NPINuPECC Prague 2011

Example of TOF-ERDA spectrometer tests. Spectra of LiF (200 nm) deposited on glassy carbon. 15,4 MeV Cu6+ (Tv =2,2 MV)

Start detectorTOF-ERDA

The TOF-ERDA spectrometer set into operation in 2006 withsupport and cooperation of Rossendorf group., The system consist of thin carbon foil start detector and particle energy detector, which also provides the stop time signal. In the

near future the second stop detector will be add.

Page 10: NuPECC Prague 2011 V.Havránek Laboratory of IBA at NPI Laboratory of Ion Beam Analysis at NPI Vladimír Havránek Nuclear Physics Institute ASCR v.v.i,

V.Havránek Laboratory of IBA at NPINuPECC Prague 2011

RBS-ChannelingThe RBS-Channelling setup is only equipment which was fully supplied by external vendor. It was bought from NEC company USA and recently installed at -30 deg. beam line. The target chamber is equipped with fine goniometer with five degrees of freedom (x,y,z,,) and two charge particle detectors. Test experiments are now in progress. There is also a possibility to add additional x or -ray detector, so the PIXE or PIGE channelling experiments can be performed in future. The setup will be used for routine RBS-channelling and RBS measurements.

Channeling software

Page 11: NuPECC Prague 2011 V.Havránek Laboratory of IBA at NPI Laboratory of Ion Beam Analysis at NPI Vladimír Havránek Nuclear Physics Institute ASCR v.v.i,

V.Havránek Laboratory of IBA at NPINuPECC Prague 2011

1000 Cu mesh Th inclusion 25x25m

Ion microbeam (since 2009)

Page 12: NuPECC Prague 2011 V.Havránek Laboratory of IBA at NPI Laboratory of Ion Beam Analysis at NPI Vladimír Havránek Nuclear Physics Institute ASCR v.v.i,

V.Havránek Laboratory of IBA at NPINuPECC Prague 2011

Microbeam target chamber

Microscope

Far. cup

STIM

PIXE

RBS

Page 13: NuPECC Prague 2011 V.Havránek Laboratory of IBA at NPI Laboratory of Ion Beam Analysis at NPI Vladimír Havránek Nuclear Physics Institute ASCR v.v.i,

V.Havránek Laboratory of IBA at NPINuPECC Prague 2011

Two Examples of Cobalt Blue Sherds found in the Excavated Sediments from the Pool of the Royal Palace in Angkor Thom.

The sherds were first irradiated with protons frontally (Van de Graaff

Generator) and transversally (Microbeam) of medium thin (~2 mm) slices cut from the

original pieces.

Page 14: NuPECC Prague 2011 V.Havránek Laboratory of IBA at NPI Laboratory of Ion Beam Analysis at NPI Vladimír Havránek Nuclear Physics Institute ASCR v.v.i,

V.Havránek Laboratory of IBA at NPINuPECC Prague 2011

White glaze Blue glaze Body Transition Body/Glaze

Fe 0.59 % 0.88 % 0.73 % 0.43 %

Co <0.02 % 0.60 % <0.02 % <0.02 %

Ca 9.5 % 12.0 % - 4.7 %

Elemental distribution maps 500x500 um

KK

Fe

TiCa

SiCo

Page 15: NuPECC Prague 2011 V.Havránek Laboratory of IBA at NPI Laboratory of Ion Beam Analysis at NPI Vladimír Havránek Nuclear Physics Institute ASCR v.v.i,

V.Havránek Laboratory of IBA at NPINuPECC Prague 2011

Comparison of Spatial Distributions for Co, Fe and Ca

Page 16: NuPECC Prague 2011 V.Havránek Laboratory of IBA at NPI Laboratory of Ion Beam Analysis at NPI Vladimír Havránek Nuclear Physics Institute ASCR v.v.i,

V.Havránek Laboratory of IBA at NPINuPECC Prague 2011

Cobalt inclusion – detail (maps 25x25 um for Fe, Co and As)

AsCo

GUPIX fit of a cobalt inclusion defined as a region of interest

Elemental ratios

As/Co 0.006 (0.6%)

Fe/Co 0.017 (1.7%)

Page 17: NuPECC Prague 2011 V.Havránek Laboratory of IBA at NPI Laboratory of Ion Beam Analysis at NPI Vladimír Havránek Nuclear Physics Institute ASCR v.v.i,

V.Havránek Laboratory of IBA at NPINuPECC Prague 2011

SPATIAL WINDOW CONTAING A BRAIN

SAMPLE IRRADIATED WITH PROTON BEAM

EXAMPLES OF A SAMPLES HOLDER WITH MOUNTED CEREBELLUM BRAIN SLICES AND LIGHT MICROSCOPE

IMAGES THEREOF

SAMPLE HOLDER WITH

MOUNTED BRAIN SLICES

A LIGHT MICROSCOPE IMAGE OF THE CENTRAL PART OF THE CEREBELLUM SECTION

SCANNED WITH THE PROTON BEAM.

Page 18: NuPECC Prague 2011 V.Havránek Laboratory of IBA at NPI Laboratory of Ion Beam Analysis at NPI Vladimír Havránek Nuclear Physics Institute ASCR v.v.i,

V.Havránek Laboratory of IBA at NPINuPECC Prague 2011

Fe

S

Ca Ni

Zn

Cu

Page 19: NuPECC Prague 2011 V.Havránek Laboratory of IBA at NPI Laboratory of Ion Beam Analysis at NPI Vladimír Havránek Nuclear Physics Institute ASCR v.v.i,

V.Havránek Laboratory of IBA at NPINuPECC Prague 2011

Oxidation of zirconium

Page 20: NuPECC Prague 2011 V.Havránek Laboratory of IBA at NPI Laboratory of Ion Beam Analysis at NPI Vladimír Havránek Nuclear Physics Institute ASCR v.v.i,

V.Havránek Laboratory of IBA at NPINuPECC Prague 2011

1.8 MeV protons )

18O a 18O b

18O b

18O a

Zr RBS

Zr PIXE

Si

Fe

Page 21: NuPECC Prague 2011 V.Havránek Laboratory of IBA at NPI Laboratory of Ion Beam Analysis at NPI Vladimír Havránek Nuclear Physics Institute ASCR v.v.i,

V.Havránek Laboratory of IBA at NPINuPECC Prague 2011

Ion beam writing (hammering) using 10-12 MeV focused beam of C, O a Si

into layer of PDMS (Polydimethylsiloxane)

In cooperation with Dr. Istvan Rajta, Atomki Debrecen, HAS

Page 22: NuPECC Prague 2011 V.Havránek Laboratory of IBA at NPI Laboratory of Ion Beam Analysis at NPI Vladimír Havránek Nuclear Physics Institute ASCR v.v.i,

V.Havránek Laboratory of IBA at NPINuPECC Prague 2011

LVR15

HC

H-3

LVR-15 nuclear reactor REZ

neutron guide

RESEARCH REACTOR LVR-15

LVR-15 IS LIGHT-WATER MODERATED AND COOLED TANK NUCLEAR REACTOR WITH FORCE COOLING. THE FUEL IRT-2M IS ENRICHED TO 36%, COMBINED WATER-BERYLLIUM REFLECTOR IS USED.

MAIN CHARACTERISTICS:

Maximum reactor power 10 MW

Maximum thermal neutron flux in the core 1.5 x 1018 n/m2s

Maximum fast neutron flux in the core 3 x 1018 n/m2s

Thermal neutron flux at the end of the beam tube

1 x 1013 n/m2s

Thermal neutron flux in irradiation channel in fuel

1.2 x 1018 n/m2

Thermal neutron flux in irradiation channel in reflector

9 x 1017 n/m2s

Page 23: NuPECC Prague 2011 V.Havránek Laboratory of IBA at NPI Laboratory of Ion Beam Analysis at NPI Vladimír Havránek Nuclear Physics Institute ASCR v.v.i,

V.Havránek Laboratory of IBA at NPINuPECC Prague 2011

Thermal neutron guide tubeand TNDP chambers

HCH

-3

TNDPCHAMBERS

neutron guide

LVR-15 reactor hall

Page 24: NuPECC Prague 2011 V.Havránek Laboratory of IBA at NPI Laboratory of Ion Beam Analysis at NPI Vladimír Havránek Nuclear Physics Institute ASCR v.v.i,

V.Havránek Laboratory of IBA at NPINuPECC Prague 2011

List of the NDP relevant isotopes

Basic reaction characteristics of the NDP relevant isotopes, and detection sensitivities for the NDP single-detector spectro- meter in the NPI Rez.

Detection limits are based on the charged particle counting rate 0.01 s-1, detector -sample solid angle 0.03 Sr, and intensity of the neutron beamth = 107 cm-2s-1.

3He 3.1 x 1013

6Li 1.8 x 1014

7Be* 3.5 x 1012

10B 19.6 10B(n,)7Li 4.3 x 1013

6.7 x 1014

9.1 x 1016

3.4 x1017

Nuclide Naturalabundance or activity*

[at/mCi]

Nuclear reaction Crosssection[barn]

Energy ofreactionproducts

[keV]

Detectionlimit

[at/cm2]

0.00013 3He(n,p)3H 5326 573 191

7.42 940 2051 2734

2.5 x 1014 7Be(n,p)7Li 48000 1438 207

3606 1471 839

19.6 230 1775 1014

99.64 1.81 584 42

75.5 35Cl(n,p)35S 0.49 598 17

1.4 x101659Ni* 1.3 x 1020 59Ni(n,)56Fe 12.3 4757 340

4.7 x 10124.4 x 1015 22Na(n,p)22Ne 31000 2247 103

1.2 x 10180.76 33S(n,)30Si 0.14 3091 412

10B(n,)7Li10B

6Li(n,)3H

14N 14N(n,p)14C

33S

35Cl

22Na*

Page 25: NuPECC Prague 2011 V.Havránek Laboratory of IBA at NPI Laboratory of Ion Beam Analysis at NPI Vladimír Havránek Nuclear Physics Institute ASCR v.v.i,

V.Havránek Laboratory of IBA at NPINuPECC Prague 2011

sam

ple

x

E

, T

6Li(n, )T

energy loss E ~ depth x

220 keV 6Li Nbenergy spectrum of particles from (n, ) reactions

0 200 400 600 800 1000Channel Number

Cou

nts

per

Cha

nnel

0

500

10

00

1.0 1.5 2.0 2.5 3.0 MeV

220 keV 6Li Nb

conversion to depth

2.0 1.0 0 m

x

1.0 0.8 0.6 0.4 0.2 0

6Li(n, )T

depth surface

T

x depth

dete

ctor

conversion to energy

surf

ace

thermal neutrons 10B(n, )7Li

chan

nel-

ener

gy-d

epth

con

vers

ion

sam

ple

x

E

, T

6Li(n, )T

energy loss E ~ depth x

220 keV 6Li Nbenergy spectrum of particles from (n, ) reactions

0 200 400 600 800 1000Channel Number

Cou

nts

per

Cha

nnel

0

500

10

00

1.0 1.5 2.0 2.5 3.0 MeV

220 keV 6Li Nb

conversion to depth

2.0 1.0 0 m

x

1.0 0.8 0.6 0.4 0.2 0

6Li(n, )T

depth surface

T

x depth

dete

ctor

conversion to energy

surf

ace

thermal neutrons 10B(n, )7Li

chan

nel-

ener

gy-d

epth

con

vers

ion

Principles od NDP (Neutron Depth Profiling)

Page 26: NuPECC Prague 2011 V.Havránek Laboratory of IBA at NPI Laboratory of Ion Beam Analysis at NPI Vladimír Havránek Nuclear Physics Institute ASCR v.v.i,

V.Havránek Laboratory of IBA at NPINuPECC Prague 2011

E

ET.x

xT

T

E

ET.x

xT

T

3D depth profile of Lidetermined from the 3D plot

Principal scheme of thedetector-target-detector

coincidence set-up

2D coincidence data plotfrom Li/B/Li/B/PET

3D coincidence data plot(detail of the 2D rectangle)

Coincidence NDP

Page 27: NuPECC Prague 2011 V.Havránek Laboratory of IBA at NPI Laboratory of Ion Beam Analysis at NPI Vladimír Havránek Nuclear Physics Institute ASCR v.v.i,

NuPECC Prague 2011 PGAA (Prompt Gamma Activation Analysis) facility

Instrument parameters

Installed at LVR-15 reactor

Beam 25x7 mm2

Detector HPGe (25%)

Sensitivity 3.7 counts/s /g 10B

Sample liquid/powder in 0.5 ml teflon vial

Usage: Analytical method PGAA- concentration of isotopes/elements (B, Cd, Sm, Gd, H, Cl, …)- optimized for liquid (powder) samples - biological samples (study of pharmacokinetics of boron compounds in the framework of BNCT) - minerals

Neutron flux 3x106 n cm-2s-1

Det. limits ~ 0.1 g (B,Sm,Gd) ~ 50 g (H)

Page 28: NuPECC Prague 2011 V.Havránek Laboratory of IBA at NPI Laboratory of Ion Beam Analysis at NPI Vladimír Havránek Nuclear Physics Institute ASCR v.v.i,

V.Havránek Laboratory of IBA at NPINuPECC Prague 2011

Dekuji za pozornost !

Thank you for your attention !