Top Banner
Numerical Simulations of Galaxy Formation in a LCDM Universe Mario G. Abadi Observatorio Astronómico De La Universidad Nacional De Córdoba CONICET, Argentina Collaborators: Julio Navarro: University of Victoria, Canada Matthias Steinmetz: Astrophysikalisches Institute, Postdam, Germany Vincent Eke: University of Durham, United Kingdom Andres Meza: Universidad de Chile, Santiago, Chile Amina Helmi: Kapteyn Astronomical Institute, Groningen, Netherlands
21

Numerical Simulations of Galaxy Formation in a LCDM Universe Mario G. Abadi Observatorio Astronómico De La Universidad Nacional De Córdoba CONICET, Argentina.

Jan 13, 2016

Download

Documents

Laura Conley
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Numerical Simulations of Galaxy Formation in a LCDM Universe Mario G. Abadi Observatorio Astronómico De La Universidad Nacional De Córdoba CONICET, Argentina.

Numerical Simulations of Galaxy Formation in a LCDM Universe

Mario G. AbadiObservatorio Astronómico De La Universidad Nacional De Córdoba

CONICET, Argentina

Collaborators:

Julio Navarro: University of Victoria, Canada

Matthias Steinmetz: Astrophysikalisches Institute, Postdam, Germany

Vincent Eke: University of Durham, United Kingdom

Andres Meza: Universidad de Chile, Santiago, Chile

Amina Helmi: Kapteyn Astronomical Institute, Groningen, Netherlands

Page 2: Numerical Simulations of Galaxy Formation in a LCDM Universe Mario G. Abadi Observatorio Astronómico De La Universidad Nacional De Córdoba CONICET, Argentina.

●WMAP and LSS results have established LCDM model as the new paradigm of hierarchical structure formation●Low mass density but flat scenario●Fully specified by the following cosmological parameters:● Constituents 70% dark energy, 26% dark matter and 4% baryons●Amplitude of mass fluctuation in spheres of 8 Mpc/h is given by RMS=0.9 and a Hubble´s constant h=0.7with no tilt in the initial power spectrum ●Success in LS (>1mpc) closer to linear regime

LCDM Universe

Page 3: Numerical Simulations of Galaxy Formation in a LCDM Universe Mario G. Abadi Observatorio Astronómico De La Universidad Nacional De Córdoba CONICET, Argentina.

Galaxy Formation

● Observed disk at odds with ”natural” trends of hierarchical models

● Difficult to reconcile the early collapse and eventful merging history with dynamical clues

which point to a smooth assembly of disks

● Fragility of disks to rapid fluctuations of the gravitational potential such as those stirred by

mergers or satellite accretion events

● Dominant, cold, thin, stellar disks points to a histoty of mass accretion where major mergers

have player a minor role

● Age of oldest disk stars used to estimate the epoch of the last major merger (14 gyrs in the

solar neighborhood)

● Milky Way’s thick disk has its origin in an early thin disk of velocity and size comparable to

today’s but “thickened” by the accretion of a satellite

Page 4: Numerical Simulations of Galaxy Formation in a LCDM Universe Mario G. Abadi Observatorio Astronómico De La Universidad Nacional De Córdoba CONICET, Argentina.

Numerical Simulations

• Initial conditions given by the lambda CDM model

• Astrophysics: gravitation, hydrodynamics, radiative cooling, star

formation, feedback and metals

• Initially only dark matter and gas particles

• Gas particles transformed in star particles

• 8 simulations finished with M~ 1-2x10^11 solar masses and N~0.6-

1.8x10^5 star particles inside 20 kpc @ z=0

Page 5: Numerical Simulations of Galaxy Formation in a LCDM Universe Mario G. Abadi Observatorio Astronómico De La Universidad Nacional De Córdoba CONICET, Argentina.

The Formation and Evolution of a Disk Galaxy

Page 6: Numerical Simulations of Galaxy Formation in a LCDM Universe Mario G. Abadi Observatorio Astronómico De La Universidad Nacional De Córdoba CONICET, Argentina.

Luminous GalaxyRadius ~ 20 kpc

Page 7: Numerical Simulations of Galaxy Formation in a LCDM Universe Mario G. Abadi Observatorio Astronómico De La Universidad Nacional De Córdoba CONICET, Argentina.

Dark Matter HaloVirial Radius ~ 300 kpc

Page 8: Numerical Simulations of Galaxy Formation in a LCDM Universe Mario G. Abadi Observatorio Astronómico De La Universidad Nacional De Córdoba CONICET, Argentina.

Luminous Stellar HaloVirial Radius ~ 300 kpc

Page 9: Numerical Simulations of Galaxy Formation in a LCDM Universe Mario G. Abadi Observatorio Astronómico De La Universidad Nacional De Córdoba CONICET, Argentina.

Observational and Theoretical Approach

● Observational

● Photometric (luminosity, isophotes, surface brightness profile

decomposition, bulge to disk ratio, fundamental plane, colors, star

formation)

● Kinematics (gas and stars rotation curves, velocity maps, Tully fisher and

Faber Jackson relation)

● Theoretical

● Dynamics (dark matter, gas and stars properties, evolution, mass

distribution, velocity support, dynamical decomposition, in-situ vs

accretion, origin of different components)

Page 10: Numerical Simulations of Galaxy Formation in a LCDM Universe Mario G. Abadi Observatorio Astronómico De La Universidad Nacional De Córdoba CONICET, Argentina.

All Stars

Page 11: Numerical Simulations of Galaxy Formation in a LCDM Universe Mario G. Abadi Observatorio Astronómico De La Universidad Nacional De Córdoba CONICET, Argentina.

Spheroid

Page 12: Numerical Simulations of Galaxy Formation in a LCDM Universe Mario G. Abadi Observatorio Astronómico De La Universidad Nacional De Córdoba CONICET, Argentina.

Thick Disk

Page 13: Numerical Simulations of Galaxy Formation in a LCDM Universe Mario G. Abadi Observatorio Astronómico De La Universidad Nacional De Córdoba CONICET, Argentina.

Thin Disk

Page 14: Numerical Simulations of Galaxy Formation in a LCDM Universe Mario G. Abadi Observatorio Astronómico De La Universidad Nacional De Córdoba CONICET, Argentina.

Dynamical Decomposition

Page 15: Numerical Simulations of Galaxy Formation in a LCDM Universe Mario G. Abadi Observatorio Astronómico De La Universidad Nacional De Córdoba CONICET, Argentina.

The Formation and Evolution of a Disk Galaxy

Page 16: Numerical Simulations of Galaxy Formation in a LCDM Universe Mario G. Abadi Observatorio Astronómico De La Universidad Nacional De Córdoba CONICET, Argentina.

Disk vs Halo Formation

• Disk• Young (90%) + old (10%)• Rotational velocity supported• Outcome of a smooth

dissipative deposition (and transformation into stars) of gas cooling more or less continuously off the intergalactic medium

• Eggen Lynden-bell & Sandage (1962)

• Correlations between metallicity and kinematics of 221 stars in the solar neighborhood

• Halo• Old (predate the last major

merger)• Velocity dispersion supported• Build up over an extended

period of time through a number of early mergers

• Searle & Zinn (1978)• Wide range of metal

abundances independent of radius for 177 red gigants in 19 globular clusters

Page 17: Numerical Simulations of Galaxy Formation in a LCDM Universe Mario G. Abadi Observatorio Astronómico De La Universidad Nacional De Córdoba CONICET, Argentina.

Halo Evidence of Accretion Events

● Tidal streams of the Sagittarius dSph galaxy (Ibata el al. 1994)

● Substructure in the galactic halo (Helmi et al. 1999)

● Giant stream of metal-rich giants around Andromeda (Ibata el al. 2001)

Page 18: Numerical Simulations of Galaxy Formation in a LCDM Universe Mario G. Abadi Observatorio Astronómico De La Universidad Nacional De Córdoba CONICET, Argentina.

Disk Evidence of Accretion Events

• Monoceros ring in the outer Galaxy (Yanny et al. 2003)

• Canis Major dwarf (Martin et al. 2004)

• Arcturus stream (Navarro et al. 2004)

• Debris from omega Cen parent galaxy in the solar neighborhood (Meza et al. 2005)

• Substructure in the Galactic disk (Helmi et al. 2005)

Page 19: Numerical Simulations of Galaxy Formation in a LCDM Universe Mario G. Abadi Observatorio Astronómico De La Universidad Nacional De Córdoba CONICET, Argentina.

Conclusions

● Galaxy componets in cosmological context: spheroid, thin disk, thick disk, but also

stellar halo, satellites and dark matter halo

● Simulated galaxies resemble observed galaxies, surface brightness, colors, etc

● Different implementation of astrophysical effects in order to avoid efficient star

formation at early times and massive spheroid and stellar halos

● Stellar halos form from mergers

● Disk form from dissipative collapse

● There is growing evidence that the hierarchical models are correct

Page 20: Numerical Simulations of Galaxy Formation in a LCDM Universe Mario G. Abadi Observatorio Astronómico De La Universidad Nacional De Córdoba CONICET, Argentina.

The Inner Milky Way

Inner bright components: spheroid (or bulge), thin disk and thick disk

• Infrared Milky Way image (DRIBE COBE NASA)

Page 21: Numerical Simulations of Galaxy Formation in a LCDM Universe Mario G. Abadi Observatorio Astronómico De La Universidad Nacional De Córdoba CONICET, Argentina.

The Outer Milky Way

Inner bright components: spheroid (or bulge), thin disk and thick disk

Outer faint components: satellites and stellar halo both difficult to detect in other galaxies

Outer dark components: dark matter halo and substructure

• Infrared Milky Way image (DRIBE COBE NASA)