Top Banner
Introduction Quadrature Newton-Cotes Accuracy More Quadrature Differentiation Numerical Integration and Differentiation CS 205A: Mathematical Methods for Robotics, Vision, and Graphics Justin Solomon CS 205A: Mathematical Methods Numerical Integration and Differentiation 1 / 34
44

Numerical Integration and Differentiation · CS 205A: Mathematical Methods Numerical Integration and Di erentiation 13 / 34. Introduction Quadrature Newton-Cotes Accuracy More Quadrature

Feb 01, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Numerical Integration and Differentiation · CS 205A: Mathematical Methods Numerical Integration and Di erentiation 13 / 34. Introduction Quadrature Newton-Cotes Accuracy More Quadrature

Introduction Quadrature Newton-Cotes Accuracy More Quadrature Differentiation

Numerical Integration andDifferentiation

CS 205A:Mathematical Methods for Robotics, Vision, and Graphics

Justin Solomon

CS 205A: Mathematical Methods Numerical Integration and Differentiation 1 / 34

Page 2: Numerical Integration and Differentiation · CS 205A: Mathematical Methods Numerical Integration and Di erentiation 13 / 34. Introduction Quadrature Newton-Cotes Accuracy More Quadrature

Introduction Quadrature Newton-Cotes Accuracy More Quadrature Differentiation

Today’s Task

Last time: Find f (x)

Today: Find∫ ba f (x) dx

and f ′(x)

CS 205A: Mathematical Methods Numerical Integration and Differentiation 2 / 34

Page 3: Numerical Integration and Differentiation · CS 205A: Mathematical Methods Numerical Integration and Di erentiation 13 / 34. Introduction Quadrature Newton-Cotes Accuracy More Quadrature

Introduction Quadrature Newton-Cotes Accuracy More Quadrature Differentiation

Motivation

erf(x) =2√π

∫ x

0

e−t2

dt

Some functions are defined using integrals!

CS 205A: Mathematical Methods Numerical Integration and Differentiation 3 / 34

Page 4: Numerical Integration and Differentiation · CS 205A: Mathematical Methods Numerical Integration and Di erentiation 13 / 34. Introduction Quadrature Newton-Cotes Accuracy More Quadrature

Introduction Quadrature Newton-Cotes Accuracy More Quadrature Differentiation

Sampling from a Distribution

p(x) ∈ Prob([0, 1])

Cumulative distribution function (CDF):

F (t) ≡∫ t

0

p(x) dx

X distributed uniformly in [0, 1] =⇒F−1(X) distributed according to p

CS 205A: Mathematical Methods Numerical Integration and Differentiation 4 / 34

Page 5: Numerical Integration and Differentiation · CS 205A: Mathematical Methods Numerical Integration and Di erentiation 13 / 34. Introduction Quadrature Newton-Cotes Accuracy More Quadrature

Introduction Quadrature Newton-Cotes Accuracy More Quadrature Differentiation

Sampling from a Distribution

p(x) ∈ Prob([0, 1])

Cumulative distribution function (CDF):

F (t) ≡∫ t

0

p(x) dx

X distributed uniformly in [0, 1] =⇒F−1(X) distributed according to p

CS 205A: Mathematical Methods Numerical Integration and Differentiation 4 / 34

Page 6: Numerical Integration and Differentiation · CS 205A: Mathematical Methods Numerical Integration and Di erentiation 13 / 34. Introduction Quadrature Newton-Cotes Accuracy More Quadrature

Introduction Quadrature Newton-Cotes Accuracy More Quadrature Differentiation

Sampling from a Distribution

p(x) ∈ Prob([0, 1])

Cumulative distribution function (CDF):

F (t) ≡∫ t

0

p(x) dx

X distributed uniformly in [0, 1] =⇒F−1(X) distributed according to p

CS 205A: Mathematical Methods Numerical Integration and Differentiation 4 / 34

Page 7: Numerical Integration and Differentiation · CS 205A: Mathematical Methods Numerical Integration and Di erentiation 13 / 34. Introduction Quadrature Newton-Cotes Accuracy More Quadrature

Introduction Quadrature Newton-Cotes Accuracy More Quadrature Differentiation

Rendering

“Light leaving a surface is the integral of the

light coming in after it is reflected and diffused.”

Rendering equation

CS 205A: Mathematical Methods Numerical Integration and Differentiation 5 / 34

Page 8: Numerical Integration and Differentiation · CS 205A: Mathematical Methods Numerical Integration and Di erentiation 13 / 34. Introduction Quadrature Newton-Cotes Accuracy More Quadrature

Introduction Quadrature Newton-Cotes Accuracy More Quadrature Differentiation

Gaussian Blur

http://www.borisfx.com/images/bcc3/gaussian_blur.jpg

CS 205A: Mathematical Methods Numerical Integration and Differentiation 6 / 34

Page 9: Numerical Integration and Differentiation · CS 205A: Mathematical Methods Numerical Integration and Di erentiation 13 / 34. Introduction Quadrature Newton-Cotes Accuracy More Quadrature

Introduction Quadrature Newton-Cotes Accuracy More Quadrature Differentiation

Bayes’ Rule

P (X|Y ) =P (Y |X)P (X)∫P (Y |X)P (X) dY

Probability of X given Y

CS 205A: Mathematical Methods Numerical Integration and Differentiation 7 / 34

Page 10: Numerical Integration and Differentiation · CS 205A: Mathematical Methods Numerical Integration and Di erentiation 13 / 34. Introduction Quadrature Newton-Cotes Accuracy More Quadrature

Introduction Quadrature Newton-Cotes Accuracy More Quadrature Differentiation

Big Problem

“This leads to a situation where we are trying tominimize an energy function that we cannot evaluate....If we return to our field metaphor, we now find ourselves

in the field without any light whatsoever...., so wecannot establish the height of any point in the field

relative to our own. CD effectively gives us a sense ofbalance, allowing us to the feel the gradient of the field

under our feet.”http://www.robots.ox.ac.uk/~ojw/files/NotesOnCD.pdf

CS 205A: Mathematical Methods Numerical Integration and Differentiation 8 / 34

Page 11: Numerical Integration and Differentiation · CS 205A: Mathematical Methods Numerical Integration and Di erentiation 13 / 34. Introduction Quadrature Newton-Cotes Accuracy More Quadrature

Introduction Quadrature Newton-Cotes Accuracy More Quadrature Differentiation

Quadrature

QuadratureGiven a sampling of n values f (x1), . . . , f (xn),

find an approximation of∫ ba f (x) dx.

xi’s may be fixed or may be chosen by the

algorithm (depends on context)

CS 205A: Mathematical Methods Numerical Integration and Differentiation 9 / 34

Page 12: Numerical Integration and Differentiation · CS 205A: Mathematical Methods Numerical Integration and Di erentiation 13 / 34. Introduction Quadrature Newton-Cotes Accuracy More Quadrature

Introduction Quadrature Newton-Cotes Accuracy More Quadrature Differentiation

Quadrature

QuadratureGiven a sampling of n values f (x1), . . . , f (xn),

find an approximation of∫ ba f (x) dx.

xi’s may be fixed or may be chosen by the

algorithm (depends on context)

CS 205A: Mathematical Methods Numerical Integration and Differentiation 9 / 34

Page 13: Numerical Integration and Differentiation · CS 205A: Mathematical Methods Numerical Integration and Di erentiation 13 / 34. Introduction Quadrature Newton-Cotes Accuracy More Quadrature

Introduction Quadrature Newton-Cotes Accuracy More Quadrature Differentiation

Interpolatory Quadrature

∫ b

a

f(x) dx =

∫ b

a

[∑i

aiφi(x)

]dx

=∑i

ai

[∫ b

a

φi(x) dx

]=∑i

ciai for ci ≡∫ b

a

φi(x) dx

CS 205A: Mathematical Methods Numerical Integration and Differentiation 10 / 34

Page 14: Numerical Integration and Differentiation · CS 205A: Mathematical Methods Numerical Integration and Di erentiation 13 / 34. Introduction Quadrature Newton-Cotes Accuracy More Quadrature

Introduction Quadrature Newton-Cotes Accuracy More Quadrature Differentiation

Riemann Integral

∫ b

a

f(x) = lim∆xk→0

∑k

f(xk)(xk+1 − xk)

≈∑k

f(xk)∆xk

CS 205A: Mathematical Methods Numerical Integration and Differentiation 11 / 34

Page 15: Numerical Integration and Differentiation · CS 205A: Mathematical Methods Numerical Integration and Di erentiation 13 / 34. Introduction Quadrature Newton-Cotes Accuracy More Quadrature

Introduction Quadrature Newton-Cotes Accuracy More Quadrature Differentiation

Quadrature Rules

Q[f ] ≡∑i

wif (xi)

wi describes thecontribution of f (xi)

CS 205A: Mathematical Methods Numerical Integration and Differentiation 12 / 34

Page 16: Numerical Integration and Differentiation · CS 205A: Mathematical Methods Numerical Integration and Di erentiation 13 / 34. Introduction Quadrature Newton-Cotes Accuracy More Quadrature

Introduction Quadrature Newton-Cotes Accuracy More Quadrature Differentiation

Quadrature Rules

Q[f ] ≡∑i

wif (xi)

wi describes thecontribution of f (xi)

CS 205A: Mathematical Methods Numerical Integration and Differentiation 12 / 34

Page 17: Numerical Integration and Differentiation · CS 205A: Mathematical Methods Numerical Integration and Di erentiation 13 / 34. Introduction Quadrature Newton-Cotes Accuracy More Quadrature

Introduction Quadrature Newton-Cotes Accuracy More Quadrature Differentiation

Newton-Cotes Quadrature

xi’s evenly spaced in [a, b] and symmetric

I Closed: includes endpoints

xk ≡ a+(k − 1)(b− a)

n− 1

I Open: does not include endpoints

xk ≡ a+k(b− a)

n+ 1

CS 205A: Mathematical Methods Numerical Integration and Differentiation 13 / 34

Page 18: Numerical Integration and Differentiation · CS 205A: Mathematical Methods Numerical Integration and Di erentiation 13 / 34. Introduction Quadrature Newton-Cotes Accuracy More Quadrature

Introduction Quadrature Newton-Cotes Accuracy More Quadrature Differentiation

Newton-Cotes Quadrature

xi’s evenly spaced in [a, b] and symmetric

I Closed: includes endpoints

xk ≡ a+(k − 1)(b− a)

n− 1

I Open: does not include endpoints

xk ≡ a+k(b− a)

n+ 1

CS 205A: Mathematical Methods Numerical Integration and Differentiation 13 / 34

Page 19: Numerical Integration and Differentiation · CS 205A: Mathematical Methods Numerical Integration and Di erentiation 13 / 34. Introduction Quadrature Newton-Cotes Accuracy More Quadrature

Introduction Quadrature Newton-Cotes Accuracy More Quadrature Differentiation

Midpoint Rule

∫ b

a

f (x) dx ≈ (b− a)f

(a + b

2

)Open

CS 205A: Mathematical Methods Numerical Integration and Differentiation 14 / 34

Page 20: Numerical Integration and Differentiation · CS 205A: Mathematical Methods Numerical Integration and Di erentiation 13 / 34. Introduction Quadrature Newton-Cotes Accuracy More Quadrature

Introduction Quadrature Newton-Cotes Accuracy More Quadrature Differentiation

Trapezoidal Rule

∫ b

a

f (x) dx ≈ (b− a)f (a) + f (b)

2

Closed

CS 205A: Mathematical Methods Numerical Integration and Differentiation 15 / 34

Page 21: Numerical Integration and Differentiation · CS 205A: Mathematical Methods Numerical Integration and Di erentiation 13 / 34. Introduction Quadrature Newton-Cotes Accuracy More Quadrature

Introduction Quadrature Newton-Cotes Accuracy More Quadrature Differentiation

Simpson’s Rule

∫ b

a

f(x) dx ≈ b− a6

(f(a) + 4f

(a+ b

2

)+ f(b)

)Open; from quadratic interpolation

CS 205A: Mathematical Methods Numerical Integration and Differentiation 16 / 34

Page 22: Numerical Integration and Differentiation · CS 205A: Mathematical Methods Numerical Integration and Di erentiation 13 / 34. Introduction Quadrature Newton-Cotes Accuracy More Quadrature

Introduction Quadrature Newton-Cotes Accuracy More Quadrature Differentiation

Composite Rules

Apply rules on subintervals

∆x ≡ b− ak

, xi ≡ a+ i∆x

Composite midpoint:∫ b

a

f(x) dx ≈k∑

i=1

f

(xi+1 + xi

2

)∆x

CS 205A: Mathematical Methods Numerical Integration and Differentiation 17 / 34

Page 23: Numerical Integration and Differentiation · CS 205A: Mathematical Methods Numerical Integration and Di erentiation 13 / 34. Introduction Quadrature Newton-Cotes Accuracy More Quadrature

Introduction Quadrature Newton-Cotes Accuracy More Quadrature Differentiation

Composite Rules

Apply rules on subintervals

∆x ≡ b− ak

, xi ≡ a+ i∆x

Composite midpoint:∫ b

a

f(x) dx ≈k∑

i=1

f

(xi+1 + xi

2

)∆x

CS 205A: Mathematical Methods Numerical Integration and Differentiation 17 / 34

Page 24: Numerical Integration and Differentiation · CS 205A: Mathematical Methods Numerical Integration and Di erentiation 13 / 34. Introduction Quadrature Newton-Cotes Accuracy More Quadrature

Introduction Quadrature Newton-Cotes Accuracy More Quadrature Differentiation

Composite Rules

Composite trapezoid:

∫ b

a

f(x) dx ≈k∑

i=1

(f(xi) + f(xi+1)

2

)∆x

= ∆x

(1

2f(a) + f(x1) + · · ·+ f(xk−1) +

1

2f(b)

)

CS 205A: Mathematical Methods Numerical Integration and Differentiation 18 / 34

Page 25: Numerical Integration and Differentiation · CS 205A: Mathematical Methods Numerical Integration and Di erentiation 13 / 34. Introduction Quadrature Newton-Cotes Accuracy More Quadrature

Introduction Quadrature Newton-Cotes Accuracy More Quadrature Differentiation

Composite Rules

Composite Simpson:

∫ b

a

f(x) dx ≈ ∆x

3

f(a) + 2n−2−1∑i=1

f(x2i) + 4

n/2∑i=1

f(x2i−1) + f(b)

=

∆x

3[f(a) + 4f(x1) + 2f(x2) + · · ·+ 4f(xn−1) + f(b)]

n must be odd!

CS 205A: Mathematical Methods Numerical Integration and Differentiation 19 / 34

Page 26: Numerical Integration and Differentiation · CS 205A: Mathematical Methods Numerical Integration and Di erentiation 13 / 34. Introduction Quadrature Newton-Cotes Accuracy More Quadrature

Introduction Quadrature Newton-Cotes Accuracy More Quadrature Differentiation

Question

Which quadrature rule isbest?

CS 205A: Mathematical Methods Numerical Integration and Differentiation 20 / 34

Page 27: Numerical Integration and Differentiation · CS 205A: Mathematical Methods Numerical Integration and Di erentiation 13 / 34. Introduction Quadrature Newton-Cotes Accuracy More Quadrature

Introduction Quadrature Newton-Cotes Accuracy More Quadrature Differentiation

On a Single Interval

[On the board.]

I Midpoint and trapezoid:O(∆x3)

I Simpson: O(∆x5)

CS 205A: Mathematical Methods Numerical Integration and Differentiation 21 / 34

Page 28: Numerical Integration and Differentiation · CS 205A: Mathematical Methods Numerical Integration and Di erentiation 13 / 34. Introduction Quadrature Newton-Cotes Accuracy More Quadrature

Introduction Quadrature Newton-Cotes Accuracy More Quadrature Differentiation

Composite

Width of subinterval is O( 1∆x

)

I Midpoint and trapezoid:O(∆x2)

I Simpson: O(∆x4)

CS 205A: Mathematical Methods Numerical Integration and Differentiation 22 / 34

Page 29: Numerical Integration and Differentiation · CS 205A: Mathematical Methods Numerical Integration and Di erentiation 13 / 34. Introduction Quadrature Newton-Cotes Accuracy More Quadrature

Introduction Quadrature Newton-Cotes Accuracy More Quadrature Differentiation

Other Strategies

I Gaussian quadrature: Optimize both wi’s

and xi’s; gets two times the accuracy (but

harder to use!)

I Adaptive quadrature: Choose xi’s where

information is needed (e.g. when quadrature

strategies do not agree)

CS 205A: Mathematical Methods Numerical Integration and Differentiation 23 / 34

Page 30: Numerical Integration and Differentiation · CS 205A: Mathematical Methods Numerical Integration and Di erentiation 13 / 34. Introduction Quadrature Newton-Cotes Accuracy More Quadrature

Introduction Quadrature Newton-Cotes Accuracy More Quadrature Differentiation

Multivariable Integrals I

“Curse of dimensionality”∫Ω

f (~x) d~x,Ω ⊆ Rn

I Iterated integral: Apply one-dimensional

strategy

I Subdivision: Fill with triangles/rectangles,

tetrahedra/boxes, etc.

CS 205A: Mathematical Methods Numerical Integration and Differentiation 24 / 34

Page 31: Numerical Integration and Differentiation · CS 205A: Mathematical Methods Numerical Integration and Di erentiation 13 / 34. Introduction Quadrature Newton-Cotes Accuracy More Quadrature

Introduction Quadrature Newton-Cotes Accuracy More Quadrature Differentiation

Multivariable Integrals II

I Monte Carlo: Randomly draw points in Ω

and average f (~x); converges like 1/√k

regardless of dimension

CS 205A: Mathematical Methods Numerical Integration and Differentiation 25 / 34

Page 32: Numerical Integration and Differentiation · CS 205A: Mathematical Methods Numerical Integration and Di erentiation 13 / 34. Introduction Quadrature Newton-Cotes Accuracy More Quadrature

Introduction Quadrature Newton-Cotes Accuracy More Quadrature Differentiation

Conditioning

|Q[f ]−Q[f ]|‖f − f‖∞

≤ ‖~w‖∞

CS 205A: Mathematical Methods Numerical Integration and Differentiation 26 / 34

Page 33: Numerical Integration and Differentiation · CS 205A: Mathematical Methods Numerical Integration and Di erentiation 13 / 34. Introduction Quadrature Newton-Cotes Accuracy More Quadrature

Introduction Quadrature Newton-Cotes Accuracy More Quadrature Differentiation

Differentiation

I Lack of stabilityI Jacobians vs. f : R→ R

CS 205A: Mathematical Methods Numerical Integration and Differentiation 27 / 34

Page 34: Numerical Integration and Differentiation · CS 205A: Mathematical Methods Numerical Integration and Di erentiation 13 / 34. Introduction Quadrature Newton-Cotes Accuracy More Quadrature

Introduction Quadrature Newton-Cotes Accuracy More Quadrature Differentiation

Differentiation in Basis

f ′(x) =∑i

aiφ′i(x)

φ′i’s basis for derivatives; important for finite

element method!

CS 205A: Mathematical Methods Numerical Integration and Differentiation 28 / 34

Page 35: Numerical Integration and Differentiation · CS 205A: Mathematical Methods Numerical Integration and Di erentiation 13 / 34. Introduction Quadrature Newton-Cotes Accuracy More Quadrature

Introduction Quadrature Newton-Cotes Accuracy More Quadrature Differentiation

Definition of Derivative

f ′(x) ≡ limh→0

f (x + h)− f (x)

h

CS 205A: Mathematical Methods Numerical Integration and Differentiation 29 / 34

Page 36: Numerical Integration and Differentiation · CS 205A: Mathematical Methods Numerical Integration and Di erentiation 13 / 34. Introduction Quadrature Newton-Cotes Accuracy More Quadrature

Introduction Quadrature Newton-Cotes Accuracy More Quadrature Differentiation

O(h) Approximations

Forward difference:

f ′(x) ≈ f(x+ h)− f(x)

h

Backward difference:

f ′(x) ≈ f(x)− f(x− h)

h

CS 205A: Mathematical Methods Numerical Integration and Differentiation 30 / 34

Page 37: Numerical Integration and Differentiation · CS 205A: Mathematical Methods Numerical Integration and Di erentiation 13 / 34. Introduction Quadrature Newton-Cotes Accuracy More Quadrature

Introduction Quadrature Newton-Cotes Accuracy More Quadrature Differentiation

O(h) Approximations

Forward difference:

f ′(x) ≈ f(x+ h)− f(x)

h

Backward difference:

f ′(x) ≈ f(x)− f(x− h)

h

CS 205A: Mathematical Methods Numerical Integration and Differentiation 30 / 34

Page 38: Numerical Integration and Differentiation · CS 205A: Mathematical Methods Numerical Integration and Di erentiation 13 / 34. Introduction Quadrature Newton-Cotes Accuracy More Quadrature

Introduction Quadrature Newton-Cotes Accuracy More Quadrature Differentiation

O(h2) Approximation

Centered difference:

f ′(x) ≈ f(x+ h)− f(x− h)

2h

CS 205A: Mathematical Methods Numerical Integration and Differentiation 31 / 34

Page 39: Numerical Integration and Differentiation · CS 205A: Mathematical Methods Numerical Integration and Di erentiation 13 / 34. Introduction Quadrature Newton-Cotes Accuracy More Quadrature

Introduction Quadrature Newton-Cotes Accuracy More Quadrature Differentiation

O(h) Approximation of f ′′

Centered difference:

f ′′(x) ≈ f(x+ h)− 2f(x) + f(x− h)

h2

=f(x+h)−f(x)

h− f(x)−f(x−h)

h

h

Geometric interpretation

CS 205A: Mathematical Methods Numerical Integration and Differentiation 32 / 34

Page 40: Numerical Integration and Differentiation · CS 205A: Mathematical Methods Numerical Integration and Di erentiation 13 / 34. Introduction Quadrature Newton-Cotes Accuracy More Quadrature

Introduction Quadrature Newton-Cotes Accuracy More Quadrature Differentiation

Richardson Extrapolation

D(h) ≡ f(x+ h)− f(x)

h= f ′(x) +

1

2f ′′(x)h+O(h2)

D(αh) = f ′(x) +1

2f ′′(x)αh+O(h2)

(f ′(x)f ′′(x)

)=

(1 1

2h

1 12αh

)−1(D(h)D(αh)

)+O(h2)

CS 205A: Mathematical Methods Numerical Integration and Differentiation 33 / 34

Page 41: Numerical Integration and Differentiation · CS 205A: Mathematical Methods Numerical Integration and Di erentiation 13 / 34. Introduction Quadrature Newton-Cotes Accuracy More Quadrature

Introduction Quadrature Newton-Cotes Accuracy More Quadrature Differentiation

Richardson Extrapolation

D(h) ≡ f(x+ h)− f(x)

h= f ′(x) +

1

2f ′′(x)h+O(h2)

D(αh) = f ′(x) +1

2f ′′(x)αh+O(h2)

(f ′(x)f ′′(x)

)=

(1 1

2h

1 12αh

)−1(D(h)D(αh)

)+O(h2)

CS 205A: Mathematical Methods Numerical Integration and Differentiation 33 / 34

Page 42: Numerical Integration and Differentiation · CS 205A: Mathematical Methods Numerical Integration and Di erentiation 13 / 34. Introduction Quadrature Newton-Cotes Accuracy More Quadrature

Introduction Quadrature Newton-Cotes Accuracy More Quadrature Differentiation

Richardson Extrapolation

D(h) ≡ f(x+ h)− f(x)

h= f ′(x) +

1

2f ′′(x)h+O(h2)

D(αh) = f ′(x) +1

2f ′′(x)αh+O(h2)

(f ′(x)f ′′(x)

)=

(1 1

2h

1 12αh

)−1(D(h)D(αh)

)+O(h2)

CS 205A: Mathematical Methods Numerical Integration and Differentiation 33 / 34

Page 43: Numerical Integration and Differentiation · CS 205A: Mathematical Methods Numerical Integration and Di erentiation 13 / 34. Introduction Quadrature Newton-Cotes Accuracy More Quadrature

Introduction Quadrature Newton-Cotes Accuracy More Quadrature Differentiation

Choosing h

I Too big: Bad approximation of f ′

I Too small: Numerical issues

(h small, f (x) ≈ f (x + h))

Next

CS 205A: Mathematical Methods Numerical Integration and Differentiation 34 / 34

Page 44: Numerical Integration and Differentiation · CS 205A: Mathematical Methods Numerical Integration and Di erentiation 13 / 34. Introduction Quadrature Newton-Cotes Accuracy More Quadrature

Introduction Quadrature Newton-Cotes Accuracy More Quadrature Differentiation

Choosing h

I Too big: Bad approximation of f ′

I Too small: Numerical issues

(h small, f (x) ≈ f (x + h))

Next

CS 205A: Mathematical Methods Numerical Integration and Differentiation 34 / 34