Top Banner
Numerical Differentiation & Integration Composite Numerical Integration I Numerical Analysis (9th Edition) R L Burden & J D Faires Beamer Presentation Slides prepared by John Carroll Dublin City University c 2011 Brooks/Cole, Cengage Learning
93

Numerical Differentiation & Integration [0.125in]3.375in0.02in ...Numerical Analysis (Chapter 4) Composite Numerical IntegrationI R L Burden & J D Faires 9 / 35 Example Composite Simpson

Mar 22, 2021

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Numerical Differentiation & Integration [0.125in]3.375in0.02in ...Numerical Analysis (Chapter 4) Composite Numerical IntegrationI R L Burden & J D Faires 9 / 35 Example Composite Simpson

Numerical Differentiation & Integration

Composite Numerical Integration I

Numerical Analysis (9th Edition)

R L Burden & J D Faires

Beamer Presentation Slidesprepared byJohn Carroll

Dublin City University

c© 2011 Brooks/Cole, Cengage Learning

Page 2: Numerical Differentiation & Integration [0.125in]3.375in0.02in ...Numerical Analysis (Chapter 4) Composite Numerical IntegrationI R L Burden & J D Faires 9 / 35 Example Composite Simpson

Example Composite Simpson Composite Trapezoidal Example

Outline

1 A Motivating Example

Numerical Analysis (Chapter 4) Composite Numerical Integration I R L Burden & J D Faires 2 / 35

Page 3: Numerical Differentiation & Integration [0.125in]3.375in0.02in ...Numerical Analysis (Chapter 4) Composite Numerical IntegrationI R L Burden & J D Faires 9 / 35 Example Composite Simpson

Example Composite Simpson Composite Trapezoidal Example

Outline

1 A Motivating Example

2 The Composite Simpson’s Rule

Numerical Analysis (Chapter 4) Composite Numerical Integration I R L Burden & J D Faires 2 / 35

Page 4: Numerical Differentiation & Integration [0.125in]3.375in0.02in ...Numerical Analysis (Chapter 4) Composite Numerical IntegrationI R L Burden & J D Faires 9 / 35 Example Composite Simpson

Example Composite Simpson Composite Trapezoidal Example

Outline

1 A Motivating Example

2 The Composite Simpson’s Rule

3 The Composite Trapezoidal & Midpoint Rules

Numerical Analysis (Chapter 4) Composite Numerical Integration I R L Burden & J D Faires 2 / 35

Page 5: Numerical Differentiation & Integration [0.125in]3.375in0.02in ...Numerical Analysis (Chapter 4) Composite Numerical IntegrationI R L Burden & J D Faires 9 / 35 Example Composite Simpson

Example Composite Simpson Composite Trapezoidal Example

Outline

1 A Motivating Example

2 The Composite Simpson’s Rule

3 The Composite Trapezoidal & Midpoint Rules

4 Comparing the Composite Simpson & Trapezoidal Rules

Numerical Analysis (Chapter 4) Composite Numerical Integration I R L Burden & J D Faires 2 / 35

Page 6: Numerical Differentiation & Integration [0.125in]3.375in0.02in ...Numerical Analysis (Chapter 4) Composite Numerical IntegrationI R L Burden & J D Faires 9 / 35 Example Composite Simpson

Example Composite Simpson Composite Trapezoidal Example

Outline

1 A Motivating Example

2 The Composite Simpson’s Rule

3 The Composite Trapezoidal & Midpoint Rules

4 Comparing the Composite Simpson & Trapezoidal Rules

Numerical Analysis (Chapter 4) Composite Numerical Integration I R L Burden & J D Faires 3 / 35

Page 7: Numerical Differentiation & Integration [0.125in]3.375in0.02in ...Numerical Analysis (Chapter 4) Composite Numerical IntegrationI R L Burden & J D Faires 9 / 35 Example Composite Simpson

Example Composite Simpson Composite Trapezoidal Example

Composite Numerical Integration: Motivating Example

Application of Simpson’s RuleUse Simpson’s rule to approximate

∫ 4

0ex dx

Numerical Analysis (Chapter 4) Composite Numerical Integration I R L Burden & J D Faires 4 / 35

Page 8: Numerical Differentiation & Integration [0.125in]3.375in0.02in ...Numerical Analysis (Chapter 4) Composite Numerical IntegrationI R L Burden & J D Faires 9 / 35 Example Composite Simpson

Example Composite Simpson Composite Trapezoidal Example

Composite Numerical Integration: Motivating Example

Application of Simpson’s RuleUse Simpson’s rule to approximate

∫ 4

0ex dx

and compare this to the results obtained by adding the Simpson’s ruleapproximations for

∫ 2

0ex dx and

∫ 4

2ex dx

Numerical Analysis (Chapter 4) Composite Numerical Integration I R L Burden & J D Faires 4 / 35

Page 9: Numerical Differentiation & Integration [0.125in]3.375in0.02in ...Numerical Analysis (Chapter 4) Composite Numerical IntegrationI R L Burden & J D Faires 9 / 35 Example Composite Simpson

Example Composite Simpson Composite Trapezoidal Example

Composite Numerical Integration: Motivating Example

Application of Simpson’s RuleUse Simpson’s rule to approximate

∫ 4

0ex dx

and compare this to the results obtained by adding the Simpson’s ruleapproximations for

∫ 2

0ex dx and

∫ 4

2ex dx

and adding those for

∫ 1

0ex dx ,

∫ 2

1ex dx ,

∫ 3

2ex dx and

∫ 4

3ex dx

Numerical Analysis (Chapter 4) Composite Numerical Integration I R L Burden & J D Faires 4 / 35

Page 10: Numerical Differentiation & Integration [0.125in]3.375in0.02in ...Numerical Analysis (Chapter 4) Composite Numerical IntegrationI R L Burden & J D Faires 9 / 35 Example Composite Simpson

Example Composite Simpson Composite Trapezoidal Example

Composite Numerical Integration: Motivating Example

Solution (1/3)Simpson’s rule on [0, 4] uses h = 2

Numerical Analysis (Chapter 4) Composite Numerical Integration I R L Burden & J D Faires 5 / 35

Page 11: Numerical Differentiation & Integration [0.125in]3.375in0.02in ...Numerical Analysis (Chapter 4) Composite Numerical IntegrationI R L Burden & J D Faires 9 / 35 Example Composite Simpson

Example Composite Simpson Composite Trapezoidal Example

Composite Numerical Integration: Motivating Example

Solution (1/3)Simpson’s rule on [0, 4] uses h = 2 and gives

∫ 4

0ex dx ≈

23(e0 + 4e2 + e4) = 56.76958.

Numerical Analysis (Chapter 4) Composite Numerical Integration I R L Burden & J D Faires 5 / 35

Page 12: Numerical Differentiation & Integration [0.125in]3.375in0.02in ...Numerical Analysis (Chapter 4) Composite Numerical IntegrationI R L Burden & J D Faires 9 / 35 Example Composite Simpson

Example Composite Simpson Composite Trapezoidal Example

Composite Numerical Integration: Motivating Example

Solution (1/3)Simpson’s rule on [0, 4] uses h = 2 and gives

∫ 4

0ex dx ≈

23(e0 + 4e2 + e4) = 56.76958.

The exact answer in this case is e4 − e0 = 53.59815, and the error−3.17143 is far larger than we would normally accept.

Numerical Analysis (Chapter 4) Composite Numerical Integration I R L Burden & J D Faires 5 / 35

Page 13: Numerical Differentiation & Integration [0.125in]3.375in0.02in ...Numerical Analysis (Chapter 4) Composite Numerical IntegrationI R L Burden & J D Faires 9 / 35 Example Composite Simpson

Example Composite Simpson Composite Trapezoidal Example

Composite Numerical Integration: Motivating Example

Solution (2/3)Applying Simpson’s rule on each of the intervals [0, 2] and [2, 4] usesh = 1

Numerical Analysis (Chapter 4) Composite Numerical Integration I R L Burden & J D Faires 6 / 35

Page 14: Numerical Differentiation & Integration [0.125in]3.375in0.02in ...Numerical Analysis (Chapter 4) Composite Numerical IntegrationI R L Burden & J D Faires 9 / 35 Example Composite Simpson

Example Composite Simpson Composite Trapezoidal Example

Composite Numerical Integration: Motivating Example

Solution (2/3)Applying Simpson’s rule on each of the intervals [0, 2] and [2, 4] usesh = 1 and gives

∫ 4

0ex dx =

∫ 2

0ex dx +

∫ 4

2ex dx

Numerical Analysis (Chapter 4) Composite Numerical Integration I R L Burden & J D Faires 6 / 35

Page 15: Numerical Differentiation & Integration [0.125in]3.375in0.02in ...Numerical Analysis (Chapter 4) Composite Numerical IntegrationI R L Burden & J D Faires 9 / 35 Example Composite Simpson

Example Composite Simpson Composite Trapezoidal Example

Composite Numerical Integration: Motivating Example

Solution (2/3)Applying Simpson’s rule on each of the intervals [0, 2] and [2, 4] usesh = 1 and gives

∫ 4

0ex dx =

∫ 2

0ex dx +

∫ 4

2ex dx

≈13

(

e0 + 4e + e2)

+13

(

e2 + 4e3 + e4)

Numerical Analysis (Chapter 4) Composite Numerical Integration I R L Burden & J D Faires 6 / 35

Page 16: Numerical Differentiation & Integration [0.125in]3.375in0.02in ...Numerical Analysis (Chapter 4) Composite Numerical IntegrationI R L Burden & J D Faires 9 / 35 Example Composite Simpson

Example Composite Simpson Composite Trapezoidal Example

Composite Numerical Integration: Motivating Example

Solution (2/3)Applying Simpson’s rule on each of the intervals [0, 2] and [2, 4] usesh = 1 and gives

∫ 4

0ex dx =

∫ 2

0ex dx +

∫ 4

2ex dx

≈13

(

e0 + 4e + e2)

+13

(

e2 + 4e3 + e4)

=13

(

e0 + 4e + 2e2 + 4e3 + e4)

Numerical Analysis (Chapter 4) Composite Numerical Integration I R L Burden & J D Faires 6 / 35

Page 17: Numerical Differentiation & Integration [0.125in]3.375in0.02in ...Numerical Analysis (Chapter 4) Composite Numerical IntegrationI R L Burden & J D Faires 9 / 35 Example Composite Simpson

Example Composite Simpson Composite Trapezoidal Example

Composite Numerical Integration: Motivating Example

Solution (2/3)Applying Simpson’s rule on each of the intervals [0, 2] and [2, 4] usesh = 1 and gives

∫ 4

0ex dx =

∫ 2

0ex dx +

∫ 4

2ex dx

≈13

(

e0 + 4e + e2)

+13

(

e2 + 4e3 + e4)

=13

(

e0 + 4e + 2e2 + 4e3 + e4)

= 53.86385

The error has been reduced to −0.26570.

Numerical Analysis (Chapter 4) Composite Numerical Integration I R L Burden & J D Faires 6 / 35

Page 18: Numerical Differentiation & Integration [0.125in]3.375in0.02in ...Numerical Analysis (Chapter 4) Composite Numerical IntegrationI R L Burden & J D Faires 9 / 35 Example Composite Simpson

Example Composite Simpson Composite Trapezoidal Example

Composite Numerical Integration: Motivating Example

Solution (3/3)For the integrals on [0, 1],[1, 2],[3, 4], and [3, 4] we use Simpson’s rulefour times with h = 1

2

Numerical Analysis (Chapter 4) Composite Numerical Integration I R L Burden & J D Faires 7 / 35

Page 19: Numerical Differentiation & Integration [0.125in]3.375in0.02in ...Numerical Analysis (Chapter 4) Composite Numerical IntegrationI R L Burden & J D Faires 9 / 35 Example Composite Simpson

Example Composite Simpson Composite Trapezoidal Example

Composite Numerical Integration: Motivating Example

Solution (3/3)For the integrals on [0, 1],[1, 2],[3, 4], and [3, 4] we use Simpson’s rulefour times with h = 1

2 giving

∫ 4

0ex dx =

∫ 1

0ex dx +

∫ 2

1ex dx +

∫ 3

2ex dx +

∫ 4

3ex dx

Numerical Analysis (Chapter 4) Composite Numerical Integration I R L Burden & J D Faires 7 / 35

Page 20: Numerical Differentiation & Integration [0.125in]3.375in0.02in ...Numerical Analysis (Chapter 4) Composite Numerical IntegrationI R L Burden & J D Faires 9 / 35 Example Composite Simpson

Example Composite Simpson Composite Trapezoidal Example

Composite Numerical Integration: Motivating Example

Solution (3/3)For the integrals on [0, 1],[1, 2],[3, 4], and [3, 4] we use Simpson’s rulefour times with h = 1

2 giving

∫ 4

0ex dx =

∫ 1

0ex dx +

∫ 2

1ex dx +

∫ 3

2ex dx +

∫ 4

3ex dx

≈16

(

e0 + 4e1/2 + e)

+16

(

e + 4e3/2 + e2)

+16

(

e2 + 4e5/2 + e3)

+16

(

e3 + 4e7/2 + e4)

Numerical Analysis (Chapter 4) Composite Numerical Integration I R L Burden & J D Faires 7 / 35

Page 21: Numerical Differentiation & Integration [0.125in]3.375in0.02in ...Numerical Analysis (Chapter 4) Composite Numerical IntegrationI R L Burden & J D Faires 9 / 35 Example Composite Simpson

Example Composite Simpson Composite Trapezoidal Example

Composite Numerical Integration: Motivating Example

Solution (3/3)For the integrals on [0, 1],[1, 2],[3, 4], and [3, 4] we use Simpson’s rulefour times with h = 1

2 giving

∫ 4

0ex dx =

∫ 1

0ex dx +

∫ 2

1ex dx +

∫ 3

2ex dx +

∫ 4

3ex dx

≈16

(

e0 + 4e1/2 + e)

+16

(

e + 4e3/2 + e2)

+16

(

e2 + 4e5/2 + e3)

+16

(

e3 + 4e7/2 + e4)

=16

(

e0 + 4e1/2 + 2e + 4e3/2 + 2e2 + 4e5/2 + 2e3 + 4e7/2 + e4)

Numerical Analysis (Chapter 4) Composite Numerical Integration I R L Burden & J D Faires 7 / 35

Page 22: Numerical Differentiation & Integration [0.125in]3.375in0.02in ...Numerical Analysis (Chapter 4) Composite Numerical IntegrationI R L Burden & J D Faires 9 / 35 Example Composite Simpson

Example Composite Simpson Composite Trapezoidal Example

Composite Numerical Integration: Motivating Example

Solution (3/3)For the integrals on [0, 1],[1, 2],[3, 4], and [3, 4] we use Simpson’s rulefour times with h = 1

2 giving

∫ 4

0ex dx =

∫ 1

0ex dx +

∫ 2

1ex dx +

∫ 3

2ex dx +

∫ 4

3ex dx

≈16

(

e0 + 4e1/2 + e)

+16

(

e + 4e3/2 + e2)

+16

(

e2 + 4e5/2 + e3)

+16

(

e3 + 4e7/2 + e4)

=16

(

e0 + 4e1/2 + 2e + 4e3/2 + 2e2 + 4e5/2 + 2e3 + 4e7/2 + e4)

= 53.61622.

The error for this approximation has been reduced to −0.01807.

Numerical Analysis (Chapter 4) Composite Numerical Integration I R L Burden & J D Faires 7 / 35

Page 23: Numerical Differentiation & Integration [0.125in]3.375in0.02in ...Numerical Analysis (Chapter 4) Composite Numerical IntegrationI R L Burden & J D Faires 9 / 35 Example Composite Simpson

Example Composite Simpson Composite Trapezoidal Example

Outline

1 A Motivating Example

2 The Composite Simpson’s Rule

3 The Composite Trapezoidal & Midpoint Rules

4 Comparing the Composite Simpson & Trapezoidal Rules

Numerical Analysis (Chapter 4) Composite Numerical Integration I R L Burden & J D Faires 8 / 35

Page 24: Numerical Differentiation & Integration [0.125in]3.375in0.02in ...Numerical Analysis (Chapter 4) Composite Numerical IntegrationI R L Burden & J D Faires 9 / 35 Example Composite Simpson

Example Composite Simpson Composite Trapezoidal Example

Composite Numerical Integration: Simpson’s Rule

To generalize this procedure for an arbitrary integral∫ b

af (x) dx ,

choose an even integer n. Subdivide the interval [a, b] into nsubintervals, and apply Simpson’s rule on each consecutive pair ofsubintervals.

y

xa 5 x0 x2 b 5 xn

y 5 f (x)

x2j22 x2j21 x2j

Numerical Analysis (Chapter 4) Composite Numerical Integration I R L Burden & J D Faires 9 / 35

Page 25: Numerical Differentiation & Integration [0.125in]3.375in0.02in ...Numerical Analysis (Chapter 4) Composite Numerical IntegrationI R L Burden & J D Faires 9 / 35 Example Composite Simpson

Example Composite Simpson Composite Trapezoidal Example

Composite Numerical Integration: Simpson’s Rule

Construct the Formula & Error TermWith h = (b − a)/n and xj = a + jh, for each j = 0, 1, . . . , n,

Numerical Analysis (Chapter 4) Composite Numerical Integration I R L Burden & J D Faires 10 / 35

Page 26: Numerical Differentiation & Integration [0.125in]3.375in0.02in ...Numerical Analysis (Chapter 4) Composite Numerical IntegrationI R L Burden & J D Faires 9 / 35 Example Composite Simpson

Example Composite Simpson Composite Trapezoidal Example

Composite Numerical Integration: Simpson’s Rule

Construct the Formula & Error TermWith h = (b − a)/n and xj = a + jh, for each j = 0, 1, . . . , n, we have

∫ b

af (x) dx =

n/2∑

j=1

∫ x2j

x2j−2

f (x) dx

=

n/2∑

j=1

{

h3

[f (x2j−2) + 4f (x2j−1) + f (x2j)] −h5

90f (4)(ξj)

}

for some ξj with x2j−2 < ξj < x2j , provided that f ∈ C4[a, b].

Numerical Analysis (Chapter 4) Composite Numerical Integration I R L Burden & J D Faires 10 / 35

Page 27: Numerical Differentiation & Integration [0.125in]3.375in0.02in ...Numerical Analysis (Chapter 4) Composite Numerical IntegrationI R L Burden & J D Faires 9 / 35 Example Composite Simpson

Example Composite Simpson Composite Trapezoidal Example

Composite Numerical Integration: Simpson’s Rule

∫ b

af (x) dx =

n/2∑

j=1

{

h3

[f (x2j−2) + 4f (x2j−1) + f (x2j)] −h5

90f (4)(ξj)

}

Construct the Formula & Error Term (Cont’d)Using the fact that for each j = 1, 2, . . . , (n/2) − 1 we have f (x2j)appearing in the term corresponding to the interval [x2j−2, x2j ]

Numerical Analysis (Chapter 4) Composite Numerical Integration I R L Burden & J D Faires 11 / 35

Page 28: Numerical Differentiation & Integration [0.125in]3.375in0.02in ...Numerical Analysis (Chapter 4) Composite Numerical IntegrationI R L Burden & J D Faires 9 / 35 Example Composite Simpson

Example Composite Simpson Composite Trapezoidal Example

Composite Numerical Integration: Simpson’s Rule

∫ b

af (x) dx =

n/2∑

j=1

{

h3

[f (x2j−2) + 4f (x2j−1) + f (x2j)] −h5

90f (4)(ξj)

}

Construct the Formula & Error Term (Cont’d)Using the fact that for each j = 1, 2, . . . , (n/2) − 1 we have f (x2j)appearing in the term corresponding to the interval [x2j−2, x2j ] and alsoin the term corresponding to the interval [x2j , x2j+2],

Numerical Analysis (Chapter 4) Composite Numerical Integration I R L Burden & J D Faires 11 / 35

Page 29: Numerical Differentiation & Integration [0.125in]3.375in0.02in ...Numerical Analysis (Chapter 4) Composite Numerical IntegrationI R L Burden & J D Faires 9 / 35 Example Composite Simpson

Example Composite Simpson Composite Trapezoidal Example

Composite Numerical Integration: Simpson’s Rule

∫ b

af (x) dx =

n/2∑

j=1

{

h3

[f (x2j−2) + 4f (x2j−1) + f (x2j)] −h5

90f (4)(ξj)

}

Construct the Formula & Error Term (Cont’d)Using the fact that for each j = 1, 2, . . . , (n/2) − 1 we have f (x2j)appearing in the term corresponding to the interval [x2j−2, x2j ] and alsoin the term corresponding to the interval [x2j , x2j+2], we can reduce thissum to

∫ b

af (x) dx =

h3

f (x0) + 2(n/2)−1

j=1

f (x2j) + 4n/2∑

j=1

f (x2j−1) + f (xn)

−h5

90

n/2∑

j=1

f (4)(ξj)

Numerical Analysis (Chapter 4) Composite Numerical Integration I R L Burden & J D Faires 11 / 35

Page 30: Numerical Differentiation & Integration [0.125in]3.375in0.02in ...Numerical Analysis (Chapter 4) Composite Numerical IntegrationI R L Burden & J D Faires 9 / 35 Example Composite Simpson

Example Composite Simpson Composite Trapezoidal Example

Composite Numerical Integration: Simpson’s Rule

Construct the Formula & Error Term (Cont’d)The error associated with this approximation is

E(f ) = −h5

90

n/2∑

j=1

f (4)(ξj)

where x2j−2 < ξj < x2j , for each j = 1, 2, . . . , n/2. If f ∈ C4[a, b], theExtreme Value Theorem See Theorem implies that f (4) assumes itsmaximum and minimum in [a, b].

Numerical Analysis (Chapter 4) Composite Numerical Integration I R L Burden & J D Faires 12 / 35

Page 31: Numerical Differentiation & Integration [0.125in]3.375in0.02in ...Numerical Analysis (Chapter 4) Composite Numerical IntegrationI R L Burden & J D Faires 9 / 35 Example Composite Simpson

Example Composite Simpson Composite Trapezoidal Example

Composite Numerical Integration: Simpson’s Rule

Construct the Formula & Error Term (Cont’d)Since

minx∈[a,b]

f (4)(x) ≤ f (4)(ξj) ≤ maxx∈[a,b]

f (4)(x)

Numerical Analysis (Chapter 4) Composite Numerical Integration I R L Burden & J D Faires 13 / 35

Page 32: Numerical Differentiation & Integration [0.125in]3.375in0.02in ...Numerical Analysis (Chapter 4) Composite Numerical IntegrationI R L Burden & J D Faires 9 / 35 Example Composite Simpson

Example Composite Simpson Composite Trapezoidal Example

Composite Numerical Integration: Simpson’s Rule

Construct the Formula & Error Term (Cont’d)Since

minx∈[a,b]

f (4)(x) ≤ f (4)(ξj) ≤ maxx∈[a,b]

f (4)(x)

we have

n2

minx∈[a,b]

f (4)(x) ≤

n/2∑

j=1

f (4)(ξj) ≤n2

maxx∈[a,b]

f (4)(x)

Numerical Analysis (Chapter 4) Composite Numerical Integration I R L Burden & J D Faires 13 / 35

Page 33: Numerical Differentiation & Integration [0.125in]3.375in0.02in ...Numerical Analysis (Chapter 4) Composite Numerical IntegrationI R L Burden & J D Faires 9 / 35 Example Composite Simpson

Example Composite Simpson Composite Trapezoidal Example

Composite Numerical Integration: Simpson’s Rule

Construct the Formula & Error Term (Cont’d)Since

minx∈[a,b]

f (4)(x) ≤ f (4)(ξj) ≤ maxx∈[a,b]

f (4)(x)

we have

n2

minx∈[a,b]

f (4)(x) ≤

n/2∑

j=1

f (4)(ξj) ≤n2

maxx∈[a,b]

f (4)(x)

and

minx∈[a,b]

f (4)(x) ≤2n

n/2∑

j=1

f (4)(ξj) ≤ maxx∈[a,b]

f (4)(x)

Numerical Analysis (Chapter 4) Composite Numerical Integration I R L Burden & J D Faires 13 / 35

Page 34: Numerical Differentiation & Integration [0.125in]3.375in0.02in ...Numerical Analysis (Chapter 4) Composite Numerical IntegrationI R L Burden & J D Faires 9 / 35 Example Composite Simpson

Example Composite Simpson Composite Trapezoidal Example

Composite Numerical Integration: Simpson’s Rule

Construct the Formula & Error Term (Cont’d)

By the Intermediate Value Theorem See Theorem

Numerical Analysis (Chapter 4) Composite Numerical Integration I R L Burden & J D Faires 14 / 35

Page 35: Numerical Differentiation & Integration [0.125in]3.375in0.02in ...Numerical Analysis (Chapter 4) Composite Numerical IntegrationI R L Burden & J D Faires 9 / 35 Example Composite Simpson

Example Composite Simpson Composite Trapezoidal Example

Composite Numerical Integration: Simpson’s Rule

Construct the Formula & Error Term (Cont’d)

By the Intermediate Value Theorem See Theorem there is a µ ∈ (a, b)such that

f (4)(µ) =2n

n/2∑

j=1

f (4)(ξj)

Numerical Analysis (Chapter 4) Composite Numerical Integration I R L Burden & J D Faires 14 / 35

Page 36: Numerical Differentiation & Integration [0.125in]3.375in0.02in ...Numerical Analysis (Chapter 4) Composite Numerical IntegrationI R L Burden & J D Faires 9 / 35 Example Composite Simpson

Example Composite Simpson Composite Trapezoidal Example

Composite Numerical Integration: Simpson’s Rule

Construct the Formula & Error Term (Cont’d)

By the Intermediate Value Theorem See Theorem there is a µ ∈ (a, b)such that

f (4)(µ) =2n

n/2∑

j=1

f (4)(ξj)

Thus

E(f ) = −h5

90

n/2∑

j=1

f (4)(ξj) = −h5

180nf (4)(µ)

Numerical Analysis (Chapter 4) Composite Numerical Integration I R L Burden & J D Faires 14 / 35

Page 37: Numerical Differentiation & Integration [0.125in]3.375in0.02in ...Numerical Analysis (Chapter 4) Composite Numerical IntegrationI R L Burden & J D Faires 9 / 35 Example Composite Simpson

Example Composite Simpson Composite Trapezoidal Example

Composite Numerical Integration: Simpson’s Rule

Construct the Formula & Error Term (Cont’d)

By the Intermediate Value Theorem See Theorem there is a µ ∈ (a, b)such that

f (4)(µ) =2n

n/2∑

j=1

f (4)(ξj)

Thus

E(f ) = −h5

90

n/2∑

j=1

f (4)(ξj) = −h5

180nf (4)(µ)

or, since h = (b − a)/n,

E(f ) = −(b − a)

180h4f (4)(µ)

Numerical Analysis (Chapter 4) Composite Numerical Integration I R L Burden & J D Faires 14 / 35

Page 38: Numerical Differentiation & Integration [0.125in]3.375in0.02in ...Numerical Analysis (Chapter 4) Composite Numerical IntegrationI R L Burden & J D Faires 9 / 35 Example Composite Simpson

Example Composite Simpson Composite Trapezoidal Example

Composite Numerical Integration: Simpson’s Rule

These observations produce the following result.

Numerical Analysis (Chapter 4) Composite Numerical Integration I R L Burden & J D Faires 15 / 35

Page 39: Numerical Differentiation & Integration [0.125in]3.375in0.02in ...Numerical Analysis (Chapter 4) Composite Numerical IntegrationI R L Burden & J D Faires 9 / 35 Example Composite Simpson

Example Composite Simpson Composite Trapezoidal Example

Composite Numerical Integration: Simpson’s Rule

These observations produce the following result.

Theorem: Composite Simpson’s Rule

Let f ∈ C4[a, b], n be even, h = (b − a)/n, and xj = a + jh, for eachj = 0, 1, . . . , n.

Numerical Analysis (Chapter 4) Composite Numerical Integration I R L Burden & J D Faires 15 / 35

Page 40: Numerical Differentiation & Integration [0.125in]3.375in0.02in ...Numerical Analysis (Chapter 4) Composite Numerical IntegrationI R L Burden & J D Faires 9 / 35 Example Composite Simpson

Example Composite Simpson Composite Trapezoidal Example

Composite Numerical Integration: Simpson’s Rule

These observations produce the following result.

Theorem: Composite Simpson’s Rule

Let f ∈ C4[a, b], n be even, h = (b − a)/n, and xj = a + jh, for eachj = 0, 1, . . . , n. There exists a µ ∈ (a, b) for which the CompositeSimpson’s rule for n subintervals can be written with its error term as

∫ b

af (x) dx =

h3

f (a) + 2(n/2)−1

j=1

f (x2j) + 4n/2∑

j=1

f (x2j−1) + f (b)

−b − a180

h4f (4)(µ)

Numerical Analysis (Chapter 4) Composite Numerical Integration I R L Burden & J D Faires 15 / 35

Page 41: Numerical Differentiation & Integration [0.125in]3.375in0.02in ...Numerical Analysis (Chapter 4) Composite Numerical IntegrationI R L Burden & J D Faires 9 / 35 Example Composite Simpson

Example Composite Simpson Composite Trapezoidal Example

Composite Numerical Integration: Simpson’s Rule

Comments on the Formula & Error Term

Numerical Analysis (Chapter 4) Composite Numerical Integration I R L Burden & J D Faires 16 / 35

Page 42: Numerical Differentiation & Integration [0.125in]3.375in0.02in ...Numerical Analysis (Chapter 4) Composite Numerical IntegrationI R L Burden & J D Faires 9 / 35 Example Composite Simpson

Example Composite Simpson Composite Trapezoidal Example

Composite Numerical Integration: Simpson’s Rule

Comments on the Formula & Error TermNotice that the error term for the Composite Simpson’s rule isO(h4), whereas it was O(h5) for the standard Simpson’s rule.

Numerical Analysis (Chapter 4) Composite Numerical Integration I R L Burden & J D Faires 16 / 35

Page 43: Numerical Differentiation & Integration [0.125in]3.375in0.02in ...Numerical Analysis (Chapter 4) Composite Numerical IntegrationI R L Burden & J D Faires 9 / 35 Example Composite Simpson

Example Composite Simpson Composite Trapezoidal Example

Composite Numerical Integration: Simpson’s Rule

Comments on the Formula & Error TermNotice that the error term for the Composite Simpson’s rule isO(h4), whereas it was O(h5) for the standard Simpson’s rule.

However, these rates are not comparable because, for thestandard Simpson’s rule, we have h fixed at h = (b − a)/2, but forComposite Simpson’s rule we have h = (b − a)/n, for n an eveninteger.

Numerical Analysis (Chapter 4) Composite Numerical Integration I R L Burden & J D Faires 16 / 35

Page 44: Numerical Differentiation & Integration [0.125in]3.375in0.02in ...Numerical Analysis (Chapter 4) Composite Numerical IntegrationI R L Burden & J D Faires 9 / 35 Example Composite Simpson

Example Composite Simpson Composite Trapezoidal Example

Composite Numerical Integration: Simpson’s Rule

Comments on the Formula & Error TermNotice that the error term for the Composite Simpson’s rule isO(h4), whereas it was O(h5) for the standard Simpson’s rule.

However, these rates are not comparable because, for thestandard Simpson’s rule, we have h fixed at h = (b − a)/2, but forComposite Simpson’s rule we have h = (b − a)/n, for n an eveninteger.

This permits us to considerably reduce the value of h.

Numerical Analysis (Chapter 4) Composite Numerical Integration I R L Burden & J D Faires 16 / 35

Page 45: Numerical Differentiation & Integration [0.125in]3.375in0.02in ...Numerical Analysis (Chapter 4) Composite Numerical IntegrationI R L Burden & J D Faires 9 / 35 Example Composite Simpson

Example Composite Simpson Composite Trapezoidal Example

Composite Numerical Integration: Simpson’s Rule

Comments on the Formula & Error TermNotice that the error term for the Composite Simpson’s rule isO(h4), whereas it was O(h5) for the standard Simpson’s rule.

However, these rates are not comparable because, for thestandard Simpson’s rule, we have h fixed at h = (b − a)/2, but forComposite Simpson’s rule we have h = (b − a)/n, for n an eveninteger.

This permits us to considerably reduce the value of h.

The following algorithm uses the Composite Simpson’s rule on nsubintervals. It is the most frequently-used general-purposequadrature algorithm.

Numerical Analysis (Chapter 4) Composite Numerical Integration I R L Burden & J D Faires 16 / 35

Page 46: Numerical Differentiation & Integration [0.125in]3.375in0.02in ...Numerical Analysis (Chapter 4) Composite Numerical IntegrationI R L Burden & J D Faires 9 / 35 Example Composite Simpson

Example Composite Simpson Composite Trapezoidal Example

Composite Integration: Simpson’s Rule Algorithm

To approximate the integral I =∫ b

a f (x) dx :

Numerical Analysis (Chapter 4) Composite Numerical Integration I R L Burden & J D Faires 17 / 35

Page 47: Numerical Differentiation & Integration [0.125in]3.375in0.02in ...Numerical Analysis (Chapter 4) Composite Numerical IntegrationI R L Burden & J D Faires 9 / 35 Example Composite Simpson

Example Composite Simpson Composite Trapezoidal Example

Composite Integration: Simpson’s Rule Algorithm

To approximate the integral I =∫ b

a f (x) dx :

INPUT endpoints a, b; even positive integer n

Numerical Analysis (Chapter 4) Composite Numerical Integration I R L Burden & J D Faires 17 / 35

Page 48: Numerical Differentiation & Integration [0.125in]3.375in0.02in ...Numerical Analysis (Chapter 4) Composite Numerical IntegrationI R L Burden & J D Faires 9 / 35 Example Composite Simpson

Example Composite Simpson Composite Trapezoidal Example

Composite Integration: Simpson’s Rule Algorithm

To approximate the integral I =∫ b

a f (x) dx :

INPUT endpoints a, b; even positive integer nOUTPUT approximation XI to I

Numerical Analysis (Chapter 4) Composite Numerical Integration I R L Burden & J D Faires 17 / 35

Page 49: Numerical Differentiation & Integration [0.125in]3.375in0.02in ...Numerical Analysis (Chapter 4) Composite Numerical IntegrationI R L Burden & J D Faires 9 / 35 Example Composite Simpson

Example Composite Simpson Composite Trapezoidal Example

Composite Integration: Simpson’s Rule Algorithm

To approximate the integral I =∫ b

a f (x) dx :

INPUT endpoints a, b; even positive integer nOUTPUT approximation XI to IStep 1 Set h = (b − a)/n

Numerical Analysis (Chapter 4) Composite Numerical Integration I R L Burden & J D Faires 17 / 35

Page 50: Numerical Differentiation & Integration [0.125in]3.375in0.02in ...Numerical Analysis (Chapter 4) Composite Numerical IntegrationI R L Burden & J D Faires 9 / 35 Example Composite Simpson

Example Composite Simpson Composite Trapezoidal Example

Composite Integration: Simpson’s Rule Algorithm

To approximate the integral I =∫ b

a f (x) dx :

INPUT endpoints a, b; even positive integer nOUTPUT approximation XI to IStep 1 Set h = (b − a)/nStep 2 Set XI0 = f (a) + f (b)

XI1 = 0; (Summation of f (x2i−1)XI2 = 0. (Summation of f (x2i))

Numerical Analysis (Chapter 4) Composite Numerical Integration I R L Burden & J D Faires 17 / 35

Page 51: Numerical Differentiation & Integration [0.125in]3.375in0.02in ...Numerical Analysis (Chapter 4) Composite Numerical IntegrationI R L Burden & J D Faires 9 / 35 Example Composite Simpson

Example Composite Simpson Composite Trapezoidal Example

Composite Integration: Simpson’s Rule Algorithm

To approximate the integral I =∫ b

a f (x) dx :

INPUT endpoints a, b; even positive integer nOUTPUT approximation XI to IStep 1 Set h = (b − a)/nStep 2 Set XI0 = f (a) + f (b)

XI1 = 0; (Summation of f (x2i−1)XI2 = 0. (Summation of f (x2i))

Step 3 For i = 1, . . . , n − 1 do Steps 4 and 5:

Numerical Analysis (Chapter 4) Composite Numerical Integration I R L Burden & J D Faires 17 / 35

Page 52: Numerical Differentiation & Integration [0.125in]3.375in0.02in ...Numerical Analysis (Chapter 4) Composite Numerical IntegrationI R L Burden & J D Faires 9 / 35 Example Composite Simpson

Example Composite Simpson Composite Trapezoidal Example

Composite Integration: Simpson’s Rule Algorithm

To approximate the integral I =∫ b

a f (x) dx :

INPUT endpoints a, b; even positive integer nOUTPUT approximation XI to IStep 1 Set h = (b − a)/nStep 2 Set XI0 = f (a) + f (b)

XI1 = 0; (Summation of f (x2i−1)XI2 = 0. (Summation of f (x2i))

Step 3 For i = 1, . . . , n − 1 do Steps 4 and 5:Step 4: Set X = a + ih

Numerical Analysis (Chapter 4) Composite Numerical Integration I R L Burden & J D Faires 17 / 35

Page 53: Numerical Differentiation & Integration [0.125in]3.375in0.02in ...Numerical Analysis (Chapter 4) Composite Numerical IntegrationI R L Burden & J D Faires 9 / 35 Example Composite Simpson

Example Composite Simpson Composite Trapezoidal Example

Composite Integration: Simpson’s Rule Algorithm

To approximate the integral I =∫ b

a f (x) dx :

INPUT endpoints a, b; even positive integer nOUTPUT approximation XI to IStep 1 Set h = (b − a)/nStep 2 Set XI0 = f (a) + f (b)

XI1 = 0; (Summation of f (x2i−1)XI2 = 0. (Summation of f (x2i))

Step 3 For i = 1, . . . , n − 1 do Steps 4 and 5:Step 4: Set X = a + ihStep 5: If i is even then set XI2 = XI2 + f (X )

else set XI1 = XI1 + f (X )

Numerical Analysis (Chapter 4) Composite Numerical Integration I R L Burden & J D Faires 17 / 35

Page 54: Numerical Differentiation & Integration [0.125in]3.375in0.02in ...Numerical Analysis (Chapter 4) Composite Numerical IntegrationI R L Burden & J D Faires 9 / 35 Example Composite Simpson

Example Composite Simpson Composite Trapezoidal Example

Composite Integration: Simpson’s Rule Algorithm

To approximate the integral I =∫ b

a f (x) dx :

INPUT endpoints a, b; even positive integer nOUTPUT approximation XI to IStep 1 Set h = (b − a)/nStep 2 Set XI0 = f (a) + f (b)

XI1 = 0; (Summation of f (x2i−1)XI2 = 0. (Summation of f (x2i))

Step 3 For i = 1, . . . , n − 1 do Steps 4 and 5:Step 4: Set X = a + ihStep 5: If i is even then set XI2 = XI2 + f (X )

else set XI1 = XI1 + f (X )Step 6 Set XI = h(XI0 + 2 · XI2 + 4 · XI1)/3

Numerical Analysis (Chapter 4) Composite Numerical Integration I R L Burden & J D Faires 17 / 35

Page 55: Numerical Differentiation & Integration [0.125in]3.375in0.02in ...Numerical Analysis (Chapter 4) Composite Numerical IntegrationI R L Burden & J D Faires 9 / 35 Example Composite Simpson

Example Composite Simpson Composite Trapezoidal Example

Composite Integration: Simpson’s Rule Algorithm

To approximate the integral I =∫ b

a f (x) dx :

INPUT endpoints a, b; even positive integer nOUTPUT approximation XI to IStep 1 Set h = (b − a)/nStep 2 Set XI0 = f (a) + f (b)

XI1 = 0; (Summation of f (x2i−1)XI2 = 0. (Summation of f (x2i))

Step 3 For i = 1, . . . , n − 1 do Steps 4 and 5:Step 4: Set X = a + ihStep 5: If i is even then set XI2 = XI2 + f (X )

else set XI1 = XI1 + f (X )Step 6 Set XI = h(XI0 + 2 · XI2 + 4 · XI1)/3Step 7 OUTPUT (XI)

STOP

Numerical Analysis (Chapter 4) Composite Numerical Integration I R L Burden & J D Faires 17 / 35

Page 56: Numerical Differentiation & Integration [0.125in]3.375in0.02in ...Numerical Analysis (Chapter 4) Composite Numerical IntegrationI R L Burden & J D Faires 9 / 35 Example Composite Simpson

Example Composite Simpson Composite Trapezoidal Example

Outline

1 A Motivating Example

2 The Composite Simpson’s Rule

3 The Composite Trapezoidal & Midpoint Rules

4 Comparing the Composite Simpson & Trapezoidal Rules

Numerical Analysis (Chapter 4) Composite Numerical Integration I R L Burden & J D Faires 18 / 35

Page 57: Numerical Differentiation & Integration [0.125in]3.375in0.02in ...Numerical Analysis (Chapter 4) Composite Numerical IntegrationI R L Burden & J D Faires 9 / 35 Example Composite Simpson

Example Composite Simpson Composite Trapezoidal Example

Composite Integration: Trapezoidal & Midpoint Rules

PreambleThe subdivision approach can be applied to any of theNewton-Cotes formulas.

Numerical Analysis (Chapter 4) Composite Numerical Integration I R L Burden & J D Faires 19 / 35

Page 58: Numerical Differentiation & Integration [0.125in]3.375in0.02in ...Numerical Analysis (Chapter 4) Composite Numerical IntegrationI R L Burden & J D Faires 9 / 35 Example Composite Simpson

Example Composite Simpson Composite Trapezoidal Example

Composite Integration: Trapezoidal & Midpoint Rules

PreambleThe subdivision approach can be applied to any of theNewton-Cotes formulas.

The extensions of the Trapezoidal and Midpoint rules will bepresented without proof.

Numerical Analysis (Chapter 4) Composite Numerical Integration I R L Burden & J D Faires 19 / 35

Page 59: Numerical Differentiation & Integration [0.125in]3.375in0.02in ...Numerical Analysis (Chapter 4) Composite Numerical IntegrationI R L Burden & J D Faires 9 / 35 Example Composite Simpson

Example Composite Simpson Composite Trapezoidal Example

Composite Integration: Trapezoidal & Midpoint Rules

PreambleThe subdivision approach can be applied to any of theNewton-Cotes formulas.

The extensions of the Trapezoidal and Midpoint rules will bepresented without proof.

The Trapezoidal rule requires only one interval for eachapplication, so the integer n can be either odd or even.

Numerical Analysis (Chapter 4) Composite Numerical Integration I R L Burden & J D Faires 19 / 35

Page 60: Numerical Differentiation & Integration [0.125in]3.375in0.02in ...Numerical Analysis (Chapter 4) Composite Numerical IntegrationI R L Burden & J D Faires 9 / 35 Example Composite Simpson

Example Composite Simpson Composite Trapezoidal Example

Composite Integration: Trapezoidal & Midpoint Rules

PreambleThe subdivision approach can be applied to any of theNewton-Cotes formulas.

The extensions of the Trapezoidal and Midpoint rules will bepresented without proof.

The Trapezoidal rule requires only one interval for eachapplication, so the integer n can be either odd or even.

For the Midpoint rule, however, the integer n must be even.

Numerical Analysis (Chapter 4) Composite Numerical Integration I R L Burden & J D Faires 19 / 35

Page 61: Numerical Differentiation & Integration [0.125in]3.375in0.02in ...Numerical Analysis (Chapter 4) Composite Numerical IntegrationI R L Burden & J D Faires 9 / 35 Example Composite Simpson

Example Composite Simpson Composite Trapezoidal Example

Numerical Integration: Composite Trapezoidal Rule

y

xa 5 x0 b 5 xn

y 5 f (x)

xj21 xjx1 xn21

Note: The Trapezoidal rule requires only one interval for eachapplication, so the integer n can be either odd or even.

Numerical Analysis (Chapter 4) Composite Numerical Integration I R L Burden & J D Faires 20 / 35

Page 62: Numerical Differentiation & Integration [0.125in]3.375in0.02in ...Numerical Analysis (Chapter 4) Composite Numerical IntegrationI R L Burden & J D Faires 9 / 35 Example Composite Simpson

Example Composite Simpson Composite Trapezoidal Example

Numerical Integration: Composite Trapezoidal Rule

Theorem: Composite Trapezoidal Rule

Let f ∈ C2[a, b], h = (b − a)/n, and xj = a + jh, for each j = 0, 1, . . . , n.

Numerical Analysis (Chapter 4) Composite Numerical Integration I R L Burden & J D Faires 21 / 35

Page 63: Numerical Differentiation & Integration [0.125in]3.375in0.02in ...Numerical Analysis (Chapter 4) Composite Numerical IntegrationI R L Burden & J D Faires 9 / 35 Example Composite Simpson

Example Composite Simpson Composite Trapezoidal Example

Numerical Integration: Composite Trapezoidal Rule

Theorem: Composite Trapezoidal Rule

Let f ∈ C2[a, b], h = (b − a)/n, and xj = a + jh, for each j = 0, 1, . . . , n.There exists a µ ∈ (a, b) for which the Composite Trapezoidal Rule forn subintervals can be written with its error term as

∫ b

af (x) dx =

h2

f (a) + 2n−1∑

j=1

f (xj) + f (b)

−b − a

12h2f ′′(µ)

Numerical Analysis (Chapter 4) Composite Numerical Integration I R L Burden & J D Faires 21 / 35

Page 64: Numerical Differentiation & Integration [0.125in]3.375in0.02in ...Numerical Analysis (Chapter 4) Composite Numerical IntegrationI R L Burden & J D Faires 9 / 35 Example Composite Simpson

Example Composite Simpson Composite Trapezoidal Example

Numerical Integration: Composite Midpoint Rule

Midpoint Rule (1-point open Newton-Cotes formula)∫ x1

x−1

f (x) dx = 2hf (x0) +h3

3f ′′(ξ), where x−1 < ξ < x1

Theorem: Composite Midpoint Rule

Numerical Analysis (Chapter 4) Composite Numerical Integration I R L Burden & J D Faires 22 / 35

Page 65: Numerical Differentiation & Integration [0.125in]3.375in0.02in ...Numerical Analysis (Chapter 4) Composite Numerical IntegrationI R L Burden & J D Faires 9 / 35 Example Composite Simpson

Example Composite Simpson Composite Trapezoidal Example

Numerical Integration: Composite Midpoint Rule

Midpoint Rule (1-point open Newton-Cotes formula)∫ x1

x−1

f (x) dx = 2hf (x0) +h3

3f ′′(ξ), where x−1 < ξ < x1

Theorem: Composite Midpoint Rule

Let f ∈ C2[a, b], n be even, h = (b − a)/(n + 2), and xj = a + (j + 1)hfor each j = −1, 0, . . . , n + 1.

Numerical Analysis (Chapter 4) Composite Numerical Integration I R L Burden & J D Faires 22 / 35

Page 66: Numerical Differentiation & Integration [0.125in]3.375in0.02in ...Numerical Analysis (Chapter 4) Composite Numerical IntegrationI R L Burden & J D Faires 9 / 35 Example Composite Simpson

Example Composite Simpson Composite Trapezoidal Example

Numerical Integration: Composite Midpoint Rule

Midpoint Rule (1-point open Newton-Cotes formula)∫ x1

x−1

f (x) dx = 2hf (x0) +h3

3f ′′(ξ), where x−1 < ξ < x1

Theorem: Composite Midpoint Rule

Let f ∈ C2[a, b], n be even, h = (b − a)/(n + 2), and xj = a + (j + 1)hfor each j = −1, 0, . . . , n + 1. There exists a µ ∈ (a, b) for which theComposite Midpoint rule for n + 2 subintervals can be written with itserror term as

∫ b

af (x) dx = 2h

n/2∑

j=0

f (x2j) +b − a

6h2f ′′(µ)

Numerical Analysis (Chapter 4) Composite Numerical Integration I R L Burden & J D Faires 22 / 35

Page 67: Numerical Differentiation & Integration [0.125in]3.375in0.02in ...Numerical Analysis (Chapter 4) Composite Numerical IntegrationI R L Burden & J D Faires 9 / 35 Example Composite Simpson

Example Composite Simpson Composite Trapezoidal Example

Numerical Integration: Composite Midpoint Rule

x

y

a 5 x21 x0 x1 xnx2j21 xn21x2j x2j11 b 5 xn11

y 5 f (x)

Note: The Midpoint Rule requires two intervals for each application, sothe integer n must be even.

Numerical Analysis (Chapter 4) Composite Numerical Integration I R L Burden & J D Faires 23 / 35

Page 68: Numerical Differentiation & Integration [0.125in]3.375in0.02in ...Numerical Analysis (Chapter 4) Composite Numerical IntegrationI R L Burden & J D Faires 9 / 35 Example Composite Simpson

Example Composite Simpson Composite Trapezoidal Example

Outline

1 A Motivating Example

2 The Composite Simpson’s Rule

3 The Composite Trapezoidal & Midpoint Rules

4 Comparing the Composite Simpson & Trapezoidal Rules

Numerical Analysis (Chapter 4) Composite Numerical Integration I R L Burden & J D Faires 24 / 35

Page 69: Numerical Differentiation & Integration [0.125in]3.375in0.02in ...Numerical Analysis (Chapter 4) Composite Numerical IntegrationI R L Burden & J D Faires 9 / 35 Example Composite Simpson

Example Composite Simpson Composite Trapezoidal Example

Composite Numerical Integration: Example

Example: Trapezoidal .v. Simpson’s RulesDetermine values of h that will ensure an approximation error of lessthan 0.00002 when approximating

∫ π0 sin x dx and employing:

Numerical Analysis (Chapter 4) Composite Numerical Integration I R L Burden & J D Faires 25 / 35

Page 70: Numerical Differentiation & Integration [0.125in]3.375in0.02in ...Numerical Analysis (Chapter 4) Composite Numerical IntegrationI R L Burden & J D Faires 9 / 35 Example Composite Simpson

Example Composite Simpson Composite Trapezoidal Example

Composite Numerical Integration: Example

Example: Trapezoidal .v. Simpson’s RulesDetermine values of h that will ensure an approximation error of lessthan 0.00002 when approximating

∫ π0 sin x dx and employing:

(a) Composite Trapezoidal rule and

Numerical Analysis (Chapter 4) Composite Numerical Integration I R L Burden & J D Faires 25 / 35

Page 71: Numerical Differentiation & Integration [0.125in]3.375in0.02in ...Numerical Analysis (Chapter 4) Composite Numerical IntegrationI R L Burden & J D Faires 9 / 35 Example Composite Simpson

Example Composite Simpson Composite Trapezoidal Example

Composite Numerical Integration: Example

Example: Trapezoidal .v. Simpson’s RulesDetermine values of h that will ensure an approximation error of lessthan 0.00002 when approximating

∫ π0 sin x dx and employing:

(a) Composite Trapezoidal rule and

(b) Composite Simpson’s rule.

Numerical Analysis (Chapter 4) Composite Numerical Integration I R L Burden & J D Faires 25 / 35

Page 72: Numerical Differentiation & Integration [0.125in]3.375in0.02in ...Numerical Analysis (Chapter 4) Composite Numerical IntegrationI R L Burden & J D Faires 9 / 35 Example Composite Simpson

Example Composite Simpson Composite Trapezoidal Example

Composite Numerical Integration: Example

Solution (1/5)The error form for the Composite Trapezoidal rule for f (x) = sin x on[0, π] is

Numerical Analysis (Chapter 4) Composite Numerical Integration I R L Burden & J D Faires 26 / 35

Page 73: Numerical Differentiation & Integration [0.125in]3.375in0.02in ...Numerical Analysis (Chapter 4) Composite Numerical IntegrationI R L Burden & J D Faires 9 / 35 Example Composite Simpson

Example Composite Simpson Composite Trapezoidal Example

Composite Numerical Integration: Example

Solution (1/5)The error form for the Composite Trapezoidal rule for f (x) = sin x on[0, π] is

πh2

12f ′′(µ)

=

πh2

12(− sin µ)

=πh2

12| sin µ|.

Numerical Analysis (Chapter 4) Composite Numerical Integration I R L Burden & J D Faires 26 / 35

Page 74: Numerical Differentiation & Integration [0.125in]3.375in0.02in ...Numerical Analysis (Chapter 4) Composite Numerical IntegrationI R L Burden & J D Faires 9 / 35 Example Composite Simpson

Example Composite Simpson Composite Trapezoidal Example

Composite Numerical Integration: Example

Solution (1/5)The error form for the Composite Trapezoidal rule for f (x) = sin x on[0, π] is

πh2

12f ′′(µ)

=

πh2

12(− sin µ)

=πh2

12| sin µ|.

To ensure sufficient accuracy with this technique, we need to have

πh2

12| sin µ| ≤

πh2

12< 0.00002.

Numerical Analysis (Chapter 4) Composite Numerical Integration I R L Burden & J D Faires 26 / 35

Page 75: Numerical Differentiation & Integration [0.125in]3.375in0.02in ...Numerical Analysis (Chapter 4) Composite Numerical IntegrationI R L Burden & J D Faires 9 / 35 Example Composite Simpson

Example Composite Simpson Composite Trapezoidal Example

Composite Numerical Integration: Example

πh2

12| sin µ| ≤

πh2

12< 0.00002

Solution (2/5)

Numerical Analysis (Chapter 4) Composite Numerical Integration I R L Burden & J D Faires 27 / 35

Page 76: Numerical Differentiation & Integration [0.125in]3.375in0.02in ...Numerical Analysis (Chapter 4) Composite Numerical IntegrationI R L Burden & J D Faires 9 / 35 Example Composite Simpson

Example Composite Simpson Composite Trapezoidal Example

Composite Numerical Integration: Example

πh2

12| sin µ| ≤

πh2

12< 0.00002

Solution (2/5)Since h = π/n implies that n = π/h, we need

π3

12n2 < 0.00002

Numerical Analysis (Chapter 4) Composite Numerical Integration I R L Burden & J D Faires 27 / 35

Page 77: Numerical Differentiation & Integration [0.125in]3.375in0.02in ...Numerical Analysis (Chapter 4) Composite Numerical IntegrationI R L Burden & J D Faires 9 / 35 Example Composite Simpson

Example Composite Simpson Composite Trapezoidal Example

Composite Numerical Integration: Example

πh2

12| sin µ| ≤

πh2

12< 0.00002

Solution (2/5)Since h = π/n implies that n = π/h, we need

π3

12n2 < 0.00002

⇒ n >

(

π3

12(0.00002)

)1/2

≈ 359.44

and the Composite Trapezoidal rule requires n ≥ 360.

Numerical Analysis (Chapter 4) Composite Numerical Integration I R L Burden & J D Faires 27 / 35

Page 78: Numerical Differentiation & Integration [0.125in]3.375in0.02in ...Numerical Analysis (Chapter 4) Composite Numerical IntegrationI R L Burden & J D Faires 9 / 35 Example Composite Simpson

Example Composite Simpson Composite Trapezoidal Example

Composite Numerical Integration: Example

Solution (3/5)

The error form for the Composite Simpson’s rule for f (x) = sin x on[0, π] is

Numerical Analysis (Chapter 4) Composite Numerical Integration I R L Burden & J D Faires 28 / 35

Page 79: Numerical Differentiation & Integration [0.125in]3.375in0.02in ...Numerical Analysis (Chapter 4) Composite Numerical IntegrationI R L Burden & J D Faires 9 / 35 Example Composite Simpson

Example Composite Simpson Composite Trapezoidal Example

Composite Numerical Integration: Example

Solution (3/5)

The error form for the Composite Simpson’s rule for f (x) = sin x on[0, π] is

πh4

180f (4)(µ)

=

πh4

180sin µ

=πh4

180| sin µ|

Numerical Analysis (Chapter 4) Composite Numerical Integration I R L Burden & J D Faires 28 / 35

Page 80: Numerical Differentiation & Integration [0.125in]3.375in0.02in ...Numerical Analysis (Chapter 4) Composite Numerical IntegrationI R L Burden & J D Faires 9 / 35 Example Composite Simpson

Example Composite Simpson Composite Trapezoidal Example

Composite Numerical Integration: Example

Solution (3/5)

The error form for the Composite Simpson’s rule for f (x) = sin x on[0, π] is

πh4

180f (4)(µ)

=

πh4

180sin µ

=πh4

180| sin µ|

To ensure sufficient accuracy with this technique we need to have

πh4

180| sin µ| ≤

πh4

180< 0.00002

Numerical Analysis (Chapter 4) Composite Numerical Integration I R L Burden & J D Faires 28 / 35

Page 81: Numerical Differentiation & Integration [0.125in]3.375in0.02in ...Numerical Analysis (Chapter 4) Composite Numerical IntegrationI R L Burden & J D Faires 9 / 35 Example Composite Simpson

Example Composite Simpson Composite Trapezoidal Example

Composite Numerical Integration: Example

πh4

180| sin µ| ≤

πh4

180< 0.00002

Solution (4/5)

Numerical Analysis (Chapter 4) Composite Numerical Integration I R L Burden & J D Faires 29 / 35

Page 82: Numerical Differentiation & Integration [0.125in]3.375in0.02in ...Numerical Analysis (Chapter 4) Composite Numerical IntegrationI R L Burden & J D Faires 9 / 35 Example Composite Simpson

Example Composite Simpson Composite Trapezoidal Example

Composite Numerical Integration: Example

πh4

180| sin µ| ≤

πh4

180< 0.00002

Solution (4/5)Using again the fact that n = π/h gives

π5

180n4 < 0.00002

Numerical Analysis (Chapter 4) Composite Numerical Integration I R L Burden & J D Faires 29 / 35

Page 83: Numerical Differentiation & Integration [0.125in]3.375in0.02in ...Numerical Analysis (Chapter 4) Composite Numerical IntegrationI R L Burden & J D Faires 9 / 35 Example Composite Simpson

Example Composite Simpson Composite Trapezoidal Example

Composite Numerical Integration: Example

πh4

180| sin µ| ≤

πh4

180< 0.00002

Solution (4/5)Using again the fact that n = π/h gives

π5

180n4 < 0.00002 ⇒ n >

(

π5

180(0.00002)

)1/4

≈ 17.07

So Composite Simpson’s rule requires only n ≥ 18.

Numerical Analysis (Chapter 4) Composite Numerical Integration I R L Burden & J D Faires 29 / 35

Page 84: Numerical Differentiation & Integration [0.125in]3.375in0.02in ...Numerical Analysis (Chapter 4) Composite Numerical IntegrationI R L Burden & J D Faires 9 / 35 Example Composite Simpson

Example Composite Simpson Composite Trapezoidal Example

Composite Numerical Integration: Example

Solution (5/5)Composite Simpson’s rule with n = 18 gives

∫ π

0sin x dx ≈

π

54

28

j=1

sin(

jπ9

)

+ 49

j=1

sin(

(2j − 1)π

18

)

= 2.0000104

Numerical Analysis (Chapter 4) Composite Numerical Integration I R L Burden & J D Faires 30 / 35

Page 85: Numerical Differentiation & Integration [0.125in]3.375in0.02in ...Numerical Analysis (Chapter 4) Composite Numerical IntegrationI R L Burden & J D Faires 9 / 35 Example Composite Simpson

Example Composite Simpson Composite Trapezoidal Example

Composite Numerical Integration: Example

Solution (5/5)Composite Simpson’s rule with n = 18 gives

∫ π

0sin x dx ≈

π

54

28

j=1

sin(

jπ9

)

+ 49

j=1

sin(

(2j − 1)π

18

)

= 2.0000104

This is accurate to within about 10−5 because the true value is− cos(π) − (− cos(0)) = 2.

Numerical Analysis (Chapter 4) Composite Numerical Integration I R L Burden & J D Faires 30 / 35

Page 86: Numerical Differentiation & Integration [0.125in]3.375in0.02in ...Numerical Analysis (Chapter 4) Composite Numerical IntegrationI R L Burden & J D Faires 9 / 35 Example Composite Simpson

Example Composite Simpson Composite Trapezoidal Example

Composite Numerical Integration: Conclusion

Composite Simpson’s rule is the clear choice if you wish tominimize computation.

Numerical Analysis (Chapter 4) Composite Numerical Integration I R L Burden & J D Faires 31 / 35

Page 87: Numerical Differentiation & Integration [0.125in]3.375in0.02in ...Numerical Analysis (Chapter 4) Composite Numerical IntegrationI R L Burden & J D Faires 9 / 35 Example Composite Simpson

Example Composite Simpson Composite Trapezoidal Example

Composite Numerical Integration: Conclusion

Composite Simpson’s rule is the clear choice if you wish tominimize computation.

For comparison purposes, consider the Composite Trapezoidalrule using h = π/18 for the integral in the previous example.

Numerical Analysis (Chapter 4) Composite Numerical Integration I R L Burden & J D Faires 31 / 35

Page 88: Numerical Differentiation & Integration [0.125in]3.375in0.02in ...Numerical Analysis (Chapter 4) Composite Numerical IntegrationI R L Burden & J D Faires 9 / 35 Example Composite Simpson

Example Composite Simpson Composite Trapezoidal Example

Composite Numerical Integration: Conclusion

Composite Simpson’s rule is the clear choice if you wish tominimize computation.

For comparison purposes, consider the Composite Trapezoidalrule using h = π/18 for the integral in the previous example.

This approximation uses the same function evaluations asComposite Simpson’s rule but the approximation in this case

∫ π

0sin x dx ≈

π

36

217∑

j=1

sin(

jπ18

)

+ sin 0 + sin π

Numerical Analysis (Chapter 4) Composite Numerical Integration I R L Burden & J D Faires 31 / 35

Page 89: Numerical Differentiation & Integration [0.125in]3.375in0.02in ...Numerical Analysis (Chapter 4) Composite Numerical IntegrationI R L Burden & J D Faires 9 / 35 Example Composite Simpson

Example Composite Simpson Composite Trapezoidal Example

Composite Numerical Integration: Conclusion

Composite Simpson’s rule is the clear choice if you wish tominimize computation.

For comparison purposes, consider the Composite Trapezoidalrule using h = π/18 for the integral in the previous example.

This approximation uses the same function evaluations asComposite Simpson’s rule but the approximation in this case

∫ π

0sin x dx ≈

π

36

217∑

j=1

sin(

jπ18

)

+ sin 0 + sin π

36

217∑

j=1

sin(

jπ18

)

= 1.9949205

is accurate only to about 5 × 10−3.

Numerical Analysis (Chapter 4) Composite Numerical Integration I R L Burden & J D Faires 31 / 35

Page 90: Numerical Differentiation & Integration [0.125in]3.375in0.02in ...Numerical Analysis (Chapter 4) Composite Numerical IntegrationI R L Burden & J D Faires 9 / 35 Example Composite Simpson

Questions?

Page 91: Numerical Differentiation & Integration [0.125in]3.375in0.02in ...Numerical Analysis (Chapter 4) Composite Numerical IntegrationI R L Burden & J D Faires 9 / 35 Example Composite Simpson

Reference Material

Page 92: Numerical Differentiation & Integration [0.125in]3.375in0.02in ...Numerical Analysis (Chapter 4) Composite Numerical IntegrationI R L Burden & J D Faires 9 / 35 Example Composite Simpson

The Extreme Value Theorem

If f ∈ C[a, b], then c1, c2 ∈ [a, b] exist with f (c1) ≤ f (x) ≤ f (c2), for allx ∈ [a, b]. In addition, if f is differentiable on (a, b), then the numbersc1 and c2 occur either at the endpoints of [a, b] or where f ′ is zero.

Return to Derivation of the Composite Simpson’s Rule

y

xa c2 c1 b

y 5 f (x)

Page 93: Numerical Differentiation & Integration [0.125in]3.375in0.02in ...Numerical Analysis (Chapter 4) Composite Numerical IntegrationI R L Burden & J D Faires 9 / 35 Example Composite Simpson

Intermediate Value Theorem

If f ∈ C[a, b] and K is any number between f (a) and f (b), then thereexists a number c ∈ (a, b) for which f (c) = K .

x

y

f (a)

f (b)

y 5 f (x)

K

(a, f (a))

(b, f (b))

a bc

(The diagram shows one of 3 possibilities for this function and interval.)Return to Derivation of the Composite Simpson’s Rule