Top Banner
Numerical and Experimental Analyses for a High Power LED Light Engine Design Shao-Shu Chu 1+ , Tamara D. Trejos Acevedo 1 and Jung-Chang Hsu 1 1Department of Mechanical Engineering Kun Shan University Abstract. A high power light-emitted diode (LED) light engine was developed by using numerical and experimental methods, optical and thermal analyses in order to optimize the performance of a LED lamp. Studying procedures followed a designed methodology. A facetted reflector to alter the light output was obtained by the indirect lighting technique. This unique design can not only easily adjust the lighting angles to illumine a specific region but it also can prevent the waste of lighting and energy consumption. Several LED modules were built for testing their thermal dissipating efficiency in order to reduce the junction temperature of the high power LED lamp. The results showed that junction temperatures of transient simulations were consistent with the experimental measurement. However, they did have only a small temperature discrepancy at the beginning of the input power that might due to a difference of the mutual effect between electrical and thermal properties, but both finally reached the steady-state temperatures. Finally, a prototype of indirect lighting LED lamp was fabricated and tested to verify our study results. Keywords: LED lighting engine, Indirect lighting, Thermal resistance, Junction temperature 1. Introduction Comparing with the traditional incandesce light bulb, light-emitting diodes (LED) provided several advantages; for instance, low energy consumption, small size, vibration-resistant, and fast response. They are used in applications as diverse as ceiling and projecting lamps, decorative and vehicle lightings, display panels, etc.. In view of these advantages and green tech issues, LED lighting will become a mainstream trend in the future and gradually substituting for the traditional light sources [1]. Although the LEDs have many benefits, they also own several drawbacks. The current commercial LED has only about 15% to 25% luminous efficiency; in other words, about 75% to 85% of its energy is converted into heat. The chip inside LED generates an extremely high thermal flux accumulation, if this heat is not effectively dissipated it can result in an increase of temperature; and therefore, easily reduces the LED brightness, lowers its lifetime and wavelength drift. Moreover, the same raise of temperature places the LED’s internal components under discrepancies of thermal expansion coefficients between the elements, which leads to excessive mechanical stress and finally damages the components [2]. Therefore, the heat dissipation module design of LEDs has become an important task for the industrial applications. A traditional lighting lamp is directly radiating ray beams as an enveloped sphere. The reflector is usually applied to an auxiliary lighting purpose for optical designs to reduce glaring and to reflex the top semi-sphere rays. Generally speaking, for a reading desk lamp design is not only follow the same methodology but it also needs an extra mechanism to modulate the light for the user’s reading. Traditional reading desk lamps consist basically of electrical drivers, fixtures, light sources, and a lamp base. It became a significant engineering problem how to integrate these components into LED lamps. + Corresponding author. Tel.: + 886-6-2050496; fax: +886-6-2050090. E-mail address: [email protected] 2012 4 th International Conference on Computer Engineering and Technology (ICCET 2012) IPCSIT vol.40 (2012) © (2012) IACSIT Press, Singapore 54
5

Numerical and Experimental Analyses for a High Power LED ...ipcsit.com/vol40/011-ICCET2012-T00042.pdf · 4. Results and Discussions Both numerical and experimental results are described

May 11, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Numerical and Experimental Analyses for a High Power LED ...ipcsit.com/vol40/011-ICCET2012-T00042.pdf · 4. Results and Discussions Both numerical and experimental results are described

Numerical and Experimental Analyses for a High Power LED Light Engine Design

Shao-Shu Chu1+, Tamara D. Trejos Acevedo1 and Jung-Chang Hsu1

1Department of Mechanical Engineering

Kun Shan University

Abstract. A high power light-emitted diode (LED) light engine was developed by using numerical and experimental methods, optical and thermal analyses in order to optimize the performance of a LED lamp. Studying procedures followed a designed methodology. A facetted reflector to alter the light output was obtained by the indirect lighting technique. This unique design can not only easily adjust the lighting angles to illumine a specific region but it also can prevent the waste of lighting and energy consumption. Several LED modules were built for testing their thermal dissipating efficiency in order to reduce the junction temperature of the high power LED lamp. The results showed that junction temperatures of transient simulations were consistent with the experimental measurement. However, they did have only a small temperature discrepancy at the beginning of the input power that might due to a difference of the mutual effect between electrical and thermal properties, but both finally reached the steady-state temperatures. Finally, a prototype of indirect lighting LED lamp was fabricated and tested to verify our study results.

Keywords: LED lighting engine, Indirect lighting, Thermal resistance, Junction temperature

1. Introduction Comparing with the traditional incandesce light bulb, light-emitting diodes (LED) provided several

advantages; for instance, low energy consumption, small size, vibration-resistant, and fast response. They are used in applications as diverse as ceiling and projecting lamps, decorative and vehicle lightings, display panels, etc.. In view of these advantages and green tech issues, LED lighting will become a mainstream trend in the future and gradually substituting for the traditional light sources [1]. Although the LEDs have many benefits, they also own several drawbacks. The current commercial LED has only about 15% to 25% luminous efficiency; in other words, about 75% to 85% of its energy is converted into heat. The chip inside LED generates an extremely high thermal flux accumulation, if this heat is not effectively dissipated it can result in an increase of temperature; and therefore, easily reduces the LED brightness, lowers its lifetime and wavelength drift. Moreover, the same raise of temperature places the LED’s internal components under discrepancies of thermal expansion coefficients between the elements, which leads to excessive mechanical stress and finally damages the components [2]. Therefore, the heat dissipation module design of LEDs has become an important task for the industrial applications.

A traditional lighting lamp is directly radiating ray beams as an enveloped sphere. The reflector is usually applied to an auxiliary lighting purpose for optical designs to reduce glaring and to reflex the top semi-sphere rays. Generally speaking, for a reading desk lamp design is not only follow the same methodology but it also needs an extra mechanism to modulate the light for the user’s reading. Traditional reading desk lamps consist basically of electrical drivers, fixtures, light sources, and a lamp base. It became a significant engineering problem how to integrate these components into LED lamps.

+ Corresponding author. Tel.: + 886-6-2050496; fax: +886-6-2050090. E-mail address: [email protected]

2012 4th International Conference on Computer Engineering and Technology (ICCET 2012)IPCSIT vol.40 (2012) © (2012) IACSIT Press, Singapore

54

Page 2: Numerical and Experimental Analyses for a High Power LED ...ipcsit.com/vol40/011-ICCET2012-T00042.pdf · 4. Results and Discussions Both numerical and experimental results are described

A lighting device should not only be emphasized in the optical design; but also needs to take into account its thermal management [3]. The key object for a thermal module is to reduce LED junction temperatures; thus, the efficacy of lamps is elevated as well as their lifetime. Numerical and experimental processes are studied to compare their results. With the pilot results that were first obtained, it was possible to find adjustments to be done in order to achieve the design standards.

2. Optical and Thermal Analyses TracePro [4] was chosen as the software tool to simulate ray-tracings and to analyse the characteristics of

the LED light. The simulation algorithm applied non-sequential ray tracing of the Monte Carlo method to estimate the rays number output through a real lighting system.

The processes to design a reflector is quite intricate, several parameters are necessary to be include; for instance, LED light field distributions, reflectivity, and the scope of projection. They can certainly affect the simulation results of the reflector, resulting in changes on its geometry [5-6]. A reflector has many diverse ways of projecting the light, which is usually decided by the purpose of the designs. The LED light angle used in this research is equal to 105°, which was selected from existing markets.

The final facetted reflector is shown and its rotating angle directions are shown in Fig. 1. Every small facetted surfaces were optimized by ray-tracing so that the surfaces were formed with particular angles in accordance with the reflected light. The manufacture of the prototype required precise dimensions so the facetted reflector was rebuilt by SolidWorks. Ray-tracing verifications and geometry modifications were

Fig. 1 The Crossed-diverging rays and facetted reflector geometry designs.

needed to be continuously processed in several times, in order to correct light patterns and remove redundant reflection surfaces and finally obtain the final shape of the reflectors. Furthermore, the lamp appearance also needed to satisfy the geometry consistence of the facetted reflector.

For a complete light engine, the optical behaviour is not the only parameters needed to be involved in a study, but also the thermal management for its design [7-8]. Because LEDs are similar to an electronic package, the chip is wrapped around low thermal conductivity materials. Therefore, the main thermal transfer mechanism is throughout the metal slug which is a small heat sink, inside the LED. The driver current gold wires inject electrons into the chip resulting in the electro-luminescence effect as well as generating heat. Finite element commercial software, COMSOL [9], has been applied to the numerical analyses for the thermal study. A solid model previously customary by CAD software is imported to the analysis program. Heat transfer module is applied to analyse the thermal characteristics of physical models.

The numerical boundaries are identically as same as the experimental setup. The LED module was fixed in an enclosure in order to control its surrounding ambient and consequently assumed that the exchanged heat is just induced by natural convection. Simulated results are compared with experimental tests; thus, their consistency can be verified.

3. Experimental Methods

55

Page 3: Numerical and Experimental Analyses for a High Power LED ...ipcsit.com/vol40/011-ICCET2012-T00042.pdf · 4. Results and Discussions Both numerical and experimental results are described

In-situ LED junction temperatures and thermal resistance measurement is the technique performed during the experiments research. The settings of the experimental measurement device are shown in Fig. 2. The equipment consists of a confined space of 1 ft3 (i.e., 0.028 m3), a data acquisition system, and a temperature controlled oven.

In order to estimate the heat sink size and its surface area, the pre-test LED module is fabricated based on the simulated results. The configuration of the pre-test LED module geometry is shown in Fig. 3. In the interface of the LED and heat sink is coated with thermal grease to reduce the contact resistance. Four points

Fig. 2 The equipment for experimental tests. Fig. 3 Pre-test LED module geometry and temperature

recording positions are described. of temperatures also are measured during the test process: at the condenser, at the evaporator, at the

reference position of the LED, and at the surroundings, respectively. The temperature responses are measured to compare with the simulation results. This will verify the heat transfer capabilities with the heat dissipating surface area. The module is placed in the confined space of the equipment and it is supplied with a constant current to drive the LED.

The luminous distributions are measured by an illuminance meter. The object was placed in a dark room and on an x-y table which has a measured range of 400 mm by 400 mm. The meter was seat on a moving table which is 400 mm-high right below the lighting area; thus, the luminous distribution can be depicted. After pre-test modules are verified, the light engine is integrated with the facetted reflector and installed on the lamp cover. Finally, LED module is fabricated and demonstrated in the end of this paper.

4. Results and Discussions Both numerical and experimental results are described in Fig. 4. The figure shows a comparison between

numerical and experiment luminous intensity distributions of the lamp when is tilted 0° and -20°. The central maximum luminous intensity region follows the decreasing tilt angles moving to the left. This result indicates that the directions of ray can be altered to a designated area as expected.

(a) Tilted angle θ = 0° (b) Tilted angle θ = -20°

Fig. 4 Luminous intensity distributions of numerical and experimental results based on different tilt angles.

Fig. 5 depicts the experimental results of a prototype LED lamp that is measured the light projection distance versus with the different tilted angles. When tilted angle is equal to 0°, the light projection distance

56

Page 4: Numerical and Experimental Analyses for a High Power LED ...ipcsit.com/vol40/011-ICCET2012-T00042.pdf · 4. Results and Discussions Both numerical and experimental results are described

is approximately to 30-centimeter. Then, gradually decreases the tilted angle to -20°, the distances are reached to a maximum distance of 90-centimeter.

Fig. 5 Test of light projection distance versus with the different tilted angles for a prototype LED lamp.

As a result of the faceted reflector, the LED light output produced a light diverged phenomenon. To reduce the light divergence, a diffusion membrane should be placed in the front of the reflected rays to adjust its light output quality; the result shows in Figure 6. Further study also found that if the optimization of the facetted surface number can be increased, it effectively controlled the light diverged phenomenon.

Fig. 6 Luminous distribution output of the LED module.

In thermal simulations and experiments, the LED is placed in a heating oven that is set from 30° to 120°C by controlling 10°C increments. Following the testing procedures, the forward bias voltage of the LED chip is measured, thus; the thermal resistance can be estimated. Figure 7 shows the transient thermal simulation and experiment of the LED pre-test module. The simulation reaches a temperature of 62°C that is the maximum temperature of the LED chip in one hour testing. It is very consistency with the estimated thermal resistance of the measuring junction temperature 61°C. In order to verify the experiment and numerical simulations, 5 and 9 W modules had been tested. Both of thermal transient responses are compared. It is showed that the temperature of LED module had reached balance within half an hour. For 5 and 9 Watts LED modules, the experimental input voltages and currents are respective 11.52 V/0.44 A and 12 V/0.75A.

(a) 5 W pre-test LED modules. (b) 9 W pre-test LED modules.

Fig. 7 The transient junction temperature of pre-test LED module shows the discrepancy of numerical and experimental results.

θ = -20° θ = 0° θ = -10°

57

Page 5: Numerical and Experimental Analyses for a High Power LED ...ipcsit.com/vol40/011-ICCET2012-T00042.pdf · 4. Results and Discussions Both numerical and experimental results are described

5. Conclusions For a solid-stated light, not only thermal analyses are necessary but optical analyses are also important.

By ray-tracing simulations, the luminous output distributions of the LED module provided the prototype design of a reflector. The lumen intensity ratio obtained with the designed reflector is approximately equal to 2:1. The measured thermal resistance instrument is used to test the junction temperature of LED module. By using a heat sink, the LED heat dissipation was enhanced to reduce the heat accumulation in the LED junction. As a matter of fact, there existed a small discrepancy of transient response but the steady-state temperatures showed consistence for both results. Although the presence of these divergence, the junction temperature of LED module could be controlled at less than 60°C under the steady-state condition; both measurement and simulation exists only with a small difference between 1° and 2°C.

6. Acknowledgements This work was supported by National Science Council of the R.O.C. in Taiwan under Contracts NSC

100-2221-E-168-025. The authors would like thanks for their kindness support; without it this work cannot be completed.

7. References [1] N Grandjean, LED light sources (light for the future), J. Phys. D: Appl. Phys. Vol. 43, 2010, 350301, pp.1-2.

[2] Huanting Chen, Yijun Lu, Yulin Gao, Haibing Zhang, Zhong Chen, The performance of compact thermal models for LED package, Thermochimica Acta , Vol. 488, 2009, pp.33–38.

[3] Mehmet Arik and Anant Setlur, Environmental and economical impact of LED lighting systems and effect of thermal management, Int. J. Energy Res., Vol.34, 2010, pp.1195-1204.

[4] R. John Koshel et al, Illumination system design in a project-based course, Nonimaging Optics: Efficient Design for Illumination and Solar Concentration, R. Winston and J. M. Gordon, Eds., 7423, 742305, 2009.

[5] P. Benítez, J.C. Miñano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernández, and W. Falicoff, Simultaneous multiple surface optical design method in three dimensions, Optical Engineering, Vol. 43, SPIE, 2004, pp.1489-1502.

[6] Shao-Shu Chu, Jung-Chang Hsu, Christopher Miguel Sevilla, Chun-Huang Chiang, Methods for Creating Uniform Irradiance for LED Luminaries with the Use of Reflectors, 2nd International Conf. on Mechanical, Industrial, and Manufacturing Tech. (MIMT), Vol.1, 2011, pp.36-40.

[7] Lianqiao Yang, Jianzheng Hu, and Moo Whan Shina, Investigation of Thermal Measurement Variables in High Power GaN-based LEDs, Solid State Phenomena,Vols. 124-126, 2007, pp.483-486.

[8] Song Fang fang , Lai Ping, Feng Xian-long He Xiao-qi, Application of FEM Simulation Technology on Thermal Design of Electronic Packaging Device, 11th Inter. Conf. on Ele. Packaging Tech. & High Density Packaging, 2010, pp.977-979.

[9] Comsol Multiphysics Heat Transfer Module User’s Guide, Comsol Co. , Oct. 2011.

58