Top Banner
NUMERICAL ANALYSIS IN BK EVOLUTION WITH IMPACT PARAMETER Jeffrey Berger
25

NUMERICAL ANALYSIS IN BK EVOLUTION WITH IMPACT PARAMETER · BK with impact parameter General features of solution with impact parameter Saturation scale and diffusion in impact parameter

Jun 13, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: NUMERICAL ANALYSIS IN BK EVOLUTION WITH IMPACT PARAMETER · BK with impact parameter General features of solution with impact parameter Saturation scale and diffusion in impact parameter

NUMERICAL ANALYSIS IN

BK EVOLUTION WITH

IMPACT PARAMETER

Jeffrey Berger

Page 2: NUMERICAL ANALYSIS IN BK EVOLUTION WITH IMPACT PARAMETER · BK with impact parameter General features of solution with impact parameter Saturation scale and diffusion in impact parameter

Contents

� BK with impact parameter

� General features of solution with impact parameter

� Saturation scale and diffusion in impact parameter

� Corrected kernel for partial higher-order effects

2

DIS 2011Jeffrey Berger - The Pennsylvania State University

� Corrected kernel for partial higher-order effects

� Running coupling

� Differences in prescriptions for

� Regularization dependence

� Comparison with data

� and

2F LF

Page 3: NUMERICAL ANALYSIS IN BK EVOLUTION WITH IMPACT PARAMETER · BK with impact parameter General features of solution with impact parameter Saturation scale and diffusion in impact parameter

Dipole Model3

Nb

r

Photon splits into a color dipole of size r

which interacts at impact parameter b

with the target (nucleon)

Color dipole interacts with partons of

the target through gluon exchange

� This analysis is done in the context of the dipole model of small x scattering. In this regime the evolution of the amplitude can be represented as a dipole cascade.

DIS 2011Jeffrey Berger - The Pennsylvania State University

p p

N(r,b,Y) is the scattering amplitude of

the dipole interaction

[A.H.Mueller, Nucl. Phys B415 373 (1994)]

Page 4: NUMERICAL ANALYSIS IN BK EVOLUTION WITH IMPACT PARAMETER · BK with impact parameter General features of solution with impact parameter Saturation scale and diffusion in impact parameter

The BK equation

� Enforces unitarity in the amplitude

� Parent dipole splits into two dipoles of and

� Splitting is determined by the kernel

4

][ 1202011202

201 NNNNNKdY

Ns −−+=

∂∫ 2xα

),,,( YbxNN ijijijij ϑ=

1001 xxx −= 02x 12x

),,( xxxKK =� Splitting is determined by the kernel

� Impact parameter only dependence is in the amplitude

� Angle is the angle between and

� Usually the amplitude is assumed uniform in impact parameter, here we take the full dependences of the amplitude on impact parameter into account

DIS 2011Jeffrey Berger - The Pennsylvania State University

ijϑijx ijb

)(2

1jiij xxb +=

),,( 120201 xxxKK =

Page 5: NUMERICAL ANALYSIS IN BK EVOLUTION WITH IMPACT PARAMETER · BK with impact parameter General features of solution with impact parameter Saturation scale and diffusion in impact parameter

Features of BK with impact parameter5

DIS 2011Jeffrey Berger - The Pennsylvania State University

2

12

2

02

2

01

22 xx

xN

z

dzK sc

π

α=

� Leading order kernel used

� Coupling fixed at 1.0=π

α scN

Page 6: NUMERICAL ANALYSIS IN BK EVOLUTION WITH IMPACT PARAMETER · BK with impact parameter General features of solution with impact parameter Saturation scale and diffusion in impact parameter

Large contributions at x = 2b6

b

xtarget

� This behavior can be extracted from the

representation in terms conformal eigenfunctions

DIS 2011Jeffrey Berger - The Pennsylvania State University

b

Nontrivial angular dependence.

Peak of the amplitude occurs when

and

bx 2=bx 2||

Page 7: NUMERICAL ANALYSIS IN BK EVOLUTION WITH IMPACT PARAMETER · BK with impact parameter General features of solution with impact parameter Saturation scale and diffusion in impact parameter

Impact parameter tails7

� Power-like tails are

generated during the

evolution

� There is a clear ‘ankle’ where dependences of the

amplitude on impact parameter become power-like

DIS 2011Jeffrey Berger - The Pennsylvania State University

evolution

� Initial impact parameter

dependence is

quickly forgotten

22

1b

exeN

−−−=

Page 8: NUMERICAL ANALYSIS IN BK EVOLUTION WITH IMPACT PARAMETER · BK with impact parameter General features of solution with impact parameter Saturation scale and diffusion in impact parameter

Towards higher order8

⋅− z

x

xKz

x

xK

xx

xx

01

12

1

01

02

1

1202

12022

+

= z

x

xKz

x

xK

x

zN

z

dzK sc

01

122

1

01

022

12

01

22π

α

LO (solid) vs Modified (dashed)

� Kinematical cut owing to a modification in the energy denominator

� The modified kernel slows the evolution by approximately 30%

� The modified kernel has almost no affect when the impact parameter dependence is neglected due to the saturation of all large dipole sizes.

DIS 2011Jeffrey Berger - The Pennsylvania State University

xxxx 01011202

This kernel reduces to the LO kernel at large

rapidies or when

[L. Motyka and A. M. Stasto, Phys. Rev. D79, 085016 (2009)]

120201 , xxx >>

Page 9: NUMERICAL ANALYSIS IN BK EVOLUTION WITH IMPACT PARAMETER · BK with impact parameter General features of solution with impact parameter Saturation scale and diffusion in impact parameter

Saturation Scale9

( )( ) 5.0,,,,1 == YbrN YbQs

θ

( )bSeQYbQY

sssλα2

0

2),( =

Saturation scale was found to have the same

impact parameter dependence at large b

which leads us to a factorized form

( )4

1~

bbS

LO (solid) vs Modified (dashed)

DIS 2011Jeffrey Berger - The Pennsylvania State University

� Saturation is when the parton density becomes large and recombination effects become important� Defined here as the amplitude becomes large and the

nonlinear term becomes important.

� Numbers are consistent with analytical estimates

( )bSeQYbQs 0),( =

LO Modified

4.4 3.6 (2.5 )s

λ 1.0=sα 2.0=sα

( )4

~b

bS

[S. Munier and R. B. Peschanski, Phys. Rev. D69, 034008 (2004)]

[A. H. Mueller and D. N. Triantafyllopoulos, Nucl. Phys. B640, 331]

Page 10: NUMERICAL ANALYSIS IN BK EVOLUTION WITH IMPACT PARAMETER · BK with impact parameter General features of solution with impact parameter Saturation scale and diffusion in impact parameter

A Second Saturation Scale10

( )( ) 5.0,,,,1 == YbrN YbQsL

θ

Equation has two solutions now! Same Parameterization

( )bSeQYbQ L

Y

LsLsLsλα−= 2

0

2),(

LO (solid) vs Modified (dashed)

DIS 2011Jeffrey Berger - The Pennsylvania State University

� Larger dipole sizes have slightly different

saturation scale exponents

� More thinking to be done on this result…

LO Modified

6.0 5.8 (5.2 )sL

λ 1.0=sα 2.0=sα

Page 11: NUMERICAL ANALYSIS IN BK EVOLUTION WITH IMPACT PARAMETER · BK with impact parameter General features of solution with impact parameter Saturation scale and diffusion in impact parameter

Diffusion in impact parameter11

( ) 5.0,,, == YbBrN s θ

Growth of the black disk corresponds to growth

of the cross section

( )rFeBYrBYsBsλα22

),( = YsBeλσ 2≈

LO (solid) vs Modified (dashed)

� Increasing energy causes the dense region of the dipole cascade to expand in impact parameter space

� Size of the dense or ‘black’ region characterized by a radius of this black disk

� Fast increase in is partially due to the lack of scale in the solution currently

DIS 2011Jeffrey Berger - The Pennsylvania State University

LO Modified

2.6 2.2 (2.0 )sB

λ 1.0=sα 2.0=sα

( )rFeBYrBY

sssBsλα2

0

2),( = YsBe

λσ 2≈

Page 12: NUMERICAL ANALYSIS IN BK EVOLUTION WITH IMPACT PARAMETER · BK with impact parameter General features of solution with impact parameter Saturation scale and diffusion in impact parameter

Running coupling

� Several different prescriptions for running coupling

� Balitsky

� Kovchegov

12

−+

−+= 1

)(

)(11

)(

)(1

2

)(2

02

2

12

2

12

2

12

2

02

2

02

2

12

2

02

2

01

2

2

01

x

x

xx

x

xxx

xxN

z

dzK

s

s

s

ssc

α

α

α

α

π

α

( ) ( ) ( ) ( )⋅

−−−− 23

523

5

44

11ee

Ndzγγ

ααxx

[I. Balitsky, Phys. Rev. D75, 014001 (2007)]

� Kovchegov

-Weigert

� Parent Dipole

� Minimum Dipole

DIS 2011Jeffrey Berger - The Pennsylvania State University

( )2

12

2

02

2

01

2

2

01

2 xx

xxN

z

dzK sc

π

α=

( ) ( ) ( ) ( )( )

( )

−+=−−

−−−−

2102

23

5

220

3

220

3

212

23

5

220

23

5

;,

4

44

2

12

2

20

4

2

12

4

2

20

22

11

2xxxR

es

x

esx

es

x

esx

es

c

xxxx

N

z

dzK

γ

γγ

α

αααα

π2012 xx

( )( )2

12

2

02

2

01

2

2

02

2

12

2

01

2

,,min

xx

xxxxN

z

dzK sc

π

α=

[Y. V. Kovchegov and H. Weigert, Nucl. Phys. A784, 188 (2007]

Page 13: NUMERICAL ANALYSIS IN BK EVOLUTION WITH IMPACT PARAMETER · BK with impact parameter General features of solution with impact parameter Saturation scale and diffusion in impact parameter

Results with running coupling13

Fixed (solid) vs Running (Balitsky, dashed) Miniumum Prescription (solid) vs Balitsky Prescription (dashed)

DIS 2011Jeffrey Berger - The Pennsylvania State University

� IR regularization of the kernel is important due to large dipole evolution

� Balitsky’s running coupling is well slower than the minimum dipole prescription

Page 14: NUMERICAL ANALYSIS IN BK EVOLUTION WITH IMPACT PARAMETER · BK with impact parameter General features of solution with impact parameter Saturation scale and diffusion in impact parameter

Adding mass parameter

� Full cut with theta function

� Splitting the theta function

� Bessel function cut

14

( ) ( )2

1212

021

2

12

2

02

2

01

222

2xx

xx

xN

z

dzK

mm

sc −−= θθπ

α

( ) ( ) ( ) ( )

−−

⋅−−+−= 2

0212

121

2

12

2

02

12022

121

2

12

2

021

2

02

22222 2

11

2xx

xx

xxx

xx

x

N

z

dzK

mmmm

sc θθθθπ

α

� Bessel function cut

� Running coupling with theta function

� Modified kernel with theta function

DIS 2011Jeffrey Berger - The Pennsylvania State University

( ) ( )2

0212

121

2

02

2

12

2

12

2

12

2

02

2

02

2

12

2

02

2

01

2

2

01221

)(

)(11

)(

)(1

2

)(xx

x

x

xx

x

xxx

xxN

z

dzK

mm

s

s

s

ssc −−

−+

−+= θθ

α

α

α

α

π

α

( ) ( )2

0212

121

01

121

01

021

1202

1202

01

122

1

01

022

12

01

222

2

2xxz

x

xKz

x

xK

xx

xxz

x

xKz

x

xK

x

zN

z

dzK

mm

sc −−

⋅−

+

= θθ

π

α

( ) ( ) ( ) ( )

⋅−+=

1202

1202

12102112

2

102

2

12

2

22 xx

xxmxKmxKmxKmxK

mN

z

dzK sc

π

α

Page 15: NUMERICAL ANALYSIS IN BK EVOLUTION WITH IMPACT PARAMETER · BK with impact parameter General features of solution with impact parameter Saturation scale and diffusion in impact parameter

15

� The prescription by Balitsky

for running coupling has

unusual properties

� Slower than expected from

2F

DIS 2011Jeffrey Berger - The Pennsylvania State University

� Slower than expected from

the momentum space analysis

� Extremely sensitive to the

form of regularization of

� Closeness to the data should

perhaps be regarded as

accidental at this time

Fixed coupling kernels evolve too fast unless

coupling is artificially low

Minimum dipole prescription is also too fast

)(2

xsα

Page 16: NUMERICAL ANALYSIS IN BK EVOLUTION WITH IMPACT PARAMETER · BK with impact parameter General features of solution with impact parameter Saturation scale and diffusion in impact parameter

16

LFF &2

2F � In general the slope is too steep to fit the data

� Data is underestimated due to lack of

contribution from large dipole sizes

Need a separate contribution due to these large,

DIS 2011Jeffrey Berger - The Pennsylvania State University

� data is not very

discriminatory due to large

error bars

LFLF

� Need a separate contribution due to these large,

non-perturbative dipoles

Page 17: NUMERICAL ANALYSIS IN BK EVOLUTION WITH IMPACT PARAMETER · BK with impact parameter General features of solution with impact parameter Saturation scale and diffusion in impact parameter

Conclusions

� Solving the BK equation with impact parameter is

crucial – many features are left out otherwise!

� N � 0 for large dipole sizes

� Amplitude enhanced at x = 2b with peaks at

Power tails in impact parameter

17

( ) 1,1cos −+=θ

� Power tails in impact parameter

� Second wavefront develops evolving to larger dipole size

� Running coupling prescriptions slow the evolution more

than expected, bringing us surprisingly close to the

data, however there is a large sensitivity to

regularization as well as unexpected behavior.

DIS 2011Jeffrey Berger - The Pennsylvania State University

Page 18: NUMERICAL ANALYSIS IN BK EVOLUTION WITH IMPACT PARAMETER · BK with impact parameter General features of solution with impact parameter Saturation scale and diffusion in impact parameter

More work to be done!

� More kinematical constraints implemented at the

kernel level.

� Does this slow the evolution more and lead to a better

fit of the data?

18

� Exclusive diffractive production of

� Impact parameter dependence corresponds to

momentum transfer

� Numerical solution of full NLO Kernel?

DIS 2011Jeffrey Berger - The Pennsylvania State University

ψJ

Page 19: NUMERICAL ANALYSIS IN BK EVOLUTION WITH IMPACT PARAMETER · BK with impact parameter General features of solution with impact parameter Saturation scale and diffusion in impact parameter

Thank You

19

Thank You

DIS 2011Jeffrey Berger - The Pennsylvania State University

Special Thanks to : My advisor Anna Stasto as well as Henry Kowalski for discussions and

use of his code and Emil Avsar for interesting discussions.

Page 20: NUMERICAL ANALYSIS IN BK EVOLUTION WITH IMPACT PARAMETER · BK with impact parameter General features of solution with impact parameter Saturation scale and diffusion in impact parameter

Saturation Scale – B dependence20

( )( ) 5.0,,,,1 == YbrN YbQs

θ

Saturation scale was found to have the same

impact parameter dependence at large b

which leads us to a factorized form

DIS 2011Jeffrey Berger - The Pennsylvania State University

� Large impact parameters yield similar slopes with

similar dependences

( )bSeQYbQY

sssλα2

0

2),( =

which leads us to a factorized form

Page 21: NUMERICAL ANALYSIS IN BK EVOLUTION WITH IMPACT PARAMETER · BK with impact parameter General features of solution with impact parameter Saturation scale and diffusion in impact parameter

Angular Dependence21

DIS 2011Jeffrey Berger - The Pennsylvania State University

� Angular dependence only comes in when x = 2b

� Enhancements when ( ) 1,1cos −+=θ

Page 22: NUMERICAL ANALYSIS IN BK EVOLUTION WITH IMPACT PARAMETER · BK with impact parameter General features of solution with impact parameter Saturation scale and diffusion in impact parameter

� Naïve analysis leads us to believe the equivalence

of the minimum dipole size coupling and Balitsky’s

� Numerical analysis reveals this not to be true

Unusual slowness of the coupling22

DIS 2011Jeffrey Berger - The Pennsylvania State University

When one daughter dipole is small there are regions where one prescription

dominates when [left] the minimum dipole size method dominates

while when [right] the Balitsky prescription for running coupling

dominates, however these regions are not equal in BK.

( ) 1cos +=θ

( ) 1cos −=θ

Page 23: NUMERICAL ANALYSIS IN BK EVOLUTION WITH IMPACT PARAMETER · BK with impact parameter General features of solution with impact parameter Saturation scale and diffusion in impact parameter

Surprising behaviors of Balitsky’s kernel23

( )( )211

2

22ln

1)(

µα

+=

Λ x

sb

x

Using a factor to regularize the coupling or a µ

DIS 2011Jeffrey Berger - The Pennsylvania State University

Increasing the decreases the

coupling but in the case of the

Balitsky kernel this increases

the amplitude

Using a factor to regularize the coupling or a

sharp cutoff was found to change the amplitude by

much more than expected (a factor of 2 or more in

some cases), indicating a great sensitivity to the

specific form the coupling takes.

µ

µ

Page 24: NUMERICAL ANALYSIS IN BK EVOLUTION WITH IMPACT PARAMETER · BK with impact parameter General features of solution with impact parameter Saturation scale and diffusion in impact parameter

Impact Parameter is so importiant!24

� Impact parameter corresponds to momentum

transfer, neglecting impact parameter is equivalent

to setting momentum transfer � 0

� With BFKL this is self consistent

DIS 2011Jeffrey Berger - The Pennsylvania State University

� With BFKL this is self consistent

� Only linear terms (two pomeron vertex)

� This assumption with BK causes problems

� Nonlinear term (three pomeron vertex)

� Momentum transfer cannot stay zero

without altering the interaction

P=0

P=0

P=0

P=+p

P=-p

Page 25: NUMERICAL ANALYSIS IN BK EVOLUTION WITH IMPACT PARAMETER · BK with impact parameter General features of solution with impact parameter Saturation scale and diffusion in impact parameter

Conformal Symmetry?25

� LO Kernel is conformally invariant

� Expect evolution in small dipole and large dipole

directions to be the same

� Additional angular dependence? Numerics say no

DIS 2011Jeffrey Berger - The Pennsylvania State University

� Additional angular dependence? Numerics say no

dice

� Need full higher order corrections?

ϕθ

0x

xb