Top Banner
Nucleosynthesis of heavy elements in supernovae and neutron-star mergers Almudena Arcones
34

Nucleosynthesis of heavy elements in supernovae and neutron-star … · 2016. 4. 4. · Neutron star mergers: robust r-process 1.2M 1.4M 1.4M 1.4M 2M 1.4M nucleosynthesis of dynamical

Oct 19, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • Nucleosynthesis of heavy elements in supernovae and 


    neutron-star mergers

    Almudena Arcones

  • Sneden, Cowan, Gallino 2008

    GoldSilver Eu

    Oldest observed starsThe very metal-deficient star

    HE 0107-5240

    Elemental abundances in:

    - ultra metal-poor stars and

    - solar system

    ‣Robust r-process for 56

  • The r-process: what do we know?

    • Solar system: residual r-process
 r-process peaks and path → fast neutron capture

    • Astrophysical environment: explosive and high neutron density

    • UMP stars: robust process from 2nd to 3rd peak
 contribution from other process(es) below 2nd peak

    • Chemical evolution: r-process does not occur in every 
 core-collapse supernovae

  • The r-process: what do we know?

    • Solar system: residual r-process
 r-process peaks and path → fast neutron capture

    • Astrophysical environment: explosive and high neutron density

    • UMP stars: robust process from 2nd to 3rd peak
 contribution from other process(es) below 2nd peak

    • Chemical evolution: r-process does not occur in every 
 core-collapse supernovae

    What do we need to know better?• Astrophysical site(s)

    • Nuclear physics

  • Where does the r-process occur?Core-collapse supernovae Neutron star mergers

    Cas A (Chandra X-Ray observatory) Neutron-star merger simulation (S. Rosswog)

    Neutron stars

    •neutrino-driven winds (Woosley et al. 1994,…)

    •jets (Winteler et al. 2012)

    •shocked surface layers (Ning, Qian, Meyer 2007)

    •neutrino-induced in He shell 
(Banerjee, Haxton, Qian 2011)

    •dynamic ejecta

    •neutrino-driven winds

    •evaporation disk

    (Lattimer & Schramm 1974, 
Freiburghaus et al. 1999, ....)

  • Neutrino-driven winds

    neutrons and protons form α-particles 
α-particles recombine into seed nuclei

    NSE → charged particle reactions / α-process → r-process

    weak r-process

    νp-processT = 10 - 8 GK 8 - 2 GK

    T < 3 GKfor a review see Arcones & Thielemann (2013)

  • time [s]

    Radi

    us [c

    m]

    ShockReverse

    shock

    Neutron

    star

    Arcones et al 2007

    Which elements are produced in neutrino winds?

    ❒mass element

  • time [s]

    Radi

    us [c

    m]

    ShockReverse

    shock

    Neutron

    star

    Arcones et al 2007

    Which elements are produced in neutrino winds?

    ❒mass element

    no r-

    proc

    ess

    Silver

  • Lighter heavy elements in neutrino-driven winds

    neutron richproton rich

    Arcones & Montes (2011) 
C.J. Hansen, Montes, Arcones (2014)

    Overproduction at A=90, magic neutron number N=50 (Hoffman et al. 1996) suggests: only a fraction of neutron-rich ejecta (Wanajo et al. 2011)

    Observation pattern reproduced!

    Production of p-nuclei

    νp-process weak r-process

    observations
Honda et al. 2006

  • Lighter heavy elements in neutrino-driven winds

    neutron richproton rich

    observations

    (Arcones & Montes, 2011)

    Overproduction at A=90, magic neutron number N=50 (Hoffman et al. 1996) suggests: only a fraction of neutron-rich ejecta (Wanajo et al. 2011)

    Observation pattern reproduced!

    Production of p-nuclei

    νp-process weak r-process

    40 50 60 70 80 90 100 110Entropy [kB/nuc]

    0.40

    0.41

    0.42

    0.43

    0.44

    0.45

    0.46

    0.47

    0.48

    0.49

    Ye

    Sr

    −8

    −7

    −6

    −5

    −4

    −3

    −2

    −1

    40 50 60 70 80 90 100 110Entropy [kB/nuc]

    0.510.520.530.540.550.560.570.580.590.600.610.620.630.640.650.66

    Ye

    Sr

    −15−14−13−12−11−10−9−8−7−6−5

    Arcones & Bliss (2014)

  • Lighter heavy elements: Sr - AgUltra metal-poor stars with high and low enrichment of heavy r-process nuclei suggest: at least two components or sites (Qian & Wasserburg):


    Travaglio et al. 2004: solar=r-process+s-process+LEPP

    Montes et al. 2007: solar LEPP ~ UMP LEPP → unique

    Are Honda-like stars the outcome of one nucleosynthesis event or the combination of several?

    log ε

    Z

    log ε

    Z

    or

  • Nucleosynthesis componentsAbundance of many UMP stars can be explained by two components:

    C.J. Hansen, Montes, Arcones (2014)

    Component abundance pattern: YH and YL

    Fit abundance as combination of components:

    Ycalc(Z) = (CHYH(Z) + CLYL(Z)) · 10[Fe/H]

    BS16089-013

    = 0.152χ

    -3

    -2

    -1

    0

    log

    ∈lo

    g∈

    -3

    -2

    -1

    0

    1

    LEPP

    r-process

    Fit

    2χ = 3.98

    35 7570656055504540

    Atomic number

    H-componentL-component

  • Sr/YSr/ZrSr/Ag

    L-component in neutrino-driven winds

    Observations point to
proton-rich conditions

    Nuclear physics uncertainties?

    observations

    observations

    observations

  • Key reactions: weak r-process

    (α,n)

    Bliss, Arcones, Montes, Pereira (in prep.)

    10−9

    10−8

    10−7

    10−6

    10−5

    10−4

    10−3

    10−2

    abun

    danc

    e

    Ye = 0.45baselineλ(α,n) · 10 for Z = 10− 30λ(α,n) · 0.1 for Z = 10− 30

    10 15 20 25 30 35 40 45 50 55

    Z

    10−9

    10−8

    10−7

    10−6

    10−5

    10−4

    10−3

    abun

    danc

    e

    Ye = 0.45baselineλ(α,n) · 10 for Z = 30− 40λ(α,n) · 0.1 for Z = 30− 40

  • Astrophysical site 


    Origin of elements from Sr to Ag

    [Fe/H]

    [Sr/F

    e]

    Hansen et al. 2013Nucleosynthesis:
identify key reactions

    Observations

    Chemical 
evolution

    ν wind

  • Neutron star mergers

    Rosswog 2013

    disk evaporation

    Ejecta from three regions:

    • dynamical ejecta

    • neutrino-driven wind

    • disk evaporation


  • Neutron star mergers: robust r-process

    1.2M� � 1.4M� 1.4M� � 1.4M� 2M� � 1.4M�

    nucleosynthesis of dynamical ejecta 
robust r-process:

    - extreme neutron-rich conditions (Ye =0.04)

    - several fission cycles

    Korobkin, Rosswog, Arcones, Winteler (2012)

    see also Bauswein, Goriely, and Janka

    Hotokezaka, Kiuchi, Kyutoku, Sekiguchi, Shibata, Tanaka, Wanajo

    Ramirez-Ruiz, Roberts, ...

    Right conditions for a successful r-process 
(Lattimer & Schramm 1974, Freiburghaus et al. 1999)

  • Neutron star mergers: robust r-process

    1.2M� � 1.4M� 1.4M� � 1.4M� 2M� � 1.4M�

    nucleosynthesis of dynamical ejecta 
robust r-process:

    - extreme neutron-rich conditions (Ye =0.04)

    - several fission cycles

    Korobkin, Rosswog, Arcones, Winteler (2012)

    see also Bauswein, Goriely, and Janka

    Hotokezaka, Kiuchi, Kyutoku, Sekiguchi, Shibata, Tanaka, Wanajo

    Ramirez-Ruiz, Roberts, ...

    Right conditions for a successful r-process 
(Lattimer & Schramm 1974, Freiburghaus et al. 1999)

  • 4 3 2 1

    Neutron star mergers: neutrino-driven windPerego et al. (2014)3D simulations after merger

    disk and neutrino-wind evolution

    neutrino emission and absorption

    Nucleosynthesis: 17 000 tracers

    see also
Fernandez & Metzger 2013, Metzger & Fernandez 2014,
Just et al. 2014, Sekiguchi et al.

    Martin et al. (2015)

  • Neutron star mergers: neutrino-driven wind

    Martin et al. (2015)

  • Neutron star mergers: neutrino-driven wind

    Martin et al. (2015)

  • Time and angle dependencyBlack hole formation determines time for wind nucleosynthesis 
(Fernandez & Metzger 2013, Kasen et al. 2015)

    Early times: low Ye: heavy elements

    Late times: Ye ~0.35: lighter heavy elements

    angle dependency

    Martin et al. (2015)

  • Time and angle dependencyBlack hole formation determines time for wind nucleosynthesis 
(Fernandez & Metzger 2013, Kasen et al. 2015)

    Early times: low Ye: heavy elements

    Late times: Ye ~0.35: lighter heavy elements

    angle dependency

    Martin et al. (2015)

  • dynamical ejecta

    disk ejecta

    Wind and dynamic ejectaWind ejecta complement dynamic ejecta

    Complete mixing: solar system abundances and UMP stars

    Martin et al. (2015)

  • dynamical ejecta

    disk ejecta

    Wind and dynamic ejectaWind ejecta complement dynamic ejecta

    Complete mixing: solar system abundances and UMP stars

    Partial mixing: Honda-like star?

    Martin et al. (2015)

  • Nuclear physics input

    Erler et al. (2012)

    nuclear masses, beta decay, reaction rates (neutron capture), fission

  • Impact of nuclear masses

    • Different mass models

    Mendoza-Temis et al. 2015

    Meng-Ru Wu talk

    e.g.,

    Wanajo et al. 2004

    Farouqi et al. 2010,

    Arcones & Martinez-Pinedo 2011

    Goriely et al. 2013

    • Sensitivity studies
Monte Carlo: all masses ± 1MeV

Mumpower, Surman et al. 2015, 2016

  • Abundances based on density functional theory

    - six sets of different parametrisation (Erler et al. 2012)

    - two realistic astrophysical scenarios: jet-like sn and neutron star mergers

    First systematic uncertainty band 
for r-process abundances

    Uncertainty band depends on A, 
in contrast to homogeneous band for all A
e.g., Mumpower et al. 2015

    Can we link masses to r-process abundances?

    Nuclear masses: systematic uncertainty

    Martin, Arcones, Nazarewicz, Olsen (2016)

  • Two neutron separation energy

    Nucleosynthesis path at constant Sn: (n,γ)-(γ,n) equilibrium

    Neutron capture

    Beta decay

    S2n/2 = 1.5 MeV

    Martin, Arcones, Nazarewicz, Olsen (2016)

  • Two neutron separation energy

    Nucleosynthesis path at constant Sn: (n,γ)-(γ,n) equilibrium

    Neutron capture

    Beta decay

    S2n/2 = 1.5 MeV

    Martin, Arcones, Nazarewicz, Olsen (2016)

  • Two neutron separation energy: abundances

    freeze-out abundances before decay

    Martin, Arcones, Nazarewicz, Olsen (2016)

  • Two neutron separation energy: abundances

    freeze-out abundances before decay → final abundances

    neutron capture during decay (Surmann & Engel 2001, Arcones & Martinez-Pinedo 2011)

    Martin, Arcones, Nazarewicz, Olsen (2016)

  • Two neutron separation energy: abundances

    freeze-out abundances before decay → final abundances

    neutron capture during decay (Surmann & Engel 2001, Arcones & Martinez-Pinedo 2011)

    Martin, Arcones, Nazarewicz, Olsen (2016)

  • ConclusionsHow many r-processes? How many astrophysical sites?lighter heavy elements (Sr-Y-Zr-...-Ag): neutrino-driven winds 


    heavy r-process: mergers: dynamical, wind, disk evaporation

    jet-like supernovae

    Improved supernova and merger simulations: EoS, neutrino rates

    Neutron-rich nuclei: experiments with radioactive beams, theory

    Observations: oldest stars, kilo/macronovae, 
 neutrinos, gravitational waves, ...

    Chemical evolution models

    Needs