Top Banner
NUCLEAR SYSTEMS ENGINEERING Cho, Hyoung Kyu Department of Nuclear Engineering Seoul National University Cho, Hyoung Kyu Department of Nuclear Engineering Seoul National University
43

NUCLEAR SYSTEMS ENGINEERING - SNU OPEN ...

Feb 23, 2023

Download

Documents

Khang Minh
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: NUCLEAR SYSTEMS ENGINEERING - SNU OPEN ...

NUCLEAR SYSTEMS ENGINEERING

Cho, Hyoung Kyu

Department of Nuclear EngineeringSeoul National University

Cho, Hyoung Kyu

Department of Nuclear EngineeringSeoul National University

Page 2: NUCLEAR SYSTEMS ENGINEERING - SNU OPEN ...

Contents

1. Introduction

2. Nonflow Process

3. Thermodynamic Analysis of Nuclear Power Plants

4. Thermodynamic Analysis of A Simplified PWR System6.4.1  First Law Analysis of a Simplified PWR System

6.4.2  Combined First and Second Law or Availability Analysis of a Simplified PWR System

5. More Complex Rankine Cycles: Superheat, Reheat, Regeneration, and Moisture Separation

6. Simple Brayton Cycle

7. More Complex Brayton Cycles

8. Supercritical Carbon Dioxide Brayton Cycles

The engine cycle is named after George Brayton (1830–1892), the American engineer who developed it, although it was originally proposed and patented by Englishman John Barber in 1791. It is also sometimes known as the Joule cycle. The Ericsson cycle is similar to the Brayton cycle but uses external heat and incorporates the use of a regenerator. There are two types of Brayton cycles, open to the atmosphere and using internal combustion chamber or closed and using a heat exchanger.

Page 3: NUCLEAR SYSTEMS ENGINEERING - SNU OPEN ...

Simple Brayton Cycle

Brayton Cycle Reactor systems that employs gas coolants offer the potential for operating as direct Brayton

cycle by passing the heated gas directly into a turbine.  Ideal for single‐phase, steady‐flow cycles with heat exchange and therefore is the basic cycle 

for modern gas turbine plants as well as proposed nuclear gas‐cooled reactor plants. The ideal cycle is composed of two reversible constant‐pressure heat‐exchange processes 

and two reversible, adiabatic work processes The compressor work, or “backwork," is a larger fraction of the turbine work than is the 

pump work in a Rankine cycle.

Page 4: NUCLEAR SYSTEMS ENGINEERING - SNU OPEN ...

Simple Brayton Cycle

Brayton Cycle

Page 5: NUCLEAR SYSTEMS ENGINEERING - SNU OPEN ...

Simple Brayton Cycle

Page 6: NUCLEAR SYSTEMS ENGINEERING - SNU OPEN ...

Simple Brayton Cycle

Brayton Cycle Analysis Pressure or compression ratio of the cycle

For isentropic processes with a perfect gas, constant 

For a perfect gas, because enthalpy is a function of temperature only and the specific heats are constant.

)1(

2

1

/)1(

1

2

1

2

vv

pp

TT

s

vp cc /,

cTv 1 cTp 1

Page 7: NUCLEAR SYSTEMS ENGINEERING - SNU OPEN ...

Simple Brayton Cycle

Brayton Cycle Analysis Entropy change of ideal gas

From the first T ds relation From the second T ds relation

Y. A. Cengel

Page 8: NUCLEAR SYSTEMS ENGINEERING - SNU OPEN ...

Simple Brayton Cycle

Brayton Cycle Analysis Isentropic Processes of Ideal Gases

vcR

vv v

vvv

cR

TT

vvR

TTc

/

2

1

1

2

1

2

1

2

1

2 lnlnlnlnln0

1/,/, vvpvp cRccccR

1

2

1

1

2

vv

TT For isentropic process, ideal gas

/)1(

1

2

1

2

1

2

1

2

1

2

1

2 lnlnlnlnlnln0

PP

PP

PP

cR

TT

PPR

TTc

pcR

pp

111/,/,

pvpvp cRccccR

/)1(

1

2

1

2

PP

TT

For isentropic process, ideal gas

Page 9: NUCLEAR SYSTEMS ENGINEERING - SNU OPEN ...

Simple Brayton Cycle

Brayton Cycle Analysis Isentropic Processes of Ideal Gases

1

2

1

1

2

vv

TT

/)1(

1

2

1

2

PP

TT

2

1

1

2

vv

PP

Valid for ‐ Ideal gas‐ Isentropic process‐ Constant specific heats

Page 10: NUCLEAR SYSTEMS ENGINEERING - SNU OPEN ...

Simple Brayton Cycle

Brayton Cycle Analysis Turbine work

Compressor work

/)1(

3

4

3

4

PP

TT

/)1(

1

2

1

2

PP

TT

Page 11: NUCLEAR SYSTEMS ENGINEERING - SNU OPEN ...

Simple Brayton Cycle

Brayton Cycle Analysis The heat input from the reactor 

The heat rejected by the heat exchanger

/)1(

1

2

1

2

PP

TT

/)1(

3

4

3

4

PP

TT

Page 12: NUCLEAR SYSTEMS ENGINEERING - SNU OPEN ...

Simple Brayton Cycle

Brayton Cycle Analysis Maximum useful work

Thermodynamic efficiency

Optimum pressure ratio for maximum net work

′ 0

Page 13: NUCLEAR SYSTEMS ENGINEERING - SNU OPEN ...

Simple Brayton Cycle

Example 6.7

Page 14: NUCLEAR SYSTEMS ENGINEERING - SNU OPEN ...

Simple Brayton Cycle

Example 6.7

4 1.658 278 972

Page 15: NUCLEAR SYSTEMS ENGINEERING - SNU OPEN ...

Simple Brayton Cycle

Example 6.7

Page 16: NUCLEAR SYSTEMS ENGINEERING - SNU OPEN ...

Simple Brayton Cycle

Example 6.7

Page 17: NUCLEAR SYSTEMS ENGINEERING - SNU OPEN ...

Simple Brayton Cycle

Example 6.7

The highest temperature in the cycle occurs at the end of the combustion process (state 3), and it is limited by the maximum temperature that the turbine blades can withstand. This also limits the pressure ratios that can beused in the cycle. For a fixed turbine inlet temperature T3, the net work output per cycle increases with the pressure ratio, reaches a maximum, and then starts to decrease. Therefore, there should be a compromise between the pressure ratio (thus the thermal efficiency) and the net work output. With less work output per cycle, a larger mass flow rate(thus a larger system) is needed to maintain the same power output, which may not be economical. In most common designs, the pressure ratio of gas turbines ranges from about 11 to 16.

Page 18: NUCLEAR SYSTEMS ENGINEERING - SNU OPEN ...

Contents

1. Introduction

2. Nonflow Process

3. Thermodynamic Analysis of Nuclear Power Plants

4. Thermodynamic Analysis of A Simplified PWR System6.4.1  First Law Analysis of a Simplified PWR System

6.4.2  Combined First and Second Law or Availability Analysis of a Simplified PWR System

5. More Complex Rankine Cycles: Superheat, Reheat, Regeneration, and Moisture Separation

6. Simple Brayton Cycle

7. More Complex Brayton Cycles

8. Supercritical Carbon Dioxide Brayton Cycles

Page 19: NUCLEAR SYSTEMS ENGINEERING - SNU OPEN ...

More Complex Brayton Cycles

/)1(

3

4

3

4

PP

TT

Page 20: NUCLEAR SYSTEMS ENGINEERING - SNU OPEN ...

More Complex Brayton Cycles

/)1(

1

2

1

2

PP

TT

Page 21: NUCLEAR SYSTEMS ENGINEERING - SNU OPEN ...

More Complex Brayton Cycles

/)1(

1

2

1

2

PP

TT s

Page 22: NUCLEAR SYSTEMS ENGINEERING - SNU OPEN ...

More Complex Brayton Cycles

Page 23: NUCLEAR SYSTEMS ENGINEERING - SNU OPEN ...

More Complex Brayton Cycles

/)1(

3

4

3

4

PP

TT

Page 24: NUCLEAR SYSTEMS ENGINEERING - SNU OPEN ...

More Complex Brayton Cycles

Page 25: NUCLEAR SYSTEMS ENGINEERING - SNU OPEN ...

More Complex Brayton Cycles

Page 26: NUCLEAR SYSTEMS ENGINEERING - SNU OPEN ...

More Complex Brayton Cycles

Page 27: NUCLEAR SYSTEMS ENGINEERING - SNU OPEN ...

More Complex Brayton Cycles

/)1(

3

4

3

4

PP

TT

/)1(

1

2

1

2

PP

TT

Page 28: NUCLEAR SYSTEMS ENGINEERING - SNU OPEN ...

More Complex Brayton Cycles

Without regenerationWith regeneration

Page 29: NUCLEAR SYSTEMS ENGINEERING - SNU OPEN ...

More Complex Brayton Cycles

Without regenerationWith regeneration

= 38.3 % = 30.7 %

With regeneration,  = 4With regeneration,  = 8

= 35.5 %

Without regeneration = 8

= 56.2 %

Not desired!

0.9932.800

Page 30: NUCLEAR SYSTEMS ENGINEERING - SNU OPEN ...

More Complex Brayton Cycles

Page 31: NUCLEAR SYSTEMS ENGINEERING - SNU OPEN ...

More Complex Brayton Cycles

Reheating by just fuel spraying

High concentration

oxygen

Constant pressure

Constant pressure

A gas-turbine engine with two-stage compression with intercooling, two-stage expansion with reheating, and regeneration and its T-s diagram.

Page 32: NUCLEAR SYSTEMS ENGINEERING - SNU OPEN ...

More Complex Brayton Cycles

- Net work of gas turbine = (turbine work output)– (compressor work input)

- Efficiency enhancement by-> Decreasing the compressor work input -> Increasing the turbine work output

Steady flow compression or expansion work is proportional to the specific volume of fluid.

1. As the number of stages increases, the compression becomes nearly isothermal at the inlet temperature.-> compression work decrease.

2. Similarly, turbine work between the two pressure levels can be increases by expanding the gas in stages and reheating it -> multistage expansion with reheating.

Intercooling

Reheating

Page 33: NUCLEAR SYSTEMS ENGINEERING - SNU OPEN ...

More Complex Brayton Cycles

4

Page 34: NUCLEAR SYSTEMS ENGINEERING - SNU OPEN ...

More Complex Brayton Cycles

Page 35: NUCLEAR SYSTEMS ENGINEERING - SNU OPEN ...

More Complex Brayton Cycles

4

Page 36: NUCLEAR SYSTEMS ENGINEERING - SNU OPEN ...

More Complex Brayton Cycles

4

Page 37: NUCLEAR SYSTEMS ENGINEERING - SNU OPEN ...

More Complex Brayton Cycles

Page 38: NUCLEAR SYSTEMS ENGINEERING - SNU OPEN ...

More Complex Brayton CyclesHW#5

Page 39: NUCLEAR SYSTEMS ENGINEERING - SNU OPEN ...

More Complex Brayton Cycles

Page 40: NUCLEAR SYSTEMS ENGINEERING - SNU OPEN ...

More Complex Brayton Cycles

Page 41: NUCLEAR SYSTEMS ENGINEERING - SNU OPEN ...

Simple Brayton Cycle

Brayton Cycle

Page 42: NUCLEAR SYSTEMS ENGINEERING - SNU OPEN ...

Simple Brayton Cycle

Brayton Cycle

Page 43: NUCLEAR SYSTEMS ENGINEERING - SNU OPEN ...

Contents of Lecture

Contents of lecture Chapter 1 Principal Characteristics of Power Reactors

Will be replaced by the lecture note Introduction to Nuclear Systems 

Chapter 4 Transport Equations for Single‐Phase Flow (up to energy equation) Chapter 6 Thermodynamics of Nuclear Energy Conversion Systems:

Nonflow and Steady Flow : First‐ and Second‐Law Applications Chapter 7  Thermodynamics of Nuclear Energy Conversion Systems : 

Nonsteady Flow First Law Analysis

Chapter 3  Reactor Energy Distribution Chapter 8  Thermal Analysis of Fuel Elements

Thermodynamics

Heat transportConduction heat transfer

Nuclear system