Top Banner
Nuclear Magnetic Resonance (NMR) Spectroscopy Kurt Wuthrich Chemistry-2002 Richard Ernst Chemistry -1991 Felix Bloch & Edward Purcell Physics-1952 Paul Lauterbur & Peter Mansfield Medicine-2003 Brian Sykes Lewis Kay
23

Nuclear Magnetic Resonance (NMR) Spectroscopyinstruct.uwo.ca/biochemistry/523b/shaw_lecture1.pdfNuclear Magnetic Resonance (NMR) Spectroscopy Kurt Wuthrich Chemistry-2002 Richard Ernst

May 22, 2018

Download

Documents

truongdung
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Nuclear Magnetic Resonance (NMR) Spectroscopyinstruct.uwo.ca/biochemistry/523b/shaw_lecture1.pdfNuclear Magnetic Resonance (NMR) Spectroscopy Kurt Wuthrich Chemistry-2002 Richard Ernst

Nuclear Magnetic Resonance (NMR) Spectroscopy

Kurt WuthrichChemistry-2002

Richard ErnstChemistry -1991

Felix Bloch & Edward PurcellPhysics-1952

Paul Lauterbur & Peter MansfieldMedicine-2003

Brian Sykes Lewis Kay

Page 2: Nuclear Magnetic Resonance (NMR) Spectroscopyinstruct.uwo.ca/biochemistry/523b/shaw_lecture1.pdfNuclear Magnetic Resonance (NMR) Spectroscopy Kurt Wuthrich Chemistry-2002 Richard Ernst

Principles of NMR Protein Spectroscopy

What does NMR tell us ?

1) Primary structure characterization2) Dynamics - psec-sec timescales3) Equilibrium binding4) Folding/Unfolding5) Three dimensional structure

Some Advantages 1) Solution based2) Non-destructive3) Residue specific information

Page 3: Nuclear Magnetic Resonance (NMR) Spectroscopyinstruct.uwo.ca/biochemistry/523b/shaw_lecture1.pdfNuclear Magnetic Resonance (NMR) Spectroscopy Kurt Wuthrich Chemistry-2002 Richard Ernst

Principles of NMR Protein Spectroscopy

Wavelength (nm)

10 100 1000 104 105 106 107 108 109

UV/Vis

IR NMR

Nuclear spintransitions

Electrontransitions

Crystallography

X-rays Radio waves

Page 4: Nuclear Magnetic Resonance (NMR) Spectroscopyinstruct.uwo.ca/biochemistry/523b/shaw_lecture1.pdfNuclear Magnetic Resonance (NMR) Spectroscopy Kurt Wuthrich Chemistry-2002 Richard Ernst

Principles of NMR Protein Spectroscopy

Absorption of energy by nucleus - depends on nuclear spin (I) = sum of unpaired protons + neutrons (spin 1/2)

1H 1/2 1 012C 0 6 613C 1/2 6 714N 1 7 715N 1/2 7 8

Nucleus I # Protons # Neutrons

I≠0 - NMR observed - spin will have magnetic moment µ=γI For proteins 1H, 13C, 15N (31P)

Page 5: Nuclear Magnetic Resonance (NMR) Spectroscopyinstruct.uwo.ca/biochemistry/523b/shaw_lecture1.pdfNuclear Magnetic Resonance (NMR) Spectroscopy Kurt Wuthrich Chemistry-2002 Richard Ernst

Principles of NMR Protein Spectroscopy

mI = -1/2 β

N

S

S

NN

S

m=(-I, -I+1 ….I-1, I)

mI = +1/2 α

Bo

Page 6: Nuclear Magnetic Resonance (NMR) Spectroscopyinstruct.uwo.ca/biochemistry/523b/shaw_lecture1.pdfNuclear Magnetic Resonance (NMR) Spectroscopy Kurt Wuthrich Chemistry-2002 Richard Ernst

Principles of NMR Protein Spectroscopy

x

y

z

Bo

µ=-γIz

Normal Magnetic Field (Bo)

Page 7: Nuclear Magnetic Resonance (NMR) Spectroscopyinstruct.uwo.ca/biochemistry/523b/shaw_lecture1.pdfNuclear Magnetic Resonance (NMR) Spectroscopy Kurt Wuthrich Chemistry-2002 Richard Ernst

Principles of Protein NMR Spectroscopy

mI = -1/2 β

N

S

S

NN

SmI = +1/2 α

So how does this give us an “NMR signal” ?

α

β

Page 8: Nuclear Magnetic Resonance (NMR) Spectroscopyinstruct.uwo.ca/biochemistry/523b/shaw_lecture1.pdfNuclear Magnetic Resonance (NMR) Spectroscopy Kurt Wuthrich Chemistry-2002 Richard Ernst

Principles of Protein NMR Spectroscopy

α

β

This occurs for all 1H, 13C, 15N in magnetic field

B0

1H 26.75 13C 6.73

15N -2.72

γ (∗107 rad / T sec)

Page 9: Nuclear Magnetic Resonance (NMR) Spectroscopyinstruct.uwo.ca/biochemistry/523b/shaw_lecture1.pdfNuclear Magnetic Resonance (NMR) Spectroscopy Kurt Wuthrich Chemistry-2002 Richard Ernst

Principles of Protein NMR Spectroscopy

α

β

ΔE = γhB0 = hν ν = γB02π

(Hz) ω = γB0 (rad)

Larmor Precession

1H 26.75 600.00 13C 6.73 150.8715N -2.71 60.82

γ (∗107 rad / T sec)Nucleus ν at 14.09 T

Page 10: Nuclear Magnetic Resonance (NMR) Spectroscopyinstruct.uwo.ca/biochemistry/523b/shaw_lecture1.pdfNuclear Magnetic Resonance (NMR) Spectroscopy Kurt Wuthrich Chemistry-2002 Richard Ernst

Principles of Protein NMR Spectroscopy

α

β

NMR is an insensitive method 1H N=106

11.75T 18.79T499,980

500,020

499,968

500,032

Page 11: Nuclear Magnetic Resonance (NMR) Spectroscopyinstruct.uwo.ca/biochemistry/523b/shaw_lecture1.pdfNuclear Magnetic Resonance (NMR) Spectroscopy Kurt Wuthrich Chemistry-2002 Richard Ernst

Principles of Protein NMR Spectroscopy

Sensitivity

nα-nβ = Δn = NγhBo

2kTMo=nαµzα + nβµzβ = Δnµzα= 1 γhΔn = 1 N (γh)2Bo

2 4kT

x

y

z

Bo

x

y

z

Bo

Page 12: Nuclear Magnetic Resonance (NMR) Spectroscopyinstruct.uwo.ca/biochemistry/523b/shaw_lecture1.pdfNuclear Magnetic Resonance (NMR) Spectroscopy Kurt Wuthrich Chemistry-2002 Richard Ernst

Principles of Protein NMR Spectroscopy

Net Magnetization

x

y

z

x

y

z

Mo

Bo Boωo

Rotating Frame

Page 13: Nuclear Magnetic Resonance (NMR) Spectroscopyinstruct.uwo.ca/biochemistry/523b/shaw_lecture1.pdfNuclear Magnetic Resonance (NMR) Spectroscopy Kurt Wuthrich Chemistry-2002 Richard Ernst

Principles of Protein NMR Spectroscopy

How is the NMR Signal Obtained ?

x

y

z

Mo

Bo

-employ a rf pulse at ν of desired nucleus

x

y

z

“rf pulse”

θ

B1 B1

Page 14: Nuclear Magnetic Resonance (NMR) Spectroscopyinstruct.uwo.ca/biochemistry/523b/shaw_lecture1.pdfNuclear Magnetic Resonance (NMR) Spectroscopy Kurt Wuthrich Chemistry-2002 Richard Ernst

Principles of Protein NMR Spectroscopy

x

y

z

Mo

Box

y

z

θ = π/2π/2

rfon off

B1 B1

pw = 6 µsec γB1 = 41 kHz

Page 15: Nuclear Magnetic Resonance (NMR) Spectroscopyinstruct.uwo.ca/biochemistry/523b/shaw_lecture1.pdfNuclear Magnetic Resonance (NMR) Spectroscopy Kurt Wuthrich Chemistry-2002 Richard Ernst

Principles of Protein NMR Spectroscopy

x

y

z

π/2

rfon off

B1

x

y

z

Mo

Bo

B1

x

y

z

B1receiver

FT

time ν

Page 16: Nuclear Magnetic Resonance (NMR) Spectroscopyinstruct.uwo.ca/biochemistry/523b/shaw_lecture1.pdfNuclear Magnetic Resonance (NMR) Spectroscopy Kurt Wuthrich Chemistry-2002 Richard Ernst

Principles of Protein NMR Spectroscopy

x

y

z

off

B1

x

y

z

B1

receiver

time

T1

x

y

z

B1

T2

Mz(t) = Mo(1-e-t/T1)

My(t) = My(0)*e-t/T2

Page 17: Nuclear Magnetic Resonance (NMR) Spectroscopyinstruct.uwo.ca/biochemistry/523b/shaw_lecture1.pdfNuclear Magnetic Resonance (NMR) Spectroscopy Kurt Wuthrich Chemistry-2002 Richard Ernst

Principles of Protein NMR Spectroscopy

100 10 1 0.1 0.01 0.001Correlation Time, τc (nsec)

Molecular Weight

T1, T2 (sec)

100

10

1

0.1

0.01

0.001

T1

T2

Linewidths

MW 100

0.5 Hz

MW 20,000

10 Hz

Page 18: Nuclear Magnetic Resonance (NMR) Spectroscopyinstruct.uwo.ca/biochemistry/523b/shaw_lecture1.pdfNuclear Magnetic Resonance (NMR) Spectroscopy Kurt Wuthrich Chemistry-2002 Richard Ernst

Principles of Protein NMR Spectroscopy

NMR Instrumentation

Magnet - Bo 18.79 T

vacuum

N2(l)

He(l)

magnet

22.31 T (2006)probe

Page 19: Nuclear Magnetic Resonance (NMR) Spectroscopyinstruct.uwo.ca/biochemistry/523b/shaw_lecture1.pdfNuclear Magnetic Resonance (NMR) Spectroscopy Kurt Wuthrich Chemistry-2002 Richard Ernst

Principles of Protein NMR Spectroscopy

Magnet Technology

Page 20: Nuclear Magnetic Resonance (NMR) Spectroscopyinstruct.uwo.ca/biochemistry/523b/shaw_lecture1.pdfNuclear Magnetic Resonance (NMR) Spectroscopy Kurt Wuthrich Chemistry-2002 Richard Ernst

Principles of Protein NMR Spectroscopy

Magnet Technology

Page 21: Nuclear Magnetic Resonance (NMR) Spectroscopyinstruct.uwo.ca/biochemistry/523b/shaw_lecture1.pdfNuclear Magnetic Resonance (NMR) Spectroscopy Kurt Wuthrich Chemistry-2002 Richard Ernst

Principles of Protein NMR Spectroscopy

Probe Technology

Bo

B1

Page 22: Nuclear Magnetic Resonance (NMR) Spectroscopyinstruct.uwo.ca/biochemistry/523b/shaw_lecture1.pdfNuclear Magnetic Resonance (NMR) Spectroscopy Kurt Wuthrich Chemistry-2002 Richard Ernst

Principles of Protein NMR Spectroscopy

Cold “Cryogenic” Probe

S/N ~ 1/{Rs*(Ts+Tpa)+(Rc*(Tc +Tpa)}1/2

Tpa, Tc - lowered 298˚K 20˚K

Rs, Ts - near 298˚K

3-4 time more sensitive

500 MHz + cold probe = 1.6x S/N 800 MHz

Page 23: Nuclear Magnetic Resonance (NMR) Spectroscopyinstruct.uwo.ca/biochemistry/523b/shaw_lecture1.pdfNuclear Magnetic Resonance (NMR) Spectroscopy Kurt Wuthrich Chemistry-2002 Richard Ernst

Principles of Protein NMR Spectroscopy

Block Diagram of NMR Spectrometer

Probe

Transmitter Preamplifier

Duplexer

CPU Receiver

Computer

obs, lk

obs, lkobs, dec, lk