Top Banner
NSF-ITR: EIA-0086015: Structural DNA Nanotechnology Nadrian C. Seeman, Subcontractor Department of Chemistry New York University New York, NY 10003, USA [email protected] February 17, 2003
93

NSF-ITR: EIA-0086015: Structural DNA Nanotechnology

Feb 05, 2016

Download

Documents

kenny

NSF-ITR: EIA-0086015: Structural DNA Nanotechnology. Nadrian C. Seeman, Subcontractor Department of Chemistry New York University New York, NY 10003, USA [email protected] February 17, 2003. Reciprocal Exchange: A Theoretical Tool To Generate New DNA Motifs. Reciprocal Exchange in a - PowerPoint PPT Presentation
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: NSF-ITR:   EIA-0086015: Structural DNA Nanotechnology

NSF-ITR: EIA-0086015:Structural DNA Nanotechnology

Nadrian C. Seeman, SubcontractorDepartment of Chemistry

New York UniversityNew York, NY 10003, USA

[email protected]

February 17, 2003

Page 2: NSF-ITR:   EIA-0086015: Structural DNA Nanotechnology

DNA BASE PAIRS

C C

N

C

C

O

NH

O R

H

CH3

T

H

CC

NC

N C

N

N N

H

HC

H

R

A

O

C C

N

N

C

C

R

H

HN

H

H

CC

NC

C

N

N

C

OC

H

NR

H

N H

H

G

3.4 Å

~20 Å

10-10.5Pairs/Turn

Page 3: NSF-ITR:   EIA-0086015: Structural DNA Nanotechnology

ReciprocalExchange

Resolve

Reciprocal Exchange:A Theoretical Tool To Generate

New DNA Motifs

Page 4: NSF-ITR:   EIA-0086015: Structural DNA Nanotechnology

b

a

+Resolve

Reciprocal

Exchange

Resolve

Reciprocal

Exchange

+

Reciprocal Exchange in aDouble Helical Context

Page 5: NSF-ITR:   EIA-0086015: Structural DNA Nanotechnology

Biological Reciprocal Exchange:The Holliday Junction

1 4

2 3

1 4

2 3

1 24 3

1 4

2 3

I

I I

A•T

G•C

C•G

C•G

G•C

T•A

A•TT•AG•CT•AC•G

T•AA•TC•GA•TG•C

A•TT•AG•C

T•AA•TC•G

C•G

A•T

G•C

C•G

C•G

G•C

T•A

G•C

A•T

T•A

A•TT•AG•CT•AC•GA•TG•CC•G

T•AA•TC•GA•TG•CT•AC•GG•C

A•TT•AG•CT•A

T•AA•TC•GA•T

C•G

A•T

G•C

C•G

C•G

G•C

T•A

G•C

Page 6: NSF-ITR:   EIA-0086015: Structural DNA Nanotechnology

Seeman, N.C. (1982), J. Theor.Biol. 99, 237-247.

Design of Immobile Branched Junctions:Minimize Sequence Symmetry

IIACTCGTGC

TGAGCACG••••••••

A

T

C

G A

T A

T A

T

C

G

C

G C

G• • • • • • • •

3322

11 44

C G

C G

CG

A T

A T

AT

CG

C G

IV

I

III

C GCG

C G

A T

A TAT

C G

••

••

C G•

Page 7: NSF-ITR:   EIA-0086015: Structural DNA Nanotechnology

C•GG•CC•GTA•TA•AT•C•GC•GTA•C•GAT•TA•

G•CG•CA

T•

C•GTA•AT•G•C

GTGCC•GT

A•A

T•

C•GC•GG•CTA•AT• T

A•TA•C•GG•CAT•TA•C•GAT•TA•C•GG•CTA•CACG

LIGATION

+HYDROGEN BONDING

C•GT

A•A

T•

C•GC•GG•CTA•AT• T

A•TA•C•GG•CAT•TA•C•GAT•TA•C•GG•CTA•G•CAT•G•CC•GC•GG•CC•GTA•TA•AT•C•GC•GTA•C•GAT•TA•

G•CG•CA

T•

C•GTA•AT•G•C

••••C•GT

A•A

T•

C•GC•GG•CTA•AT• T

A•TA•C•GG•CAT•TA•C•GAT•TA•C•GG•CTA•GTGCC

•GG•CC•GTA•TA•AT•C•GC•GTA•C•GAT•TA•

G•CG•CA

T•

C•GTA•AT•G•CCACG

Sticky-Ended Cohesion: Affinity

Page 8: NSF-ITR:   EIA-0086015: Structural DNA Nanotechnology

Qiu, H., Dewan, J.C. & Seeman, N.C. (1997) J. Mol. Biol. 267, 881-898.

Sticky-Ended Cohesion: Structure

Page 9: NSF-ITR:   EIA-0086015: Structural DNA Nanotechnology

Seeman, N.C. (1982), J. Theor.Biol. 99, 237-247.

The Central Concept:Combine Branched DNA with Sticky Ends to

Make Objects, Lattices and Devices

AB'

B

A'A

B' B'

B

A

A'

A'

B

Page 10: NSF-ITR:   EIA-0086015: Structural DNA Nanotechnology

O B J E C T IV E S & A P P L IC A T IO N S

DESIGN MOLECULES TO ASSEMBLE INTO ORDERED ARRAYS.

[A] SCAFFOLD MACROMOLECULAR CRYSTALLIZATION (PERIODIC).

[C] GENERATE ALGORITHMIC PATTERNS (APERIODIC).[B] SCAFFOLD NANOELECTRONICS ASSEMBLY (PERIODIC).

Architectural Control[1]

[3] Self-Replicating Systems

[A] NANOROBOTICS.[B] NANOFABRICATION.[C] MOLECULAR PEGBOARDS.

[2] Nanomechanical Devices

Page 11: NSF-ITR:   EIA-0086015: Structural DNA Nanotechnology

Robinson, B.H. & Seeman, N.C. (1987), Protein Eng. 1, 295-300..

A Method for Organizing Nano-Electronic Components

Page 12: NSF-ITR:   EIA-0086015: Structural DNA Nanotechnology

Robinson, B.H. & Seeman, N.C. (1987), Protein Eng. 1, 295-300.

A Suggestion for a Molecular Memory DeviceOrganized by DNA (Shown in Stereo)

Page 13: NSF-ITR:   EIA-0086015: Structural DNA Nanotechnology

WHY DNA?

PREDICTABLE INTERMOLECULAR INTERACTIONS

CONVENIENT AUTOMATED CHEMISTRY

CONVENIENT MODIFYING ENZYMES

HIGH FUNCTIONAL GROUP DENSITY

EXTERNALLY READABLE CODE

LOCALLY STIFF POLYMER

PROTOTYPE FOR MANY DERIVATIVES

Page 14: NSF-ITR:   EIA-0086015: Structural DNA Nanotechnology

DENATURING GELAUTORADIOGRAM

CYCLICMOLECULES

LINEARAND

CYCLICMOLECULES

APPLY DIRECTLY EXONUCLEASE FIRST

LIGATION

LIGATION

LIGATION

LIGATION

LIGATION

LIGATION

LIGATION

PP32 REPORTER STRANDS

LA RGER LINEA RS LA RGER CYCLICS

A Method to Establish DNA Motif Flexibility

Page 15: NSF-ITR:   EIA-0086015: Structural DNA Nanotechnology

Geometrical Constructions(Regular Graphs)

Cube: Junghuei Chen

Truncated Octahedron: Yuwen Zhang

Page 16: NSF-ITR:   EIA-0086015: Structural DNA Nanotechnology

Chen, J. & Seeman. N.C. (1991), Nature 350, 631-633..

Cube..

Page 17: NSF-ITR:   EIA-0086015: Structural DNA Nanotechnology

Zhang, Y. & Seeman, N.C. (1994), J. Am. Chem. Soc. 116, 1661-1669.

TruncatedOctahedron

Page 18: NSF-ITR:   EIA-0086015: Structural DNA Nanotechnology

Constructionof

CrystallineArrays

Page 19: NSF-ITR:   EIA-0086015: Structural DNA Nanotechnology

REQUIREMENTS FOR LATTICEDESIGN COMPONENTS

PREDICTABLE INTERACTIONS

PREDICTABLE LOCAL PRODUCT STRUCTURES

STRUCTURAL INTEGRITY

Page 20: NSF-ITR:   EIA-0086015: Structural DNA Nanotechnology

Seeman, N.C. (2001) NanoLetters 1, 22-26.

+

b

Resolve

Twice

2 Reciprocal

Exchanges

a

+Resolve

Twice

2 Reciprocal

Exchanges

Resolve

Twice

2 Reciprocal

Exchanges

Resolve

Twice

2 Reciprocal

Exchanges

DS + DS DX TX

Derivation of DX and TX Molecules

Page 21: NSF-ITR:   EIA-0086015: Structural DNA Nanotechnology

Erik Winfree (Caltech)Furong Liu

Lisa Wenzler

2D DX Arrays

Page 22: NSF-ITR:   EIA-0086015: Structural DNA Nanotechnology

D X + JD X

+

H P

Resolve

Reciprocal

Exchange

Seeman, N.C. (2001) NanoLetters 1, 22-26.

Derivation of DX+J Molecules

Page 23: NSF-ITR:   EIA-0086015: Structural DNA Nanotechnology

A B*

Schematic of a Lattice Containing1 DX Tile and 1 DX+J Tile

Page 24: NSF-ITR:   EIA-0086015: Structural DNA Nanotechnology

Winfree, E., Liu, F., Wenzler, L.A. & Seeman, N.C. (1998), Nature 394, 539-544.

AFM of a Lattice Containing1 DX Tile and 1 DX+J Tile

Page 25: NSF-ITR:   EIA-0086015: Structural DNA Nanotechnology

D*D*A CB

Schematic of a Lattice Containing 3 DX Tiles and 1 DX+J Tile

Page 26: NSF-ITR:   EIA-0086015: Structural DNA Nanotechnology

Winfree, E., Liu, F., Wenzler, L.A. & Seeman, N.C. (1998), Nature 394, 539-544.

AFM of a Lattice Containing3 DX Tiles and 1 DX+J Tile

Page 27: NSF-ITR:   EIA-0086015: Structural DNA Nanotechnology

Chengde Mao

Holliday JunctionParallelogram Arrays

Page 28: NSF-ITR:   EIA-0086015: Structural DNA Nanotechnology

Holliday Junction Parallelogram Arrays

Mao, C., Sun, W & Seeman, N.C. (1999), J. Am. Chem. Soc. 121, 5437-5443.

II

IVIII

II

III

II IV4

32

1

I

III

II IV4

32

1

D

A'

C

B'

C'

A

D'

B

YX

Z

X

SELFASSEMBLY

Page 29: NSF-ITR:   EIA-0086015: Structural DNA Nanotechnology

Mao, C., Sun, W & Seeman, N.C. (1999), J. Am. Chem. Soc. 121, 5437-5443.

Holliday Junction Parallelogram Arrays

Page 30: NSF-ITR:   EIA-0086015: Structural DNA Nanotechnology

Triple Crossover Molecules

Furong Liu, Jens Kopatsch, Hao YanThom LaBean, John Reif

Page 31: NSF-ITR:   EIA-0086015: Structural DNA Nanotechnology

Triple Crossover Molecules

Page 32: NSF-ITR:   EIA-0086015: Structural DNA Nanotechnology

B*A

TX+J Array

LaBean, T.H., Yan, H., Kopatsch, J., Liu, F., Winfree, E., Reif, J.H.& Seeman, N.C (2000), J. Am. Chem. Soc. 122, 1848-1860.

Page 33: NSF-ITR:   EIA-0086015: Structural DNA Nanotechnology

BA C C' D

AB Array

ABC'D Array

TX Array With Rotated Components

LaBean, T.H., Yan, H., Kopatsch, J., Liu, F., Winfree, E., Reif, J.H.& Seeman, N.C (2000), J. Am. Chem. Soc. 122, 1848-1860.

Page 34: NSF-ITR:   EIA-0086015: Structural DNA Nanotechnology

ProgressToward

Three-DimensionalArrays

Furong LiuJens BirktoftYariv PintoHao YanTong WangBob Sweet

Pam ConstantinouChengde MaoPhil LukemanJens Kopatsch

Bill ShermanMike Becker

Page 35: NSF-ITR:   EIA-0086015: Structural DNA Nanotechnology

A 3D TX Lattice

Furong LiuJens BirktoftYariv PintoHao YanBob Sweet

Pam ConstantinouPhil LukemanChengde MaoBill ShermanMike Becker

D D'BA C C'

AB Array

ABC'D' Array

QuickTime™ and aPhoto - JPEG decompressor

are needed to see this picture.

Page 36: NSF-ITR:   EIA-0086015: Structural DNA Nanotechnology

A 3D Trigonal DX Lattice

Chengde MaoJens BirktoftYariv PintoHao YanBob Sweet

Pam ConstantinouPhil Lukeman

Furong LiuBill ShermanMike Becker

Page 37: NSF-ITR:   EIA-0086015: Structural DNA Nanotechnology

Algorithmic Assembly

Chengde MaoThom LaBean

John Reif

Page 38: NSF-ITR:   EIA-0086015: Structural DNA Nanotechnology

A

BA XOR B

A B A XOR B

011

0101

0110

0

The XOR Operation

Page 39: NSF-ITR:   EIA-0086015: Structural DNA Nanotechnology

A

BA XOR B

C(A XOR B) XOR C

Cumulative XOR

Page 40: NSF-ITR:   EIA-0086015: Structural DNA Nanotechnology

A Cumulative XOR Calculation: Tiles

Mao, C., LaBean, T.H., Reif, J.H. & Seeman, N.C. (2000), Nature 407, 493-496.

Page 41: NSF-ITR:   EIA-0086015: Structural DNA Nanotechnology

A Cumulative XOR Calculation: System

Mao, C., LaBean, T.H., Reif, J.H. & Seeman, N.C. (2000), Nature 407, 493-496.

S0Pair to C1

C2

Pair to C2

yi = 0

C1

Sixi = 1

1

Si-1

xi = 1

Si-1

Sixi = 0

0

xi = 0

1

yi = 1

xi = 1yi-1 = 0xi = 0

1

yi-1 = 1

yi = 1yi = 0

xi = 1

0

yi-1 = 1

yi = 0

xi = 0

0

yi-1 = 0

yi = 0xi = 1

yi-1 = 1

yi = 1xi = 0

yi-1 = 1

yi = 0xi = 0

yi-1 = 0

yi = 1xi = 1

yi-1 = 0

Page 42: NSF-ITR:   EIA-0086015: Structural DNA Nanotechnology

1

0

X3

X4

1

X1

X2

0

C2

C1

Y11

1

Y2

Y30

0

Y4

0

Y41

1

0

1

C1

C2

1

1

X41

X1

X2

X3

Y1

Y2

Y3

A Cumulative XOR Calculation: Assembly

Mao, C., LaBean, T.H., Reif, J.H. & Seeman, N.C. (2000), Nature 407, 493-496.

Page 43: NSF-ITR:   EIA-0086015: Structural DNA Nanotechnology

C 1 X 1

X 2

Y 1

C 2

Y 2

Mao, C., LaBean, T.H., Reif, J.H. & Seeman, N.C. (2000), Nature 407, 493-496.

A Cumulative XOR Calculation:Extracting the Answer

Page 44: NSF-ITR:   EIA-0086015: Structural DNA Nanotechnology

A Cumulative XOR Calculation: Data

2,0001,500

800600500

400

300

200

100

X2 = 1

Y1 = 1

Y2 = 0

Y3 = 1

Y4 = 1

X3 = 1X4 = 0

X1 = 1C2

M 1 0

Calculation 1

/01

C2,0001,500800600500

400

300

200

100

X2 = 0

Y1 = 1

Y2 = 1

Y3 = 0

X3 = 1X4 = 0

X1 = 1 C2

MC 1 0

Calculation 2

/01

Y4 = 0

Mao, C., LaBean, T.H., Reif, J.H. & Seeman, N.C. (2000), Nature 407, 493-496.

Page 45: NSF-ITR:   EIA-0086015: Structural DNA Nanotechnology

Natasha JonoskaPhiset Sa-Ardyen

N-Colorability of Graphs

Page 46: NSF-ITR:   EIA-0086015: Structural DNA Nanotechnology

A 3-Colorable Graph and its Prototype for Computation

• A graph is 3-colorable if it is possible to assign one color to each vertex such that no two adjacent vertices are colored with the same color. In this example, one 2-armed branched molecule, four 3-armed branched molecules and one 4-armed branched molecule are needed.

• (b) The same graph was chosen for the construction. Since the vertex V5 in (a) has degree 2, for the experiment a double helical DNA is used to represent the vertex V5 and the edges connecting V5 with V1 and V4. The target graph to be made consists of 5 vertices and 8 edges. (c) The target graph in DNA representation.

Page 47: NSF-ITR:   EIA-0086015: Structural DNA Nanotechnology

Results

• An irregular DNA graph whose edges correspond to DNA helix axes has been constructed and isolated based on its closed cyclic character.

• The molecule may contain multiple topoisomers, although this has no impact on the characterization of the product.

• The graph assembles with the correct edges between vertices, as demonstrated by restriction analysis

Page 48: NSF-ITR:   EIA-0086015: Structural DNA Nanotechnology

Fred MathieuChengde Mao

Six-Helix Bundle

Page 49: NSF-ITR:   EIA-0086015: Structural DNA Nanotechnology

<----------------7.3 Microns---------------->

Six-Helix DNA Bundle

Fred MathieuShiping Liao

Chengde Mao

Page 50: NSF-ITR:   EIA-0086015: Structural DNA Nanotechnology

DNANanomechanical

Devices

Page 51: NSF-ITR:   EIA-0086015: Structural DNA Nanotechnology

B-Z Device

Chengde Mao

Page 52: NSF-ITR:   EIA-0086015: Structural DNA Nanotechnology

[-] NODE

RIGHT-HANDEDB-DNA

[-] NODES

[+] NODE

LEFT-HANDEDZ-DNA

[+] NODES

Right-Handed and Left-Handed DNA

Page 53: NSF-ITR:   EIA-0086015: Structural DNA Nanotechnology

B-ZZ-B

A Device Based on the B<-->Z Transition

Mao, C., Sun, W., Shen, Z. & Seeman,N.C. (1999), Nature 397, 144-146.

+ Co(NH 3)6+++- Co(NH 3)6

+++

Page 54: NSF-ITR:   EIA-0086015: Structural DNA Nanotechnology

.

0

5

10

15

20

25

B Z

Acceptor Energy Transfer

Solution Conditions

Percent Energy Transfer

Donor Energy Transfer

Solution Conditions

0

5

10

15

20

25

B Z B Z B Z

Percent Energy Transfer

ControlProto-Z

FRET Evidence for Motion Inducedby the B→ Z Transition

Mao, C., Sun, W., Shen, Z. & Seeman, N.C. (1999), Nature 397, 144-146.

Page 55: NSF-ITR:   EIA-0086015: Structural DNA Nanotechnology

Sequence-Dependent Device

Hao Yan

Page 56: NSF-ITR:   EIA-0086015: Structural DNA Nanotechnology

Derivation of PX DNA

Seeman, N.C. (2001) NanoLetters 1, 22-26.

+Resolve

Everywhere

Reciprocal

Exchange

Everywhere

Resolve

Everywhere

Reciprocal

Exchange

Everywhere

b

a

+

P X

Page 57: NSF-ITR:   EIA-0086015: Structural DNA Nanotechnology

PX DNA

Seeman, N.C. (2001) NanoLetters 1, 22-26.

Page 58: NSF-ITR:   EIA-0086015: Structural DNA Nanotechnology

C D

P X

A B

J X 2

A B

D C

Yan, H., Zhang, X., Shen, Z. & Seeman, N.C. (2002), Nature 415, 62-65..

Page 59: NSF-ITR:   EIA-0086015: Structural DNA Nanotechnology

Switchable Versions of PX and JX2

J X 2

A B

D C

A B

C D

P X

Page 60: NSF-ITR:   EIA-0086015: Structural DNA Nanotechnology

Machine Cycle of the PX-JX2 Device

A B

C D

A B

C D

A B

D C

JX2

A B

D C

PX

I II

IV III

Page 61: NSF-ITR:   EIA-0086015: Structural DNA Nanotechnology

The PX-JX2 System is Robust

Yan, H., Zhang, X., Shen, Z. & Seeman, N.C. (2002), Nature 415, 62-65.

Page 62: NSF-ITR:   EIA-0086015: Structural DNA Nanotechnology

System to Test the PX-JX2 Device

JX2

JX2

JX2

PXPXPX

Page 63: NSF-ITR:   EIA-0086015: Structural DNA Nanotechnology

AFM Evidence for Operationof the PX-JX2 Device

Yan, H., Zhang, X., Shen, Z. & Seeman, N.C. (2002), Nature 415, 62-65.

Page 64: NSF-ITR:   EIA-0086015: Structural DNA Nanotechnology

NewCohesive Motifs

Page 65: NSF-ITR:   EIA-0086015: Structural DNA Nanotechnology

Paranemic Cohesion

Xiaoping Zhang

Page 66: NSF-ITR:   EIA-0086015: Structural DNA Nanotechnology

Paranemic Cohesion with the PX Motif

Left: Ubiquitous Reciprocal Exchange Creates a PX Molecule.Center Right: The Strand Connectivity of a PX Molecule.Far Right: The Blue and Red Dumbbell Molecules are Paranemic.

Page 67: NSF-ITR:   EIA-0086015: Structural DNA Nanotechnology

+PX Cohesion of DNA Triangles: Theory

Page 68: NSF-ITR:   EIA-0086015: Structural DNA Nanotechnology

PX Cohesion of DNA Triangles: Experiment

Zhang, X. Yan, H.,Shen, Z. & Seeman, N.C. (2002) J Am. Chem. Soc.124, 12940-12941 (2002)

Page 69: NSF-ITR:   EIA-0086015: Structural DNA Nanotechnology

Edge-Sharing

Hao Yan

Page 70: NSF-ITR:   EIA-0086015: Structural DNA Nanotechnology

AA'

~20 nm

One-Dimensional Arrays of Edge-Sharing Triangles(Short Direction)

Yan, H. & Seeman, N.C. (2002) J. Supramol. Chem.,in press.

Page 71: NSF-ITR:   EIA-0086015: Structural DNA Nanotechnology

One-Dimensional Arrays of Edge-Sharing Triangles(Long Direction)

BB'

~30 nm

Yan, H. & Seeman, N.C. (2002) J. Supramol. Chem.,in press.

Page 72: NSF-ITR:   EIA-0086015: Structural DNA Nanotechnology

One-Dimensional Arrays ofDouble Edge-Sharing Triangles

A

A'

~30 nm

~20 nm

Yan, H. & Seeman, N.C. (2002) J. Supramol. Chem.,in press.

Page 73: NSF-ITR:   EIA-0086015: Structural DNA Nanotechnology

A Cassette for theInsertion of a PX-JX2 Device into a 2D TX

Array

Baoquan Ding

Page 74: NSF-ITR:   EIA-0086015: Structural DNA Nanotechnology

BA C C' D

AB Array

ABC'D Array

TX Array With Rotated Components

LaBean, T.H., Yan, H., Kopatsch, J., Liu, F., Winfree, E., Reif, J.H.& Seeman, N.C (2000), J. Am. Chem. Soc. 122, 1848-1860.

Page 75: NSF-ITR:   EIA-0086015: Structural DNA Nanotechnology

1

2A

2B

3

4A

4B

5

P1

P2

J1

J2

4A

5 2A

4B

2B

1

3

Cassette to Insert the PX-JX2 Device~Perpendicularly Into a TX Lattice

PX Conformation

JX2 Conformation

Page 76: NSF-ITR:   EIA-0086015: Structural DNA Nanotechnology

Molecular Models of the 2 states of the Sequence-Driven DNA Devices

Page 77: NSF-ITR:   EIA-0086015: Structural DNA Nanotechnology

Application of the PX-JX2 Devicein a 1D Molecular Pegboard

MARKER ---> MARKEDPX + PX JX INERT

PX JX JX JX PX JX PX PX

+ --->

JXPX

PX JX JX JX PX JX PX PX

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

Page 78: NSF-ITR:   EIA-0086015: Structural DNA Nanotechnology

Towards 2D Circuits

Alessandra Carbone (IHES)

Page 79: NSF-ITR:   EIA-0086015: Structural DNA Nanotechnology

Circuits and triangular patterns

Page 80: NSF-ITR:   EIA-0086015: Structural DNA Nanotechnology

2 layers assembly

Page 81: NSF-ITR:   EIA-0086015: Structural DNA Nanotechnology

Tiles

inputs

outputs

operation

TX Molecule

Page 82: NSF-ITR:   EIA-0086015: Structural DNA Nanotechnology

Molecular Programming: programmed board

4 different states

Page 83: NSF-ITR:   EIA-0086015: Structural DNA Nanotechnology

PXJXJXJXPX PX PX JX

JXJXPX PX

PXJXPX JX

Possible Components: Programmable Pawns

Possible Components: TX Middle Domains

Possible Arrangement

Page 84: NSF-ITR:   EIA-0086015: Structural DNA Nanotechnology

(b)

(d)(c)

(a)

templatefirst layer

second layer

Page 85: NSF-ITR:   EIA-0086015: Structural DNA Nanotechnology

PX Conformation

JX2 Conformation

Control Region & Sticky Ends on the Same Strand

Page 86: NSF-ITR:   EIA-0086015: Structural DNA Nanotechnology

3' 5'Box 1 Box 23' 5'Box 1 Box 23' 5'Box 1 Box 23' 5'Box 1 Box 2

Combine Growing Strand Supports;Repeat Steps 2 and 3 until Boxes are filled.4.

3' 5'Box 1 Box 2

Levulinyl Protected Branch Point

3' 5'Box 1 Box 2

1. Perform Conventional 3'-->5' Synthesisfrom End of Box 1 to Start of Box 2.

Split Growing Strands into A, T, C, GCompartments; Add Base to Box 2.2.

3' 5'Box 1 Box 23' 5'Box 1 Box 23' 5'Box 1 Box 23' 5'Box 1 Box 2

Add Same Base [or F(Base)] with LevulinylProtection and5' Phosphoramidite to Box 1.3.

3' 5'3' 5'3' 5'3' 5'

Complete Conventional Synthesis of theStrands5.

3' 5'3' 5'3' 5'3' 5'

Mix & Split Synthesis -- Central

Page 87: NSF-ITR:   EIA-0086015: Structural DNA Nanotechnology

Mix & Split Synthesis -- Ends

3' Box 1 Box 2 5'

2.

3'

Box 1 Box 2Box 1 Box 2Box 1 Box 2Box 1 Box 2

Combine Growing Strand Supports;Repeat Steps 3 and 4 until Boxes are filled.5.

Box 1Box 1Box 1Box 15'

5'5'5' Box 2

Box 2Box 2Box 2

Add Same Base [or F(Base)] with LevulinylProtection and5' Phosphoramidite to Box 1.4.

5'5'5'5'

5'5'5'5'

5'5'5'5'5'

5'5'5'

5'5'5'5'

5'Box 1 Box 2

Levulinyl Protected Branch Point

1. Perform Conventional 3'-->5' Synthesisfrom End of Box 1 to Start of Box 2.

Reverse Polarity of Strand Growingat Branch; Add Directionality Segment.

Box 1 Box 2 5'5'Split Growing Strands into A, T, C, GCompartments; Add Base to Box 2.3.

Page 88: NSF-ITR:   EIA-0086015: Structural DNA Nanotechnology

Triple Crossover Molecules

Page 89: NSF-ITR:   EIA-0086015: Structural DNA Nanotechnology

An Algorithmic Arrangement Based on Mix & Split Synthesis

Page 90: NSF-ITR:   EIA-0086015: Structural DNA Nanotechnology

Summary of Results (1)

• Reciprocal exchange generates new DNA motifs, and sequence-symmetry minimization provides an effective way to generate sequences for them.

• Sticky ends, PX cohesion and edge-sharing are can hold DNA motifs together in a sequence-specific fashion.

Page 91: NSF-ITR:   EIA-0086015: Structural DNA Nanotechnology

Summary of Results (2)

• 2D lattices with tunable features have been built from DX, TX and DNA parallelogram motifs. Preliminary evidence for 3D assembly has been obtained.

• DNA nanomechanical devices have been produced using both the B-Z transition and PX-JX2 conversion through sequence control.

Page 92: NSF-ITR:   EIA-0086015: Structural DNA Nanotechnology

Summary of Results (3)

• An algorithmic 4-bit cumulative XOR calculation has been performed.

• An irregular graph has been synthesized in solution, establishing the principle of using this type of assembly for calculations.

• New motifs include a 6-helix bundle and a cassette for inserting a PX-JX2 device into a TX array.

Page 93: NSF-ITR:   EIA-0086015: Structural DNA Nanotechnology

CHALLENGES FOR STRUCTURALDNA NANOTECHNOLOGY

TO EXTEND 2-D RESULTS TO 3-D WITH HIGH ORDER --Crystallography.[1]

[2] TO INCORPORATE DNA DEVICES IN 2-D AND 3-D ARRAYS-- Nanorobotics.

[3] TO INCORPORATE HETEROLOGOUS GUESTS IN LATTICES-- Nanoelectronics; Crystallography.

[4] TO EXTEND ALGORITHMIC ASSEMBLY TO HIGHERDIMENSIONS -- Smart Materials; Computation.

[7] TO INTERFACE WITH TOP-DOWN METHODS AND THEMACROSCOPIC WORLD -- Nanoelectronic Reality.

[5] T O ACHI EVE ASSEMBLIES WI T H H IERARCHI CALCHARACTER -- Complex Materials.

[10] T O ADVANCE FROM BIOKLEPT I C SYST EMS T OBIOMIMETIC SYSTEMS -- Chemical Control.

[6] TO ACHIEVE FUNCTIONAL AS WELL AS STRUCTURALSYSTEMS -- Active Materials; Sensor Systems.

[8] TO INCORPORATE COMBINATORIAL APPROACHES IN TILEDESIGN -- Diversity; Programmability.

[9] TO PRODUCE SYSTEMS CAPABLE OF SELF-REPLICATION --Economy; Evolvability.