Top Banner
Novel Biomarkers in DLBCL Colm Keane MB BCh BAO MSc MBA School of Medical Science Health Group Griffith University Submitted in fulfillment of the requirements of the degree of Doctor of Philosophy August 2014 1/17
153

Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

Apr 13, 2018

Download

Documents

doquynh
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

Novel  Biomarkers  in  DLBCL  

Colm  Keane  MB  BCh  BAO  MSc  MBA  

School of Medical ScienceHealth Group  Griffith University

Submitted in fulfillment of the requirements of the degree ofDoctor of Philosophy

August 2014

1/17

Page 2: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

Abstract  

Diffuse  large  B  cell  lymphoma  (DLBCL)  is  the  commonest  aggressive  lymphoma.  

Despite  the  advent  of  combined  chemo-­‐immunotherapy,  one  third  of  patients  

still  die  from  their  disease.  Prognostication  of  the  disease  still  relies  on  a  clinical  

scoring  system  known  as  the  International  Prognostic  Index  (IPI).  This  divides  

patients  into  risk  categories.  However  marked  heterogeneity  within  IPI  sub-­‐

categories  persist.  The  IPI  is  a  clinical  score  based  predominantly  on  estimates  of  

patient  fitness  and  tumour  burden,  but  does  not  utilize  information  regarding  

the  biology  of  the  tumour  cell  or  the  immune  tumour  microenvironment  (TME),  

in  which  the  malignant  B  cells  reside.  The  latter  is  the  focus  of  this  thesis.    

The  anti-­‐CD20  monoclonal  antibody  rituximab  has  improved  the  outcome  for  

patients  with  DLBCL,  however  the  impact  of  host  genetics  on  its  effectiveness  is  

still  unclear.  The  mechanisms  of  action  for  rituximab  include  antibody  

dependent  cytotoxicity  (ADCC)  and  complement  mediated  cytotoxicity  (CDC).    

Recent  reports  suggest  genetic  polymorphisms  in  the  FCGR3A  receptor  

(expressed  on  NK-­‐cells  and  monocytes  which  mediate  ADCC)  may  be  a  predictor  

of  event  free  and  overall  survival  in  B-­‐cell  lymphoma.  Data  also  implicates  the  

same  polymorphism  in  the  susceptibility  to  rituximab  induced  late-­‐onset  

neutropenia  (LON).  There  remains  no  data  on  the  impact  of  genetic  

polymorphisms  on  either  outcome  or  LON  in  genes  involved  in  the  CDC  pathway  

such  as  C1qA.  One  hundred  and  fifteen  DLBCL  patients  treated  with  ‘Ru CHOP’  

(rituximab/cyclophosphamide/vincristine/doxorubicin/prednisolone)  

chemou immunotherapy  were  compared  with  105  healthy  Caucasian  controls  

with  regards  to  FCGR3Aq V158F  and  C1qAq A276G  polymorphisms.  Event  free  

and  overall  survival  (EFS  and  OS)  and  LON  incidence  were  analysed  for  linkage  

to  either  polymorphism.  The  FCGR3Aq V158F  but  not  the  C1qAq A276G  

polymorphism  influenced  the  risk  of  developing  LON.  50%  of  FCGR3A-­‐158V/V  

patients  experienced  LON.  In  contrast,  only  7%  V/F  and  2%  F/F  experienced  

LON.  The  FCGR3A-­‐158V/V  genotype  was  associated  with  LON  compared  to  V/F  

(p=0.028)  and  F/F  genotypes  (p=0.005).  Although  no  patients  with  either  LON  or  

FCGR3A-­‐158V  homozygosity  relapsed  compared  to  33%  FCGR3A-­‐158F/F  and  

21%  non-­‐LON,  this  did  not  translate  into  improved  EFS  or  OS  and  results  are  

2/17

Page 3: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

likely  to  be  influenced  by  lead-­‐time  bias.  Polymorphic  analysis  may  be  a  

predictive  tool  to  identify  those  at  high-­‐risk  of  LON.  Larger  prospective  studies  

are  required  to  definitively  establish  if  LON  or  FCGR3A-­‐158V/V  genotype  

influences  outcome.  

Host  immune  status  has  consistently  been  shown  to  play  an  important  role  in  

DLBCL.  The  manipulation  of  the  host  immune  environment  has  shown  promise  

in  solid  and  lymphoid  tumours  and  identification  of  patients  benefiting  from  

immune  based  therapy  may  have  therapeutic  relevance  in  DLBCL.    The  impact  of  

circulating  monocytes  and  circulating  and  intratumoural  lymphocytes  on  

outcome  were  assessed  in  a  cohort  of  122  patients  with  DLBCL.  All  were  treated  

with  R-­‐CHOP,  and  median  follow  up  was  48  months.  Lymphocyte  and  monocyte  

counts  were  assessed  prior  to  commencement  of  therapy,  and  in  addition  the  

majority  had  data  from  flow  cytometric  immunophenotyping  on  lymphocyte  (but  

not  monocyte)  subsets  available  on  fresh  diagnostic  lymphoid  tissue.    

The  circulating  lymphocyte  to  monocyte  ratio  (LMR)  was  a  significant  predictor  

of  outcome  with  patients  with  high  LMR  having  an  estimated  five-­‐year  survival  

of  86%  compared  to  63%  (p=0.01)  in  patients  with  low  LMR.  This  finding  was  

independent  of  the  IPI.  Low  (0,1)  and  intermediate  IPI  (2,3)  did  not  predict  a  

significantly  different  survival  from  each  other  in  our  cohort,  with  both  having  

excellent  outcome  (83%  estimated  5  year  survival  in  these  combined  groups).  

However  when  the  90  patients  in  these  low  risk  IPI  groups  were  split  by  the  

LMR,  there  was  a  significant  overall  survival  advantage  (estimated  5  year  OS  

93%  vs.  72%,  p=0.01)  for  patients  with  a  higher  LMR.  Amongst  intratumoural  

lymphocyte  subsets,  CD4+T  cell  infiltration  was  the  most  significant  predictor  of  

improved  outcome.  Those  with  high  intratumoural  CD4+  T  cells  had  a  superior  

EFS  (p=0.009)  and  OS  (p=0.006)  compared  to  those  with  low  values.  CD3+T  cell  

infiltration  was  also  associated  with  improved  EFS  (P=0.01)  and  OS  (p=0.01),  

whereas  CD8+T  cell  infiltration  did  not  predict  outcome.  CD4+T  cells  were  

independent  of  IPI  and  LMR  for  both  EFS  and  OS.  Importantly  when  

low/intermediate  IPI  groups  were  analyzed,  a  high  CD4+T  cell  infiltration  

remained  a  striking  predictor  of  OS  (5  year  OS  93%  vs.  60%,  p=0.004).  These  

results  confirm  the  importance  of  the  local  immune  environment  in  patients  with  

3/17

Page 4: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

DLBCL  treated  with  chemo-­‐immunotherapy,  and  indicate  that  peripheral  

immune  subsets  are  surrogate  markers  of  intratumoural  immunity.    

Based  on  these  findings,  it  was  envisaged  that  detailed  functional  and  

quantitative  assessment  of  blood  would  enable  identification  of  the  optimal  

diagnostic  tissue  based  TME  immune-­‐effector  and  monocyte/macrophage-­‐

checkpoints  to  assist  sub-­‐stratification  of  conventional  prognosticators.  Blood  

from  140  R-­‐CHOP  treated  DLBCL  patients  in  the  NHL21  Australasian  Leukaemia  

and  Lymphoma  Group  trial  were  prospectively  analysed.  A  circulating  immune-­‐

effector:  monocyte-­‐checkpoint  signature  segregating  interim-­‐PET/CT-­‐positivity  

was  identified.  Intratumoural  applicability  was  tested  in  two  independent  R-­‐

CHOP  treated  DLBCL  cohorts,  with  cell-­‐of-­‐origin  (COO)  and  international  

prognostic  index  (IPI)  as  co-­‐variates.    CD163+CD14+HLA-­‐DRlo  blood  monocytes  

were  immunosuppressive.  CD8+:CD163+CD14+HLA-­‐DRlo  ratios  were  highest  in  

interim-­‐PET/CT-­‐ve  patients  (P≤0.0001).  Digital  multiplexed  gene  expression  

(DMGE)  in  191  DLBCL  tissues  demonstrated  co-­‐clustering  of  CD8  with  immune-­‐

checkpoints  (CD163/PD1/PDL1/PDL2/TIM3/LAG3,  all  P<0.001),  indicating  an  

adaptive  immune-­‐checkpoint  response  to  immune-­‐effector  activation.  In  

multivariate  analysis  of  128  R-­‐CHOP  treated  DLBCL  patients,  CD8:CD163  ratios  

(net  anti-­‐tumoral  immunity)  were  prognostic  independent  of  IPI  and  COO.  

Combining  CD8:CD163  to  the  germinal  centre  B-­‐cell  marker  LMO2  

(LMO2/CD8:CD163)  strengthened  the  predictive  ability.  Results  were  externally  

validated  in  233  patients,  separating  good-­‐risk  IPI  (0-­‐2)  into  two  categories  of  

85%  and  48%  (P=0.0003)  4  year  survival  after  R-­‐CHOP.  Similarly,  poor-­‐risk  IPI  

(3-­‐5)  stratified  into  two  survival  groupings  of  66%  and  36%  (P=0.0007).  In  

patients  with  DLBCL,  a  measure  of  net  anti-­‐tumoral  immunity  within  the  TME  is  

a  powerful  new  prognosticator  that  is  independent  of  IPI  and  COO.  

LMO2/CD8:CD163  adds  to  the  predictive  ability  of  IPI.    

4/17

Page 5: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

Statement  of  Originality  

This   work   has   not   previously   been   submitted   for   a   degree   or   diploma   in   any  university.  To  the  best  of  my  knowledge  and  belief,  the  thesis  contains  no  material  previously   published   or  written   by   another   person   except  where   due   reference   is  made  in  the  thesis  itself.  

(Signed)_____________________________  

5/17

Page 6: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

Acknowledgements  

I  would  firstly  like  to  thank  Maher  Gandhi  for  his  amazing  support  throughout  

this  PhD.  He  has  helped  me  become  a  much  better  researcher,  medical  writer  

and  doctor.  His  dedication  and  hard  work  are  an  inspiration  to  everyone  in  the  

laboratory.  I  would  also  like  to  thank  the  support  I  have  received  from  Griffith  

University  and  in  particular  my  supervisors  Rod  Lea  and  Lyn  Griffiths.    

I  would  like  to  thank  everyone  at  the  Gandhi  Lab  who  helped  during  my  research  

in  particular  Jamie  Nourse,  Frank  Vari  and  Pauline  Crooks.  They  showed  great  

patience  and  support  in  helping  someone  with  limited  laboratory  experience  to  

get  through  this  research.  I  would  also  like  to  thank  Frank  in  particular  for  his  

hard  work  and  insights  to  our  co-­‐authored  paper.    

I  would  like  to  thank  my  funding  sources  and  in  particular  the  Leukaemia  

Foundation,  without  whom  I  would  have  been  unable  to  perform  any  of  this  

research.  They  should  be  acclaimed  for  not  only  work  they  perform  in  

supporting  research  but  also  the  tireless  work  they  perform  in  trying  to  make  life  

better  for  patients  with  haematological  malignancy.    

I  would  like  to  thank  my  work  colleagues  at  the  Princess  Alexandra  Hospital  who  

have  been  supportive  throughout  my  research  and  in  particular  Devinder  Gill  

who  is  always  supportive  of  translational  research  in  the  unit.  I  wish  to  

acknowledge  Dipti  Talaulikar  for  her  help  in  gathering  additional  patient  

samples  which  have  had  a  huge  impact  on  the  quality  of  my  work.  I  would  also  

like  to  thank  Mark  Hertzberg,  who  as  the  clinical  lead  on  the  ALLG  study  has  

been  so  supportive  in  trying  to  get  as  many  samples  and  clinical  data  for  all  our  

patients.  I  want  to  thank  all  the  patients  who  participate  in  all  our  research  

including  NHL21.  One  hopes  that  we  can  do  their  hard  work  and  trust  in  us  

justice,  and  hopefully  contribute  in  some  small  way  to  improving  the  length  and  

quality  of  life  for  patients  with  lymphoma  in  the  future.  

I  would  like  to  thank  my  wife  Sharon  and  three  children  who  have  put  up  with  a  

lot  over  the  last  few  years.  Their  understanding  in  allowing  me  to  spend  the  last  

few  years    being  a  student  again  has  meant  huge  sacrifices  on  their  behalf  and  I  

will    forever  be  grateful  for  their  support.  

6/17

Page 7: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

Publications Arising from this Thesis(*indicates papers directly forming part of thesis)

*1.Measures  of  net  anti-­‐tumoral   immunity  add   to   the  predictive  power  of  conventional  prognostic  factors  in  diffuse  large  B  cell  lymphoma  (DLBCL).  Colm  Keane*,  Frank  Vari*,  Mark  Hertzberg,  John  Seymour,  Rodney  Hicks,  Devinder  Gill,   Pauline   Crooks,   Kimberly   Jones,   Erica   Han,   Rod   Lea,   Lyn   Griffiths,   Maher  Gandhi.  Submitted  to  Cancer  Discovery  May  2014  *Co-­‐Authors

*2.CD4(+)   tumor   infiltrating   lymphocytes  are  prognostic  and   independent  of  R-­‐IPI  in  patients  with  DLBCL  receiving  R-­‐CHOP  chemo-­‐immunotherapy. Keane  C,  Gill  D,  Vari  F,  Cross  D,  Griffiths  L,  Gandhi  M.  Am  J  Hematol.  2013  Apr;88(4):273-­‐6.  Epub  2013  Mar  5.  

3.Plasma  MicroRNA  Are  Disease  Response  Biomarkers  in  Classical  HodgkinLymphoma.  Jones  K,  Nourse  JP,  Keane  C,  Bhatnagar  A,  Gandhi  MK.  Clin  Cancer  Res.  2014  Jan  1;20(1):253-­‐64.  Epub  2013  Nov  12.  

4.Serum  CD163  and  TARC  are  disease  response  biomarkers  in  classicalHodgkin  lymphoma.  Jones  K,  Vari  F,  Keane  C,  Crooks  P,  Nourse  JP,  Seymour  LA,  Gottlieb  D,  Ritchie  D,  Gill  D,  Gandhi  MK.    Clin  Cancer  Res.  2013  Feb  1;19(3):731-­‐42.  

5.High-­‐resolution  loss  of  heterozygosity  screening  implicates  PTPRJ  as  apotential  tumor  suppressor  gene  that  affects  susceptibility  to  Non-­‐Hodgkin's  lymphoma.  Aya-­‐Bonilla  C,  Green  MR,  Camilleri  E,  Benton  M,  Keane  C,  Marlton  P,  Lea  R,  Gandhi  MK,  Griffiths  LR.  Genes  Chromosomes  Cancer.  2013  May;52(5):467-­‐79.  doi:  10.1002/gcc.22044.  Epub  2013  Jan  23.  

6.Tumor-­‐specific  but  not  non-­‐specific  cell-­‐free  circulating  DNA  can  be  usedto  monitor  disease  response  in  lymphoma.  Kimberley  Jones,  Jamie  P.  Nourse,  Colm  Keane,  Pauline  Crooks,  David  Gottlieb,  David  S.  Ritchie,  Devinder  Gill  and  Maher  K.  Gandhi  American  Journal  of  Haematology  

*7.Homozygous  FCGR3A-­‐158V  alleles  predispose  to  late  onset  neutropenia  after  CHOP-­‐R  for  Diffuse  Large  B-­‐cell  Lymphoma  Colm  Keane,  Jamie  P.  Nourse,  Pauline  Crooks,  Do  Nguyen-­‐Van,  Howard  Mutsando,  Peter  Mollee,  Rod  A.  Lea,  Maher  K.  Gandhi  Intern  Med  J.  2011  Sep  1.  doi:  10.1111/j.1445-­‐5994.2011.02587.x.    

7/17

Page 8: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

8.Epstein-­‐Barr  virus-­‐positive  diffuse  large  B-­‐cell  lymphoma  of  the  elderlyexpresses  EBNA3A  with  conserved  CD8+  T-­‐cell  epitopes  Do  Nguyen-­‐Van,  Colm  Keane,  Erica  Han,  Kimberley  Jones,  Jamie  P.  Nourse,  Frank  Vari,  Nathan  Ross,  Pauline  Crooks,  Olivier  Ramuz,  Michael  Green,  Lyn  Griffith,  Ralf  Trappe,  Andrew  Grigg,  Peter  Mollee,  Maher  K.  Gandhi  Am  J  Blood  Res  2011;1(2):146-­‐159  

Book  Chapters  *“Rituximab  induced  Late-­‐onset  Neutropenia”  for  the    book    'Rituximab:  Pharmacology,  Clinical  Uses  and  role  in  Investigating  B  cell  immunology  in  Man"published  by  Novus  in  2012  Colm  Keane,  Jamie  Nourse,  Maher  K.  Gandhi  

Presentations  Arising  from  this  Thesis  

1.Net  antitumoral  immunity  and  the  predictive  power  of  conventionalprognosticators  in  diffuse  large  B-­‐cell  lymphoma  Poster  Highlights  Session  Merit  Award  Winner  American  Society  of  Clinical  Oncology,  Annual  Meeting  2014  Colm  Keane,  Frank  Vari,  Mark  S.  Hertzberg,  Michael  R  Green,  Erica  Han,  John  Francis  Seymour,  Rodney  J  Hicks,  Devinder  Singh  Gill,  Pauline  Crooks,  Clare  Gould,  Kimberley  Jones,  Kristen  Radford,  Lyn  Griffiths,  Dipti  Talaulikar,  Sanjiv  Jain,  Josh  Tobin,  Maher  K.  Gandhi  

2.Noninvasive  monitoring  of  cellular  versus  acellular  tumor  DNA  fromimmunoglobulin  genes  for  DLBCL  Oral  Presentation  American  Society  of  Clinical  Oncology,  Annual  Meeting  2014  David  Matthew  Kurtz,  Michael  R  Green,  Scott  Victor  Bratman,  Chih-­‐Long  Liu,  Cynthia  Glover,  Colm  Keane,  Katie  Kong,  Malek  Faham,  David  Bernard  Miklos,  Ranjana  H.  Advani,  Ronald  Levy,  Mark  S.  Hertzberg,  Maher  K  Gandhi,  Maximilian  Diehn,  Ash  A.  Alizadeh  

3.“Utility  Of  Non-­‐Invasive  Monitoring  Of  Circulating  Tumor  DNA  At  Diagnosis,  Interim  Therapy,  and  Relapse  Of  DLBCL  Using  High-­‐Throughput  Sequencing  Of  Immunoglobulin  Genes”  Poster  Presentation  American  Society  of  Haematology  2013  Michael  R  Green,  Scott  Bratman  ,  Chih  Long  Liu,  Kazuhiro  Takahashi,  Cynthia  Glove*,  Colm  Keane,  Shingo  Kihira,  Katie  Kong,  Malek  Faham,  MD,  PhD,  Corbelli  Karen,  David  B.  Miklos,  Ranjana  H.  Advani,  ,  Ronald  Levy,  Mark  S.  Hertzberg,  Maher  K  Gandhi,  Maximilian  Diehn,  Ash  A.  Alizadeh,    

8/17

Page 9: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

4."CD163+  Identifies  A  Highly  Immunosuppressive  Subset  Of  Monocytic-­‐Myeloid  Derived  Suppressor  Cells  (moMDSCs)  In  Poor-­‐Risk  Diffuse  Large  B-­‐Cell  Lymphoma  (DLBCL):  An  ALLG  Laboratory  Sub-­‐Study  Of  NHL21."  Oral  Presentation  International  Conference  on  Malignant  Lymphoma,  Lugano    2013  Colm  Keane,  Mark  Hertzberg,  John  Seymour,  Rodney  Hicks,  Devinder  Gill,  Frank  Vari,  Pauline  Crooks,  Kimberly  Jones,  Erica  Han,  Rod  Lea,  Lyn  Griffiths,  Maher  Gandhi.  

5.Flow  Cytometric  analysis  demonstrates  prognostic  significance  oftumour-­‐infiltrating  CD4+T  lymphocytes  in  patients  with  diffuse  large  B  cell  lymphoma  receiving  R-­‐CHOP  chemoimmunotherapy.  Poster  Presentation  American  Association  of  Cancer  Researchers  Tumour  Immunology  Meeting  2012  Colm  Keane,  Frank  Vari,  Lynn  Griffiths,  Devinder  Gill,  Peter  Mollee,  Rod  A.  Lea,  Maher  K.  Gandhi  

5.Serum  CD163  and  TARC  in  Combination  As  Disease  Response  Biomarkersin  Classical  Hodgkin  Lymphoma  Oral  Presentation  American  Society  of  Haematology  2012  Maher  K  Gandhi,  Frank  Vari,  Pauline  Crooks,  Colm  Keane,  Jamie  P  Nourse,  Louise  A  Seymour,  David  Ritchie,  David  Gottlieb,  Devinder  Gill,  and  Kimberley  Jones.  

6.Circulating  microRNAs  as  prognostic  and  disease  response  biomarkers  inpatients  with  high-­‐risk  diffuse  large  b-­‐cell  lymphoma  (DLBCL):  a  prospective  Australasian  leukaemia  &  lymphoma  group  study  Poster  Presentation  European  Haematology  Association  Annual  Meeting  2012  Colm  Keane,  Mark  Hertzberg,  John  Seymour,  Rodney  Hicks,  Devinder  Gill,  Frank  Vari,  Pauline  Crooks,  Kimberly  Jones,  Erica  Han,  Rod  Lea,  Lyn  Griffiths,  Maher  Gandhi.  

7.Tissue  Microarray  in  Patients  with  DLBCL  Receiving  R-­‐CHOP  Chemo-­‐immunotherapy  Shows  Survival  Benefit  for  Coexpression  of  LMO2/BCL6  Poster  Presentation  American  Society  of  Haematology  2011  Colm  Keane,  Linda  Shen,  Jamie  Nourse,  Erica  Han,  Rod  Lea,  Peter  Mollee,  Devinder  Gill,  Maher  Gandhi  

8.Monocytes  are  Associated  with  Impaired  T-­‐cell  Immunity  and  ResidualInterim-­‐  PET/CT  Avidity  after  4  Cycles  of  CHOP-­‐R  In  Patients  with  High-­‐Risk  DLBCL  Poster  Presentation  American  Society  of  Haematology  2011  Frank  Vari,  Mark  Hertzberg,  Erica  Han,  John  F  Seymour,  Rodney  Hicks,  Devinder  Gill,  Colm  Keane,  Pauline  Crooks,  Kristen  Radford,  Maher  K.  Gandhi  

9/17

Page 10: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

9.Tissue  Microarray  in  Patients  with  DLBCL  Receiving  R-­‐CHOP  Chemo-­‐immunotherapy  Shows  Survival  Benefit  for  Coexpression  of  LMO2/BCL6  Oral  Presentation  HSANZ  2011  Colm  Keane,  Linda  Shen,  Jamie  Nourse,  Erica  Han,  Rod  Lea,  Peter  Mollee,  Devinder  Gill,  Maher  Gandhi  

10.Monocytes  are  Associated  with  Impaired  T-­‐cell  Immunity  and  ResidualInterim-­‐  PET/CT  Avidity  After  4  Cycles  of  CHOP-­‐R  In  Patients  With  High-­‐Risk  DLBCL  Oral  Presentation  Haematology  Society  of  Australia  and  New  Zealand  Annual  Meeting  2011  Frank  Vari,  Mark  Hertzberg,  Erica  Han,  John  F  Seymour,  Rodney  Hicks,  Devinder  Gill,  Colm  Keane,  Pauline  Crooks,  Kristen  Radford,  Maher  K.  Gandhi  

11.Lymphoma-­‐Specific  But  Not  Non-­‐Specific  Cell-­‐Free  Circulating  DNA  CanBe  Used  to  Monitor  Disease  Response  in  Lymphoma  Oral  Presentation  Haematology  Society  of  Australia  and  New  Zealand  Annual  Meeting  2011  Kimberley  Jones,  Jamie  P  Nourse,  Colm  Keane,  Pauline  Crooks,  David  Gottlieb,  David  S  Ritchie,  Devinder  Gill,  Maher  K  Gandhi  

12.Tissue  Microarray  in  DLBCL  patients  receiving  CHOP-­‐R  chemo-­‐immunotherapy  shows  survival  benefit  for  coexpression  of  LMO2/BCL6  and  poor  outome  for  EBER-­‐ISH  positive  patients.    Oral  Presentation  International  Conference  on  Malignant  Lymphoma,  Lugano  June  2011    Colm  Keane,  Linda  Shen,  Jamie  Nourse,  Erica  Han,  Kimberley  Jones,Maher  Gandhi  

13.Homozygous  FCGR3A-­‐158V  alleles  predispose  to  late  onset  neutropeniaafter  CHOP-­‐R  for  Diffuse  Large  B-­‐cell  Poster  Presentation  International  Conference  on  Malignant  Lymphoma  meeting,  Lugano  June  2011    Colm  Keane,  Jamie  Nourse,  Pauline  Crooks,  Do  Nguyen  Van,  Howard  Mutsando,  Maher  Gandhi  

14.The  kinetics  of  circulating  immunosuppressive  monocytes  in  patientswith  poor-­‐risk  diffuse  large  B-­‐cell  lymphoma  treated  with  ‘CHOP-­‐R’.    Poster  Presentation  European  Haematology  Association  meeting,  London,  June  2011  Frank  Vari,  Mark  Hertzberg,  Erica  Han,  Colm  Keane,  J.  Alejandro  Lopez,  Kristen  Radford,  John  F  Seymour,  Devinder  Gill,  Maher  K  Gandhi.

10/17

Page 11: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

15.EBV-­‐positive  DLBCL  of  the  elderly  is  a  distinct  clinico-­‐biological  entity  with  poor  outcome  in  CHOP-­‐R  treated  patients,  with  properties  likely  amenable  to  anti-­‐EBV  targeting.    Oral  Presentation.    The  14th  Biennial  Conference  of  the  International  Association  for  Research  on  Epstein  -­‐  Barr  virus  &  Associated  Diseases,  Birmingham,  September  2010.  Do  Nguyen-­‐Van,  Colm  Keane,  Jamie  P.Nourse,  Erica  Han,  Nathan  Ross,  Kimberley  Jones,  Pauline  Crooks,  and  Maher  K.  Gandhi.    16.Epstein-­‐Barr  virus  microRNAs  are  differentially  expressed  during  EBV  infection  and  EBV-­‐driven  differentiation  of  naïve  B-­‐cells.  The  14th  Biennial  Conference  of  the  International  Association  for  Research  on  Epstein-­‐Barr  Virus  &  Associated  Diseases,  Birmingham,  September  2010.  Oral  Presentation  Jamie  P  Nourse  ,  Pauline  Crooks  ,  Colm  Keane,  Do  Nguyen-­‐Van,Sally  Mujaj,  Nathan  Ross,  Kimberley  Jones  ,  Frank  Vari  ,  Erica  Han  ,  and  Maher  K.  Gandhi.    

                                                             

11/17

Page 12: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

Abbreviations   Full  Title  ADCC     Antibody  dependent  cellular  cytotoxicity  ALC   Absolute  Lymphocyte  Count  ALLG   Australasian  Leukaemia  Lymphoma  Group  AMC   Absolute  Monocyte  Count  APC   Antigen  Presenting  Cell  ASCT   Autologous  stem  cell  transplant  BCL2   B-­‐cell  CLL/lymphoma  2  BCL6   B-­‐cell  CLL/lymphoma  6  BD   Becton  Dickenson  BMDCs     Bone  marrow-­‐derived  dendritic  cells  BTK   Bruton's  tyrosine  kinase  CBC   Complete  Blood  Count  CCL3     Chemokine  (C-­‐C  motif)  ligand  3    CCND2   G1/S-­‐Specific  Cyclin-­‐D2  CD   Cluster  Differentiaition  CDC     Complement  dependent  cytotoxicity    cDNA   Complementary  Deoxyribonucleic  acid  CNS   Central  Nervous  System  COO   Cell-­‐of-­‐Origin  CT   Computed  Tomography  CTLA4   Cytotoxic  T-­‐lymphocyte-­‐associated  protein  4  CTLs   Cytotoxic  T  lymphocytes  DA-­‐EPOCH-­‐R     Dose-­‐adjusted  etoposide  /  prednisone  /  vincristine  /    

cyclophosphamide,  hydroxyduanorubicin  /  rituximab    DLBCL   Diffuse  Large  B  cell  Lymphoma  DMSO   Dimethyl  sulfoxide  DNA   Deoxyribonucleic  acid  EBV   Epstein  Barr  Virus  EFS   Event  Free  Survival  ELISA   Enzyme-­‐linked  immunosorbent  assay  FBC   Full  Blood  Count  FCG3A     FCGammaReceptor  3A  FDA   Food  and  Drug  Administration  FFPE   Formalin-­‐fixed  paraffin-­‐embedded  tissue    FITC   Fluorescein  isothiocyanate  FN1   Fibronectin  1  FOXP1   Forkhead  box  P1  GA101   Other  name  for  Obinotuzumab  GCB   Germinal  Cell  B  cell  like  GCET1   Germinal  center  B-­‐cell  expressed  transcript  1  H2O2   Hydrogen  peroxide  

12/17

Page 13: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

HIV Human Immunodeficiency virus HLA   Human  Leukoctye  Antigen  IgG   Immunoglobulin  G  IHC   Immunohistochemistry  IL1   Interleukin  1  IL10   Interleukin  10  IL12   Interleukin  12  IL13   Interleukin  13  IL4   Interleukin  4  iNOS   Inducible  nitric  oxide  synthase  IPI     International  Prognostic  Index  LAG3   Lymphocyte-­‐activation  gene  3  LDH   Lactate  Dehydrogenase  LMO2   LIM  domain  only  2  LMR     Lymphocyte  to  Monocyte  ratio  M1   Macrophage  Type  I  M2   Macrophage  Type  II  MDSC     Myeloid-­‐derived  suppressor  cell  mg Milligram MHC   Major  histocompatibility  complex  ml Milliliter mM Millimolar moMDSC     Monocytic  Myeloid-­‐derived  suppressor  cell  MUM1   Melanoma  associated  antigen  (mutated)  1  NHL   Non  -­‐Hodgkins  Lymphoma  NK     Natural  Killer    Non-­‐GCB   Non-­‐Germinal  Cell  B  cell  like  Ob-­‐ADCC   Obinotuzumab-­‐Antibody  dependent  cellular  cytotoxicity  OS     Overall  Survival  PBMC   Peripheral  blood  mononucleated  cell  PBS   Phosphate  buffered  saline  PCR   Polymerase  Chain  Reaction  PD-­‐1   Programmed  cell  death  1  PD-­‐L1   Programmed  cell  death  ligand  1  PD-­‐L2   Programmed  cell  death  ligand  2  pDCs   Plasmacytoid  derived  dendritic  cells  PE   Phycoerythrin  peg-­‐G-­‐CSF   Pegalated  granulocytic  colony  stimulating  factor  PerCP   Peridinin  chlorophyll  protein  PET   Positron  Emission  Tomography  PRDM1   PR  domain  containing  1,  with  ZNF  domain  PTLD   Post-­‐Transplant  Lymphoproliferative  Disease  R-­‐ADCC     Rituximab-­‐Antibody  dependent  cellular  cytotoxicity  R-­‐CHOP       Cyclophosphamide  /  doxorubicin  /vincristine  /  prednisone  /  rituximab.    RNA   Ribonucleic  acid  ROS   Reactive  oxygen  species  

13/17

Page 14: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

rpm   Revolutions  per  minute  SCYA3   Alternate  name  for  CCL3  SDF-­‐1   Stromal  cell-­‐derived  factor  1  SPSS   Statistical  Package  for  the  Social  Sciences  STAT1   Signal  transducer  and  activator  of  transcription  1  TAM   Tumour  Associated  Macrophages  TBE   Tris/Borate/EDTA  TGF   Transforming  growth  factor    Th1   T  Helper  cell  I  Th2   T  Helper  cell  II  TILs   Tumour  infiltrating  lymphocytes  TIM3   T-­‐Cell  Membrane  Protein  3  TME   Tumour  Microenvironment  TNF   Tumour  Necrosis  Factor  Treg   T  regulatory  cell  Z-­‐BEAM   Zevalin-­‐  Carmustine,  Etoposide,  Cytarabine,  Melphalan  µg Microgram µl Microliter µM Micromolar

14/17

Page 15: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

ALL PAPERS INCLUDED ARE CO-AUTHORED

Acknowledgement of Papers included in this Thesis

Section 9.1 of the Griffith University Code for the Responsible Conduct of Research (“Criteria for Authorship”), in accordance with Section 5 of the Australian Code for the Responsible Conduct of Research, states:

To be named as an author, a researcher must have made a substantial scholarly contribution to the creative or scholarly work that constitutes the research output, and be able to take public responsibility for at least that part of the work they contributed. Attribution of authorship depends to some extent on the discipline and publisher policies, but in all cases, authorship must be based on substantial contributions in a combination of one or more of:

• conception and design of the research project

• analysis and interpretation of research data

• drafting or making significant parts of the creative or scholarly workor critically revising it so as to contribute significantly to the finaloutput.

Section 9.3 of the Griffith University Code (“Responsibilities of Researchers”), in accordance with Section 5 of the Australian Code, states:

Researchers are expected to:

• Offer authorship to all people, including research trainees, who meetthe criteria for authorship listed above, but only those people.

• accept or decline offers of authorship promptly in writing.

• Include in the list of authors only those who have acceptedauthorship

• Appoint one author to be the executive author to record authorshipand manage correspondence about the work with the publisher andother interested parties.

• Acknowledge all those who have contributed to the research,facilities or materials but who do not qualify as authors, such asresearch assistants, technical staff, and advisors on cultural orcommunity knowledge. Obtain written consent to name individuals.

Included in this thesis are papers in Chapters 3, 4 and 5 which are co-authored with other researchers. My contribution to each co-authored paper is outlined at the front of the relevant chapter. The bibliographic details (if published or accepted for publication)/status (if prepared or submitted for publication) for these papers including all authors, are:

(Where a paper(s) has been published or accepted for publication, you must also include a statement regarding the copyright status of the paper(s).

15/17

Page 16: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

Chapter 3: Homozygous  FCGR3A-­‐158V  alleles  predispose  to  late  onset  neutropenia  after  CHOP-­‐R  for  Diffuse  Large  B-­‐cell  Lymphoma  Colm  Keane,  Jamie  P.  Nourse,  Pauline  Crooks,  Do  Nguyen-­‐Van,  Howard  Mutsando,  Peter  Mollee,  Rod  A.  Lea,  Maher  K.  Gandhi  Intern  Med  J.  2011  Sep  1.  doi:  10.1111/j.1445-­‐5994.2011.02587.x.     Rituximab  induced  Late-­‐onset  Neutropenia”  for  the    book    'Rituximab:  Pharmacology,  Clinical  Uses  and  role  in  Investigating  B  cell  immunology  in  Man"published  by  Novus  in  2012  Colm  Keane,  Jamie  Nourse,  Maher  K.  Gandhi  

Chapter 4: CD4(+)  tumor  infiltrating   lymphocytes  are  prognostic  and  independent  of  R-­‐IPI  in  patients  with  DLBCL  receiving  R-­‐CHOP  chemo-­‐immunotherapy. Keane  C,  Gill  D,  Vari  F,  Cross  D,  Griffiths  L,  Gandhi  M.  Am  J  Hematol.  2013  Apr;88(4):273-­‐6.  Epub  2013  Mar  5.  

Chapter 5: The   immunobiological   score:   a   robust   3-­‐gene   assay   that   segregates   the  international   prognostic   index   into   disparate   survival   categories   in  aggressive  B-­‐cell  lymphoma  Colm  Keane*,  Frank  Vari*,  Mark  Hertzberg,  John  Seymour,  Rodney  Hicks,  Devinder  Gill,   Pauline   Crooks,   Kimberly   Jones,   Erica   Han,   Rod   Lea,   Lyn   Griffiths,   Maher  Gandhi.  *Joint  Authorship  Submitted  to  Cancer  Discovery  May  2014  

Appropriate acknowledgements of those who contributed to the research but did not qualify as authors are included in each paper.

(Signed) _________________________________ (Date)______________

Name of Student

(Countersigned) ___________________________ (Date)______________

Supervisor: Name of Supervisor tures  should  be  included  for  each  paper).    

16/17

Page 17: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

Table  of  Contents  

Chapter  1  Introduction  1.1  Background....................................................................................................................................2  1.2  Molecular  classification  of  DLBCL........................................................................................5  1.3  Clinical  utility  of  molecular  classifications.......................................................................6  1.4  FCG3A  and  C1qA  polymorphisms  and  their  impact  in  DLBCL................................8  1.5  Tumour  Infiltrating  Lymphocytes.....................................................................................10  1.6  CD8  cells  in  DLBCL...................................................................................................................14  1.7  Tumour  associated  Macrophages/Monocytes.............................................................15  1.8  Myeloid  Derived  Suppressor  Cells....................................................................................18  1.9  Digital  multiplex  gene  expression  (DMGE)  by  nanoString  nCounter................18  

Chapter  2  Research  Design  and  Methods  2.1  Clinical  Sample  Accrual  ..........................................................................................................32  2.2  Patient  Cohorts..............................................................................................................................33  2.3  PET/CT  analysis.........................................................................................................................36  2.4  RNA/DNA  extraction..................................................................................................................36  2.5  FCG3A  polymorphism  PCR....................................................................................................37  2.6  C1QA  Polymorphism  PCR......................................................................................................37  2.7  Flow  cytometric  analysis  of  retrospective  samples...................................................38  2.8  NHL21  Blood  processing..........................................................................................................39  2.9  Flow  Cytometry  NHL21  Study.............................................................................................40  2.10  Effector  lymphocyte  assays..................................................................................................41  2.11  Enzyme   linked   immuno-­‐absorbent  assays   (ELISA)........................................................42  2.12  Digital  multiplex  gene  expression  by  NanoString  nCounter.................................42  2.13  Statistics  and  analysis.............................................................................................................43  

Chapter  3  Homozygous  FCGR3A-­‐158V  alleles  predispose  to  late  onset      neutropenia    after  CHOP-­‐R  for  Diffuse  Large  B-­‐cell   Lymphoma.........................................................................47  Rituximab  induced  Late-­‐onset  Neutropenia...........................................................…………54  

Chapter  4  CD4  (+)   tumor   infiltrating   lymphocytes   are   prognostic  and   independent   of   R-­‐IPI   in   patients  with  DLBCL   receiving  R-­‐CHOP  chemo-­‐immunotherapy...................69  

Chapter  5  The  immune-­‐biological  score:  a  robust  3  gene  assay  that  segregates  the  international  prognostic  index  into  disparate  survival  categories  in  aggressive  B-­‐cell  lymphoma.......................................................................................................................................79  

Chapter  6  Discussion  6.1  Immuno-­‐genetic  polymorphisms  ..................................................................................140  6.2  Immune  Microenvironment................................................................................................145  6.3  Net  Tumoral  Immunity..........................................................................................................149  6,4  Future  directions.....................................................................................................................  155  

17/17

Page 18: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

       

             CHAPTER  1             Introduction  

1

Page 19: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

Introduction  

Brief  Aim1  

Examine the influence of C1qA-A276G and FCGR3A-V158F polymorphisms on

survival in patients with DLBCL treated with R-CHOP chemo-immunotherapy. I will

also investigate if these polymorphisms influence the risk of rituximab induced late

onset neutropenia.

Brief  Aim2  

Examine if absolute lymphocyte and monocytes and their interactions predict

outcome in patients with DLBCL treated with standard R-CHOP chemo-

immunotherapy.

Investigate if the level of T-cell infiltration in DLBCL tumours, as assessed by flow

cytometry, predicts outcome in patients with DLBCL

Brief  Aim  3  

Using a novel investigative platform with digital bar-coding to obtain highly accurate

gene expression data on paraffin based tissue, an extensive investigation of 191

DLBCL patient samples will be performed examining the role of immune effectors

and checkpoints with regards to expression and outcomes in patients treated with

standard chemo-immunotherapy.

1.1  Background  

Diffuse large B cell lymphoma is a malignancy of B-lymphocytes. DLBCL is the

most common aggressive subtype and accounts for approximately 40% of all patients

with non-Hodgkin’s lymphoma.[1] The median age of presentation is usually in the

7th decade but it is not uncommon in younger adults and can occur in children. The

incidence of this disease has risen rapidly over the last 4 decades but has now

plateaued.[2] The reasons for this are unclear, however it is likely that better

diagnostics and improved life expectancy likely contribute to this increase. In addition

there has been increased levels of immune-impairment seen in this time period,

secondary to the rise of HIV in the 1980s, but also due to the increasing levels of

immune suppression used to treat autoimmune conditions or protect tissue and bone

marrow grafts in patients undergoing transplantation.[3-5] Primary and acquired

2

Page 20: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

impaired immunity are well-recognised strong risk factors for the development of B

cell lymphoma. However at present these reasons seem insufficient to account for the

marked increase in lymphomas, and there may be additional environmental factors of

importance.[6, 7]

Clinically patients with DLBCL can present with fatigue, painless adenopathy or

symptoms related to tumour bulk such as abdominal pain. It can occur as a primary

lesion in a nodal or extranodal site (e.g. bone, liver, lung etc.). Primary central

nervous system DLBCL, testicular DLBCL, primary DLBCL of the bone or of the

skin though less common, are well described. Patients can also present with so called

“B –Symptoms” such as night sweats, weight loss >5% or unexplained fevers.

Paraneoplastic syndromes such as hypercalcaemia can also occur.

Biopsy specimens from patients with DLBCL show a diffuse proliferation of large

centroblast like cells that completely disrupt normal lymph node architecture but the

predominant cell can also be immunoblastic or anaplastic.[1] By flow cytometry the

malignant B cells typically express the surface markers CD19/20/22/79A with another

50% of tumours also expressing CD10.[8] The proliferation marker Ki-67 is usually

high in DLBCL varying from 40-90%. Tumours expressing greater than 90% should

raise suspicion of a myc gene translocation which if present is generally classified as a

tumour intermediate between DLBCL and Burkitt Lymphoma and is associated with

poorer outcome.[9] In general a myc gene rearrangement is found in approximately

10% of diagnosed DLBCL and is associated with poor outcome.[10-12] Clonally

rearranged immunoglobulin heavy and light chains are usually detected at diagnosis.

Both BCL6 and BCL2 rearrangements are commonly found in DLBCL.[1]

There has been remarkable progress made in this disease over the last decade with the

addition of the anti-CD20 monoclonal antibody rituximab to standard

chemotherapy.[13] Prior to the introduction of rituximab, 5-year survival was

approximately 45-50%.[14, 15] The five-year overall survival is now between 55-

75%. Despite these improvements, one third of patients will still die from their

disease.[16, 17]

DLBCL is staged using the Ann Arbor classification with Cotswold’s modification. In

1993, a seminal paper was published that attempted to identify the most important

prognostic factors in order to derive a score that might help to predict survival.[18]

This scoring system is called the International Prognostic Index (IPI) which predicts

survival accurately in patients with DLBCL.A patient is scored according to Age>60,

3

Page 21: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

stage >II, LDH level>normal, Eastern Cooperative Group performance status >1 and

number of extra-nodal sites >1. A patient receives a score of one if any of the

prognostic features is positive and zero if absent. The score thus ranges from zero to

five, with five having poor survival and patients with no factors present having

excellent outcome approaching five-year survival of 95%. Despite its usefulness,

heterogeneity of outcome within IPI sub-groups persists. For example, although 30%

of patients are known to relapse within 2 years, the IPI fails to accurately identify

which patients these will be. For example poor risk IPI (IPI 3-5) categories still have

cure rates of greater than 55%.[18, 19] Despite the improved outcome in DLBCL with

the introduction of rituximab, the IPI is still highly predictive of outcome but it now

splits patients into 3 rather than 5 groups, as was the case prior to its introduction to

front-line therapy. An IPI score of zero predicts excellent outcome, IPI score of 1 or 2

is associated with good outcome but patients scoring >3 have poor outcome. [19]

Given the IPI’s relative inability to predict very poor outcome, recently some of the

parameters of the IPI have been expanded to provide better stratification.[20]

Importantly, the IPI tells us little about potential therapeutic targets or mechanisms of

disease resistance. Despite the relative accuracy of the IPI in predicting outcome,

most patients still receive 6-8 cycles of standard chemo-immunotherapy irrespective

of their IPI score. There is thus, a pressing need to identify the significant clinical and

pathological prognostic factors that may better guide therapy for patients who are

unlikely to benefit from standard therapy

This would allow physicians to not only investigate new therapies for these poor risk

patients, but would also allow confidence to identify patients with excellent outcome

with current standard therapy who do not require alternative strategies.

IPI Factors (Score 1 for each factor present)

Stage>2

LDH>N

Extranodal sites>1

Performance Status (ECOG>2)

Age>60

Table 1. IPI Factors

4

Page 22: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

1.2 Molecular Classification of DLBCL

It has been known for some time that there are distinct molecular subgroups of

DLBCL. Alizadeh and colleagues in their seminal paper from 2000, showed three

distinct molecular groupings in DLBCL. These were classified as germinal centre,

activated B cell and a third group termed unclassifiable that lay in between these two

groups.[21] What he showed, and what has been shown consistently since then is that

dividing patients into two groupings, germinal centre-like B cell (GCB) and non-GCB

could separate patients into two distinct groups with very different outcome after

standard chemotherapy. [21-23] The prognosis of the unclassified grouping seems to

lie in-between these two groups but it is generally included in a poor risk group

incorporating the non-GCB subtype.[24, 25]

These gene expression findings have been backed up by similar findings from other

groups who found that even low IPI scoring patients do relatively poorly if they are in

a poor gene expression subclass such as non-GCB type.[26] The non-GCB subtype

seems to have higher proliferation with a reduced immune reaction against it, and

have a signature very different from normal lymph node signals. However, even in

studies showing cell of origin as predictive of outcome the survival differences in

patients treated with chemo-immunotherapy is modest between GCB and non-GCB

with a 15-35% improvement in outcome for GCB patients. Prognosis based on COO

based on gene expression from frozen tissue appears most accurate.[20, 27, 28] The

data, although not conclusive, indicates that rituximab is particularly beneficial in the

non-GCB group rather than the GCB classification.[28] However not all gene

expression data published at this time is consistent or confirms that GCB and non-

GCB subtypes are prognostic.[29] This shows the problems with performing analysis

on different platforms, using different analysis methods and heterogeneous patient

cohorts.[30] Because of these varied results, Lossos et al. set out to identify genes

found in all the three previously described gene expression array studies performed at

that time to find common genes that might allow development of a robust small

number of genes to predict outcome and be more user friendly in the

diagnostic/prognostic setting.[31] This group tested all 36 prognostic genes from gene

expression studies and also any genes described as being prognostic from a number of

other studies using real time-PCR in their patients’ samples. They found six genes

that added additional prognostic value to the IPI. The six genes were LMO2, BCL6,

FN1, CCND2, BCL2 and SYCA3. Of note two of these genes were associated with

5

Page 23: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

the GCB phenotype (LMO2, BCL6) while FN1 is a normal lymph node signature.

The three genes (CCND2, BCL2 and SYCA3) associated with poor prognosis are all

associated with the non-GCB (ABC) subtype. While this data has subsequently been

replicated by this group it required frozen tissue and it has not been widely applied.

However in 2008 the authors published data confirming prognostic usefulness in

paraffin based tissue samples from an R-CHOP tested cohort.[32] However these

methods are still relatively complex for routine clinical use and have not translated

into general clinical practice.

One of the challenges for applying these and associated classifications is the failure of

any of these poor prognostic groups to benefit from alternate therapy to the current

standard (R-CHOP). However a number of studies in recent years have shown that

there may well be some therapeutic strategies that might specifically target tumours of

the ABC subtype. Targeted therapies have been developed based on gene expression

data such as Bortezomib or dose modified etoposide, doxorubicin, vincristine,

prednisolone, cyclophosphamide and rituximab that may be more effective against the

phenotype with a poor outcome (non-GCB).[33, 34]. Newer strategies such as the use

of BTK inhibitors seem to preferentially target ABC DLBCL and current clinical

trials are awaited to assess their use in DLBCL.[35, 36] However it is imperative that

new technologies are validated and tested to ensure accurate classification so that the

right patients receive the correct drug.

1.3 Clinical utility of Molecular Classifications

Because of the cost of DNA microarray technology, it is not routinely used in

lymphoma diagnosis. It also requires frozen tissue, which is very difficult to acquire,

as this requires the diagnosis to be known before biopsy, (unless procedures are in

place at an Institute to snap freeze all potential new lymphoma diagnosis) and special

storage facilities are required. It is only large tumour banks that have this tissue

available.[30] Immunohistochemistry on formalin fixed paraffin embedded tissue

(FFPET) is the standard test for most pathology departments for the diagnosis and

investigation of malignancy and it is still the gold standard for diagnosis of diffuse

large cell lymphoma. An attempt was made by Hans et al. in 2004 to establish an

immunohistochemical algorithm that might approximate gene expression

findings.[24] This algorithm used the immunohistochemical markers CD10, MUM1,

6

Page 24: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

BCL6 in a sequential arrangement to divide patients into GC and non-GC subtypes

and these groupings did have significantly different outcome. As would be expected

BCL6 and CD10 conferred good outcome whereas MUM1 conferred poor outcome as

single markers. The 5-year OS rate for GC patients was 76% compared to 34% for the

non-GCB rates. This is similar to previous described cDNA analysis. They also had

cDNA data on a number of patient samples and these showed reasonable correlation

with IHC with the algorithm sensitive in picking up 74% of GCB subtype and 87% of

non-GCB subtype. This shows that there are still significant issues with this algorithm

with approximately one fifth of patients being misclassified. This is perhaps not

surprising since it is unlikely that 3 proteins would provide similar results to 36 genes,

nor does this algorithm identify the unclassifiable cases that are identified by gene

expression profiling. In addition, a number of large studies have subsequently shown

no survival difference between immunohistochemical-defined cell of origin including

a sub-study of the large RICOVER-60 trial, which had full data on over 500 patients

treated with R-CHOP.[37-39] However other research has shown that the GCB /non-

GCB prognostic divide is still relevant in the rituximab era.[40, 41]. The Choi

algorithm, which uses all the Hans antibodies but includes two additional antibodies

to identify GCB and non-GCB, has also been found to be effective at predicting

outcome based on cell of origin. [25] The additional antibodies are GCET1 and

FOXP1. This study also had gene expression data and the IHC had a 91%

concordance with it. A number of studies have confirmed the accuracy of this Choi

algorithm compared to the other described algorithms but there are still large studies

finding no prognostic impact for it. [39, 42]This heterogeneity certainly restricts the

clinical use of these classifications.

There is also concern about reproducibility of IHC staining between different labs

with the Lunenburg Consortium suggesting that a number of antibodies used in the

Hans algorithm gave variable results between labs, with BCL6 (a nuclear staining

antibody) in particular demonstrating marked variability.[43, 44] In most algorithms

BCL6 positivity is a ‘deciding’ antibody for classification. For example, in the Hans

classification, CD10 negative DLBCL biopsies are classified as non-GCB if BCL6

negative. Therefore inter-laboratory variability with this antibody is a particular

concern. BCL6 is a germinal centre marker that also appears in a number of gene

expression and IHC models that predict outcome with expression of BCL6 usually

associated with improved outcome. In addition the importance of prognostic markers

7

Page 25: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

such as BCL6 may have changed with the improvement in outcome seen with

rituximab. In numerous pre-rituximab studies it has been shown to be associated with

good prognosis. The addition of rituximab to standard chemotherapy appears to have

improved outcome in BCL6 negative patients in particular, so that the prognostic

significance of BCL6 expression in patients treated with rituximab now appears less

clear.

In contrast is BCL2, which is an ABC marker. Prior to introduction of rituximab this

IHC marker always predicted poor outcome however the utilization of rituximab

seems to have overcome the poor prognosis associated with this protein.[45, 46]

There is currently no substitute for gene expression for defining cell of origin but

there is still a paucity of gene expression data in the rituximab era. For routine use

immunohistochemical methods for classification would still appear to be the most

practical, with newer algorithms such as those described by Choi and Meyer likely to

replace the Han’s classifications.

New technologies such as digital gene multiplex hybridization (DGME) hold promise

for more clinically applicable use of cell of origin classifications. One such platform

is NanoString nCounter ® that accurately assess gene expression from FFPE. This

technology has promise for defining important subgroups based on cell of origin and

requires minimal technical and bioinformatics expertise and therefore is transferrable

to the routine diagnostic laboratory.[47]

1.4 FCG3A and C1qA polymorphisms and their impact in DLBCL

The anti-CD20 monoclonal antibody rituximab is a standard component of front-line

DLBCL chemo-immunotherapy, typically as part of ‘R-CHOP’. It has resulted in a

marked improvement in response and survival.[16] The importance of host genetics

on the mode of action of rituximab in DLBCL is unclear.

Two principle mechanisms of action for rituximab are postulated. The first is antibody

dependent cellular cytotoxicity (ADCC) whereby rituximab binds to

FCGammaReceptor (FCGR) bearing Natural Killer (NK) cells, resulting in

destruction of CD20+ normal and malignant B-cells by the reticulo-endothelial

system.[48-51] The other is direct lysis via complement dependent cytotoxicity

(CDC).[52-56] There is also data to support direct apoptosis of malignant cells on

exposure to rituximab.[57-59]

8

Page 26: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

Rituximab is a chimeric murine-human monoclonal antibody directed against the

CD20 antigen. Its broad efficacy and attractive toxicity profile has resulted in its use

for the treatment of a variety of malignant and autoimmune disorders. It is generally

well tolerated with most of its side effects occurring during the first infusion, typically

brief fever and rigors.[60, 61] Since rituximab targets CD20, expression of which is

restricted to benign and malignant B-cells, it is not associated with the acute myelo-

suppression that is commonly seen following cytotoxic agents. Intriguingly however,

it is associated with a phenomenon termed ‘late-onset neutropenia’ (LON), an

idiosyncratic and relatively rare but well-recognized late complication of rituximab

containing therapy.[62] LON is defined as neutropenia occurring after neutrophil

recovery, at least 4 weeks from last therapy, and in the absence of other causes. It is

therefore distinct from the occasional episodes of neutropenia that have been reported

during the administration of rituximab monotherapy (neutropenia that developed

within 30 days after completion of treatment). The latter has been postulated as due to

the accelerated destruction of neutrophils caused by binding of rituximab–antigen

complexes to neutrophil Fc receptors.[63] LON is relatively benign phenomenon with

spontaneous neutrophil recovery being the norm, however severe neutropenic sepsis

has occurred.

Due to the lack of controlled studies, the incidence of LON has yet to be adequately

defined. Genentech, the manufacturer of rituximab, in post-marketing surveillance,

declared an overall rate of 0.02% in more than 300, 000 patients.[62] However, given

that many cases may not have been reported via this mechanism, this figure is almost

certainly an under-estimation. The majority of patients followed up post therapy have

a routine blood test only every 3 months and unless the patient has a fever related to

neutropenia, any LON occurring in this period will not be detected. LON has been

reported in association with rituximab use in a variety of pathologies, particularly

lymphoproliferative disorders but also stem cell transplantation and autoimmune

diseases.[64-68] In these reports, LON was attributed to rituximab, but the results are

difficult to interpret because of variable use of concomitant treatments and differing

rituximab regimens. There is also inconsistency in neutropenic cut-off points.

Furthermore, incidence of LON may vary between individual disorders treated with

rituximab, and disease specific estimates might provide a more accurate assessment.

9

Page 27: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

FCGR3A is a low-affinity receptor capable of binding the FC portion of complexed

but not monomeric IgG. A polymorphism, alternatively encoding for a valine (V) or

phenylalanine (F), has been identified. FCGR3A-V158 has a higher binding affinity

for IgG1 than FCGR3A-F158.[69] There is evidence that this polymorphism is

important in the treatment of colon and breast cancers with monoclonal antibodies

such as cetuximab and transtuzumab respectively.[70, 71] Data on the impact of the

FCGR3A-V158F polymorphism in DLBCL treated with R-CHOP is conflicting.[72,

73] There are also reports that the polymorphism may contribute to the development

of late-onset neutropenia (LON).[74, 75] Although not designed for survival analysis,

it is notable that in previous case series lymphoma patients with LON have strikingly

low incidences of disease progression. It has therefore been proposed that

development of LON is a measure of good outcome, perhaps reflecting enhanced

potency of rituximab.[76] However lead-time bias needs to be considered carefully

when interpreting such data. It is important to note that many patients with poor

outcome in DLBCL are either refractory to initial therapy or relapse shortly after

completing therapy, and thus may not develop LON. It is likely that the neutropenia

caused by rituximab will be masked by salvage therapy or progressive disease.

Binding of C1q to the Fc portion of immune complexes activates CDC through

initiation of the complement cascade. C1q is encoded by C1qA, whose sole coding

polymorphism is at position 276, coding for adenine (C1qA-A276) or guanine (C1qA-

G276). C1qA-A276 results in lower C1q protein levels than the C1qA-G276

polymorphism. Breast cancer patients heterozygous or homozygous for the C1qA-

G276 genotype have a higher rate of metastasis.[77] In a study of 133 patients with

follicular lymphoma treated with single agent rituximab, possession of the C1qA-

A276 allele was associated with increased response rates and prolonged response

duration, even after adjusting for FCGR3A-V158F polymorphisms.[78] The role of

C1qA polymorphisms in DLBCL has not yet been evaluated.

Immune Parameters in DLBCL

1.5 Tumour Infiltrating Lymphocytes

There remains a critical need for identification of simple reproducible prognostic

factors in DLBCL that are capable of identifying the approximately one-third of

patients that will go on to have refractory disease or relapse early. In addition such

10

Page 28: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

factors would be inherently more valuable if effective therapeutic modalities could be

instigated to negate the adverse outcome associated with these factors. Recently, in

addition to new therapies that target tumours directly, a number of therapies have

emerged that alter host immune status in order to improve tumour surveillance.[79-

81].

Tumor infiltration by non-malignant T-cells has been demonstrated in multiple

lymphoma histologies and a variety of solid-organ non-haematopoietic tumours.

There is heterogeneity with regards to prognostic importance of specific T cell subset

in B cell lymphomas with CD4 T-cells, CD8 T-cells and CD4 T-regulatory cells all

appearing to be of importance in predicting survival.[82-86] Even within subsets of

CD4 such as TH1 and TH2 subtypes, there is heterogeneous data with regards to

outcome. Not only is there heterogeneity within the subsets and number of these cells,

but the location of these T cells in different tumours appears important such as

whether the tumour is infiltrated at the centre of the tumour, tumour edges or tumour

stroma all giving variable results.[87, 88] Key studies have shown that culture and re-

infusion of tumour infiltrating lymphocytes (removed from the tumour site of

patients) from melanoma tumours induces effective response rates in approximately

50% of patients with advanced disease indicating importance of these cells in

cancer.[89-91]

Despite the findings in solid tumours, the data in DLBCL is surprisingly sparse with

regards to immune cell infiltration. Immune parameters have been shown to be

predictive of outcome in DLBCL.[26, 92-97] Iatrogenic immunosuppression given to

prevent rejection post organ transplantation or acquired immunosuppression induced

by HIV infection leads to high rates of lymphoma development. [98] The risk of

lymphoma development is directly related to the intensity of immune-suppression

with transplant recipients that require intense immune suppression, such as those

undergoing small bowel and multi-organ transplants, having the highest rates of

lymphoma development.[4, 99] Renal transplant patients have generally modest

immune suppression but represent the largest number of PTLD patients seen, as this

would be the most common transplantation procedure performed. Simply removing

immune suppression can lead to complete remission in some cases despite

morphology consistent with DLBCL.[100]

In an attempt to identify simple clinical markers of the immune microenvironment,

two recent studies have used circulating absolute lymphocyte counts (ALC) and

11

Page 29: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

absolute monocyte counts (AMC) as surrogate markers of host immune-effectors and

immune-checkpoints to successfully predict outcome.[101, 102] These parameters are

an inexpensive simple assessment of immune status that are routinely performed, and

that are available to all treating physicians. While these markers assess circulating

immunity in DLBCL, little is known about how reflective they are of immune cells

within the tumour microenvironment (TME) and in particular the tumour infiltrating

lymphocytes (TILs) in DLBCL. Prior to the introduction of rituximab, it had been

shown that low levels of CD4+ T cells in the diagnostic biopsy as assessed by flow

cytometric immunophenotyping was associated with inferior outcome.[82, 83] Recent

studies have confirmed the importance of T cell activation in the tumour

microenvironment with the T cell activation marker CD137 predicting outcome in a

large DLBCL cohort.[95] This is of particular interest given an agonist antibody to

CD137 may lead to improved immune responses against lymphoma.[95, 103]

High levels of CD4+ T cells are associated with improved outcome in many

malignancies.[84] This is however tempered by the fact that CD4 T cells are

heterogeneous and are composed of subsets with variable functions such as TH1, TH2

and Tregs. There is no clear evidence about which CD4 subset contributes to improved

outcome and certainly this needs to be addressed in prospective trials. The Treg subset

are identified as CD4+FOXP3+, (or CD4+CD25hiCD127-). They are associated with

poor outcome in epithelial cancers but paradoxically appear to be associated with

improved outcome in some B cell lymphomas and within subsets of epithelial

cancers.[85, 86, 104] One explanation is that increased numbers of Tregs reflects a

relatively intact host immune system. Alternatively it has also been postulated that

Tregs have a direct negative effect on proliferation of B cells.[105] In many studies

immunohistochemical staining with FOXP3 is used to define a Treg subset and in two

reported DLBCL cohorts, higher levels of FOXP3 lymphocytes are associated with

improved outcome.[106, 107]

The second potentially important subset of CD4+T cells of interest is T helper cells. T

helper cells can be divided into two subgroups. TH1 subtype (which express the

transcription factor T-bet, and secrete interferon-γ and TNF-α) is universally

associated with good outcome in malignancy as they assist immunological clearance

of tumours. The TH2 subtype (which express the transcription factor GATA-3, and

secrete IL-4, IL-5, IL-10 and IL-13) is associated with immunosuppression, and is

12

Page 30: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

generally associated with inferior outcome.[84, 108] There is very limited data on the

role of these various CD4 subsets in DLBCL. Interestingly there is evidence obtained

prior to the introduction of rituximab that circulating lymphocytes of patients with

DLBCL before treatment are skewed to a TH2 phenotype and revert to a TH1

phenotype with successful treatment.[109]

A number of recent animal models in B cell lymphoma have shown that CD4+ T cells

are key cells in creating an anti-tumour microenvironment.[110] TH1 cells in

particular stimulate and up-regulate antigen presentation and tumour clearance.[108]

Improved antigen presentation has been shown to be a key survival determinant in

patients with DLBCL.[37, 96, 111, 112] These animal models have shown that

cytokines derived from TH1 cells such as Interferon gamma, IL1 and TNF alpha are

implicated in stimulating macrophage mediated malignant B cell clearance.

Mouse models have also shown that PD-1 which is present on many CD4 T cells may

eventually down regulate CD4+T cell tumour surveillance leading to relapse.[110]

PD-1 has been found expressed in 27% of DLBCL tumours, but when one looks at

the tumour microenvironment 38% of PD1 non-expressing DLBCL have PD1

positive histiocytes surrounding the tumours.[113] It is possible that PD-1 could be

responsible for down-regulating CD4+ T cells in a large number of DLBCLs. This is

of particular interest as two highly successful trials targeting PD-1 in advanced

cancers have recently been described in solid tumours.[79, 80] To date two trials

using an antibody to PD-1 have been described in B cell lymphomas.[114, 115] CT-

011 (anti-PD1) directly increases the numbers of CD4+T cells post autograft for

relapsed disease with survival higher than historical controls.[115] In another study

using Ipilumimab (an anti-CTLA-4 antibody) in a range of advanced relapsed and

refractory lymphomas the antibody produced an ongoing complete remission in one

of the three patients with DLBCL.[116] Recent publication of results of blocking PD-

1 in DLBCL and follicular lymphoma show the feasibility and potential excellent

response rates using immune checkpoint blockade in B cell lymphoma however larger

studies are required to confirm these published findings.[117, 118] The study in

follicular lymphoma seems to indicate enhanced T and NK cell function as a result of

effective treatment with the anti-PD1 antibody.

Many of these molecules target immune checkpoints that are present in healthy

immune responses to restrict excessive tissue damage and contain the immune

response to where it is needed most. In some malignancies these checkpoints are

13

Page 31: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

expressed at high levels within the tumour milieu and by tumour cells as an adaption

to escape immune attack.[119]

1.6 CD8 cells in DLBCL

CD8 T cells are the end effector cells for the immune system and are directly

cytotoxic to cells. CD8 cells with specificity for EBV epitopes have been shown in

numerous studies to elicit responses in EBV positive lymphomas.[120-122] One of

the commonest mutations found in DLBCL relates to loss of the key MHC I related

protein beta-2-microglobulin with a recent study showing this molecule mutated in

29% of DLBCL cases.[123] This study also identified deletions in CD58 that can also

affect CD8 recognition of antigen in 21% of cases, with many cases showing

mutations in both genes. In addition alternate mechanisms of aberrant expression of

MHC Class I and CD58 were frequent, indicating that cumulatively antigen

presentation to CD8 cells is defective in >60% of patients with DLBCL. Prior IHC

based studies had also shown a direct correlation between absence of immune

recognition proteins such as HLA Class I and II molecules and CD80/CD86 that was

associated with inferior outcome as well as reduced levels of CD4 and CD8

lymphoma infiltration in chemotherapy treated patients[124] However the data is

sparse with regards to the impact of CD8 infiltration and outcome in DLBCL in the

chemo-immunotherapy era. Early studies (pre rituximab) showed that poor outcome

was associated with high levels of activated CD8 cells in the TME. The authors

postulated that this led to killing of HLA-Class I expressing malignant B-cells

allowing progression of tumours lacking HLA expression.[125] In particular large

numbers of testicular and CNS lymphomas have loss of HLA expression but high

numbers of CD8 T cells and have more aggressive disease.[126] However this data is

conflicting with other studies showing high levels of CD8 infiltration in tumours with

high levels of CD40 postulated to lead to consequent enhanced autologous tumour

clearance and improved outcome.[127] It should also be noted that there is a subtype

of DLBCL associated with extensive CD8 and to a lesser extent CD4 infiltration and

relatively sparse CD20 malignant B cell population. These tumours appear to behave

more aggressively with small studies indicating that the CD8 T-cells infiltrating these

tumours are anergic and have reduced cytotoxic activity.[120] In contrast, data in an

indolent B cell lymphoma termed follicular lymphoma shows enhanced outcome

when tumours infiltrated by CD8 T cells were treated with single agent

14

Page 32: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

rituximab[128, 129] DLBCL is an aggressive B cell lymphoma in which rituximab is

only administered in combination with anthracyline based combination chemotherapy

such as R-CHOP. It is unknown whether CD8 T cell infiltration is a predictor of

outcome of patients treated with R-CHOP in DLBCL.

1.7 Tumour associated Macrophages/Monocytes

Much data regarding the role of tumour-associated macrophages was described in

Hodgkin Lymphoma. A seminal paper by Stiedl et al. looked at two groups of

Hodgkin Lymphoma patients with differing outcomes using gene expression, and

found that those genes associated with the tumour stroma/environment were strongly

associated with poor outcome.[130] CD68 enumeration by immunohistochemistry

seemed to act as a surrogate of the adverse macrophage gene expression signature.

However not all studies have been able to replicate the IHC findings. [131, 132]

A seminal paper from Lenz et al demonstrated that gene expression related to tumour

microenvironment was predictive of outcome in DLBCL.[27] Poor outcome was

defined by a particular stromal signature associated with angiogenesis. A second

stromal signature was associated with improved outcome, and this was associated

with monocytic and histiocytic infiltration with expression of CD68 noted to be

elevated in this subgroup. In this study and in a subsequent analysis the

immunohistochemical stain for SPARC acted as a basic surrogate of this complex

gene expression signature.[133] Thus increased immune cell infiltration was

associated with improved outcome, however in this study T cell infiltration was not

prognostic and a strong MHC II immune signature was only prognostic in the cohort

of patients not treated with rituximab.

There is added complexity to the importance of tumour-associated macrophages in

DLBCL given the improved survival and standard adoption of rituximab in

combination chemotherapy for the disease. ADCC is likely one of the main effector

mechanisms causing rituximab induced death of tumour cells.[134] Macrophages are

a main contributor to this mode of cell death (along with NK cells). One of the key

reasons for the heterogeneous results with regard to macrophages in DLBCL may

relate to overreliance on CD68 staining to classify macrophages. This stain is not

specific to macrophages and other stromal cells can stain positively.[135] In addition

there are two main subtypes of macrophages found in tumour microenvironments.

These are categorized as type I and type II or M1 or M2 subtype.[136] These two

15

Page 33: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

subtypes have distinct functions and macrophage sub-types are best viewed as a

continuum, with M1 and M2 as opposite ends of a spectrum. The M1 subtype is

associated with a pro-inflammatory response and might be considered potentially

beneficial in tumour clearance. The M2 subtype is anti-inflammatory. There is strong

evidence that many tumors manipulate their local environment to create an immune

suppressing microenvironment that contains high levels of M2 macrophages to

circumvent the natural immune response. In addition it is possible that the initial

immune effector response against a tumour is strong with little immune suppression,

but in the majority of cases this response is eventually counter-balanced by increased

immune checkpoints/suppressors that down-regulate immune-effectors so as to

prevent damage of normal tissue. Alternatively, or in addition, it is possible that

tumours manipulate their local environment to counter effective immune responses by

up-regulating immune checkpoints or down-regulating immune recognition

mechanisms. Thus a large M1 macrophage response or a strong T cell response would

be rendered ineffective if there is a large M2 macrophage response to counter it.

CD68 alone is unable to distinguish between M1 and M2 macrophages. A

combination of 2/3 markers will provide more information regarding macrophage

status although this is inconsistently performed.[136] The combination of

CD68hi/HLA-DRhi positive cells favours an M1 phenotype whereas a CD68hi/CD163hi

phenotype favours an M2 phenotype.[137, 138] HLA-DR is associated with antigen

recognition and is associated with an active immune response. CD163 is a heme

scavenger molecule, and high expression is specific for M2 macrophages.[137, 139]

However there is no definitive cut-off to distinguish between these two subtypes

using these markers, and given that there is a spectrum of macrophages from M1 to

M2, it would be extremely difficult to classify macrophages in the middle of these

two subtypes. In addition it is felt that macrophages can reverse function and

transition from M2 to M1 phenotype and vice versa depending on local cytokine

signaling.[3] The cytokines produced by the subtypes of macrophages are very

distinctive and represent the most accurate assessment of status but is relatively

difficult to measure unless one has specific cytokine arrays and fresh cells. The M1

phenotype is associated with IL1, IL6, IL12 and TNF-alpha whereas M2 is associated

with IL4, IL10, IL13 and TGF-beta production.[4, 10] These cytokines appear to

mimic those associated with CD4 T cells where CD4 TH1 are associated with immune

activation and the CD4 TH2 subtype appears similar to the M2 type macrophage.

16

Page 34: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

Early studies in DLBCL seem to indicate that the M2 macrophage as detected by

CD163 is associated with inferior outcome and that an increased ratio of CD68 to

CD163 may indicate improved outcome in patients receiving chemo-

immunotherapy.[140] A small study from Japan showed that specific M1/M2

subtyping using CD68/HLA-DR and CD163/CD68 was also prognostic in

DLBCL.[141] However these findings are not always consistent and do not appear to

be comparable to findings prior to the introduction of rituximab.[142, 143] A large

study of R-CHOP treated patients found no prognostic impact for expression of CD68

in 262 patients, however a macrophage marker consistent with a stromal 1 signature

(SPARC) as described in Lenz et. al did predict outcome but had no correlation with

CD68.[92, 133] These findings indicate that CD68 is not specific enough for

assessment of macrophage subtype nor survival outcome, as there is likely to be

significant prognostic differences between tumours infiltrated by an M1 or M2

phenotype of macrophage, that cannot be identified using a single

immunohistochemical stain.[133, 143]

Whilst using CD163 as a more specific marker of the M2 Macrophage using

immunohistochemistry has been widely published, there is relatively little known

about the role that cells expressing CD163 play in the circulation. In agreement with

tissue expression of CD163, it is now felt that circulating cells bearing CD163

contribute to an immune-suppressive environment in many cancers. A number of

studies indicate a direct inhibition of lymphocytes by CD163. For example, in a

published study from my research group in Hodgkin Lymphoma, high circulating

levels of soluble CD163 (sCD163) were associated with significantly lower

lymphocyte count at diagnosis.[144, 145] It is felt that increased levels of these

markers may indicate systemic immune suppression triggered by the tumour cells.

There is no data of sCD163 in DLBCL. An initial study in melanoma used an ELISA

based assay to measure sCD163 levels in over 200 patients with early stage

disease.[146] High levels of serum sCD163 were associated with inferior outcome

though not necessarily disease specific survival. Interestingly, in this study levels of

CD163 in patients were not consistently higher than healthy control participants. In

Hodgkin Lymphoma, circulating sCD163 is markedly elevated at diagnosis compared

to controls and acts as a disease response biomarker.[145]

17

Page 35: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

1.8 Myeloid Derived Suppressor Cells

Recent studies in NHL indicate that particular subsets of monocytes may have a

phenotype consistent with that of an M2 macrophage. Lin et al described a myeloid

suppressor subset that was associated with immune dysfunction and suppression that

seemed to be associated with inferior outcome in a heterogeneous B-NHL

population.[147] These cells that have been described in a number of malignancies

are characterised by a phenotype of high CD14+ and low HLA-DR expression.[148,

149] Circulating monocytes infiltrate tissue such as lymph nodes to become

macrophages so their phenotype may be critical in determining the tumour

microenvironment. Whilst there is data supporting inferior outcome in DLBCL

relating to high CD163 levels as discussed, this is not always consistent. There is no

data investigating the relative interactions of CD163 in tissue or the circulation with

immune effectors such as CD4 and CD8 in DLBCL. CD163 is only one of many

molecules that may counter effective immune responses.

In addition there is minimal data on the relative impact on expression of key immune

checkpoints in DLBCL. As described, targeting the immune checkpoints CTLA4,

PD-1, PDL-1 and PDL-2 have all shown promise in the treatment of melanoma, renal

cancer, lung cancer and there is emerging data on the targeting of these pathways in

lymphoma.[84, 150, 151] In DLBCL responses have been seen in patients treated

with an anti-CTLA4 antibody and adjuvant use of an anti-PD1 antibody post stem

autograft in relapsed patients appears to improve outcome.[116, 118, 152] These

therapies are relatively well tolerated and early evidence suggests excellent activity

and safety in combining these agents with anti-CTLA4 and anti-PD1 therapy

combined therapy giving remarkable responses in metastatic melanoma.[153] In

addition, targeting of checkpoints such as LAG3 and TIM3 will soon enter clinical

trials.[150] There are many other molecules of interest in this field which have yet to

be fully investigated.[154] Little is known on how tumour infiltration by cells of the

immune system might dictate response not only to current standard therapy but also

the new wave of immune modifying agents.

1.9 Digital multiplex gene expression (DMGE) by nanoString nCounter.

NanoString is a new novel technology first described in 2009.[155] It captures and

measures mRNA transcripts without any amplification or enzymatic steps. Each gene

is detected by a probe with a particular color based barcoding system which then

18

Page 36: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

attaches to a capture probe which allows the reporter probe to be immobilized. Excess

probes and capture are washed off and a digital reader calculates the relative

expression of the mRNA transcript based on the colour code of the reporter probe.

Given this unique mechanism the bioinformatics load is relatively mild and data can

easily be generated via a simple analysis program provided by the company. The

correlation between runs is highly reproducible but more importantly data from

matched frozen and paraffin tissue samples shows exceptionally high correlation

which has now been replicated in a number of published studies.[156-158] The

quality of data from paraffin tissues opens up much larger banks of lymphoma

samples from retrospective databases as good quality gene expression data no longer

requires snap frozen tissue. Indeed an early study in DLBCL has shown that

NanoString will likely be highly sensitive at accurately determining cell of origin in

DLBCL.[159] Early results from a small series of aggressive large cells lymphomas

indicated that Nanostring technology could be effective at distinguishing between

standard DLBCL and aggressive subtypes more closely related to Burkitt Lymphoma,

however this study was small.[160] To date these two relatively small studies are the

only research using digital gene barcoding in DLBCL. Nanostring is now an accepted

diagnostic platform approved by the FDA for assessment of prognosis in Breast

Cancer patients with recent approval of the PAM50 gene signature.[161]

 

References:    

1.   Swerdlow,  S.H.,  ed.  WHO  Classification  of  Tumours  of  Haematopoietic  and  Lymphoid  Tissues.  2008.  

2.   Garber,  K.,  Lymphoma  rate  rise  continues  to  baffle  researchers.  Journal  of  the  National  Cancer  Institute,  2001.  93(7):  p.  494-­‐6.  

3.   Zimmermann,  H.  and  R.U.  Trappe,  EBV  and  posttransplantation  lymphoproliferative  disease:  what  to  do?  Hematology  /  the  Education  Program  of  the  American  Society  of  Hematology.  American  Society  of  Hematology.  Education  Program,  2013.  2013:  p.  95-­‐102.  

4.   van  Leeuwen,  M.T.,  et  al.,  Immunosuppression  and  other  risk  factors  for  early  and  late  non-­‐Hodgkin  lymphoma  after  kidney  transplantation.  Blood,  2009.  114(3):  p.  630-­‐7.  

5.   Guiguet,  M.,  et  al.,  Effect  of  immunodeficiency,  HIV  viral  load,  and  antiretroviral  therapy  on  the  risk  of  individual  malignancies  (FHDH-­‐ANRS  CO4):  a  prospective  cohort  study.  The  lancet  oncology,  2009.  10(12):  p.  1152-­‐9.  

19

Page 37: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

6. Bulka,  C.,  et  al.,  Residence  proximity  to  benzene  release  sites  is  associatedwith  increased  incidence  of  non-­‐Hodgkin  lymphoma.  Cancer,  2013.119(18):  p.  3309-­‐17.

7. De  Roos,  A.J.,  et  al.,  Residential  proximity  to  industrial  facilities  and  risk  ofnon-­‐Hodgkin  lymphoma.  Environmental  research,  2010.  110(1):  p.  70-­‐8.

8. Craig,  F.E.  and  K.A.  Foon,  Flow  cytometric  immunophenotyping  forhematologic  neoplasms.  Blood,  2008.  111(8):  p.  3941-­‐67.

9. Perry,  A.M.,  et  al.,  B-­‐cell  lymphoma,  unclassifiable,  with  featuresintermediate  between  diffuse  large  B-­‐cell  lymphoma  and  burkitt  lymphoma:study  of  39  cases.  British  journal  of  haematology,  2013.  162(1):  p.  40-­‐9.

10. Perry,  A.M.,  et  al.,  MYC  and  BCL2  protein  expression  predicts  survival  inpatients  with  diffuse  large  B-­‐cell  lymphoma  treated  with  rituximab.  Britishjournal  of  haematology,  2014.

11. Tzankov,  A.,  et  al.,  Rearrangements  of  MYC  gene  facilitate  risk  stratificationin  diffuse  large  B-­‐cell  lymphoma  patients  treated  with  rituximab-­‐CHOP.Modern  pathology  :  an  official  journal  of  the  United  States  and  CanadianAcademy  of  Pathology,  Inc,  2013.

12. Savage,  K.J.,  et  al.,  MYC  gene  rearrangements  are  associated  with  a  poorprognosis  in  diffuse  large  B-­‐cell  lymphoma  patients  treated  with  R-­‐CHOPchemotherapy.  Blood,  2009.  114(17):  p.  3533-­‐7.

13. Coiffier,  B.,  et  al.,  Rituximab  (anti-­‐CD20  monoclonal  antibody)  for  thetreatment  of  patients  with  relapsing  or  refractory  aggressive  lymphoma:  amulticenter  phase  II  study.  Blood,  1998.  92(6):  p.  1927-­‐32.

14. Armitage,  J.O.,  My  treatment  approach  to  patients  with  diffuse  large  B-­‐celllymphoma.  Mayo  Clinic  proceedings,  2012.  87(2):  p.  161-­‐71.

15. Ziepert,  M.,  et  al.,  Standard  International  prognostic  index  remains  a  validpredictor  of  outcome  for  patients  with  aggressive  CD20+  B-­‐cell  lymphomain  the  rituximab  era.  Journal  of  clinical  oncology  :  official  journal  of  theAmerican  Society  of  Clinical  Oncology,  2010.  28(14):  p.  2373-­‐80.

16. Coiffier,  B.,  et  al.,  CHOP  chemotherapy  plus  rituximab  compared  with  CHOPalone  in  elderly  patients  with  diffuse  large-­‐B-­‐cell  lymphoma.  The  NewEngland  journal  of  medicine,  2002.  346(4):  p.  235-­‐42.

17. Sehn,  L.H.,  et  al.,  Introduction  of  combined  CHOP  plus  rituximab  therapydramatically  improved  outcome  of  diffuse  large  B-­‐cell  lymphoma  in  BritishColumbia.  Journal  of  clinical  oncology  :  official  journal  of  the  AmericanSociety  of  Clinical  Oncology,  2005.  23(22):  p.  5027-­‐33.

18. A  predictive  model  for  aggressive  non-­‐Hodgkin's  lymphoma.  TheInternational  Non-­‐Hodgkin's  Lymphoma  Prognostic  Factors  Project.  TheNew  England  journal  of  medicine,  1993.  329(14):  p.  987-­‐94.

19. Sehn,  L.H.,  et  al.,  The  revised  International  Prognostic  Index  (R-­‐IPI)  is  abetter  predictor  of  outcome  than  the  standard  IPI  for  patients  with  diffuselarge  B-­‐cell  lymphoma  treated  with  R-­‐CHOP.  Blood,  2007.  109(5):  p.  1857-­‐61.

20. Roschewski,  M.,  L.M.  Staudt,  and  W.H.  Wilson,  Diffuse  large  B-­‐celllymphoma-­‐treatment  approaches  in  the  molecular  era.  Nature  reviews.Clinical  oncology,  2014.  11(1):  p.  12-­‐23.

21. Alizadeh,  A.A.,  et  al.,  Distinct  types  of  diffuse  large  B-­‐cell  lymphomaidentified  by  gene  expression  profiling.  Nature,  2000.  403(6769):  p.  503-­‐11.

20

Page 38: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

22.   Vari,  F.  and  M.K.  Gandhi,  Back  to  basics:  the  complete  blood  cell  count  adds  to  the  ability  of  immunohistochemistry  in  diffuse  large  B-­‐cell  lymphoma  prognosis.  Leukemia  &  lymphoma,  2012.  53(11):  p.  2097-­‐8.  

23.   Wright,  G.,  et  al.,  A  gene  expression-­‐based  method  to  diagnose  clinically  distinct  subgroups  of  diffuse  large  B  cell  lymphoma.  Proceedings  of  the  National  Academy  of  Sciences  of  the  United  States  of  America,  2003.  100(17):  p.  9991-­‐6.  

24.   Hans,  C.P.,  et  al.,  Confirmation  of  the  molecular  classification  of  diffuse  large  B-­‐cell  lymphoma  by  immunohistochemistry  using  a  tissue  microarray.  Blood,  2004.  103(1):  p.  275-­‐82.  

25.   Choi,  W.W.,  et  al.,  A  new  immunostain  algorithm  classifies  diffuse  large  B-­‐cell  lymphoma  into  molecular  subtypes  with  high  accuracy.  Clinical  cancer  research  :  an  official  journal  of  the  American  Association  for  Cancer  Research,  2009.  15(17):  p.  5494-­‐502.  

26.   Rosenwald,  A.,  et  al.,  The  use  of  molecular  profiling  to  predict  survival  after  chemotherapy  for  diffuse  large-­‐B-­‐cell  lymphoma.  The  New  England  journal  of  medicine,  2002.  346(25):  p.  1937-­‐47.  

27.   Lenz,  G.,  et  al.,  Stromal  gene  signatures  in  large-­‐B-­‐cell  lymphomas.  The  New  England  journal  of  medicine,  2008.  359(22):  p.  2313-­‐23.  

28.   Dunleavy,  K.,  et  al.,  BCL-­‐6  and  rituximab  in  diffuse  large  B-­‐cell  lymphoma:  where  are  we?  Blood,  2007.  109(2):  p.  843-­‐4;  discussion  844-­‐5.  

29.   Shipp,  M.A.,  et  al.,  Diffuse  large  B-­‐cell  lymphoma  outcome  prediction  by  gene-­‐expression  profiling  and  supervised  machine  learning.  Nature  medicine,  2002.  8(1):  p.  68-­‐74.  

30.   Lossos,  I.S.,  Diffuse  large  B  cell  lymphoma:  from  gene  expression  profiling  to  prediction  of  outcome.  Biology  of  blood  and  marrow  transplantation  :  journal  of  the  American  Society  for  Blood  and  Marrow  Transplantation,  2008.  14(1  Suppl  1):  p.  108-­‐11.  

31.   Lossos,  I.S.,  et  al.,  Prediction  of  survival  in  diffuse  large-­‐B-­‐cell  lymphoma  based  on  the  expression  of  six  genes.  The  New  England  journal  of  medicine,  2004.  350(18):  p.  1828-­‐37.  

32.   Malumbres,  R.,  et  al.,  Paraffin-­‐based  6-­‐gene  model  predicts  outcome  in  diffuse  large  B-­‐cell  lymphoma  patients  treated  with  R-­‐CHOP.  Blood,  2008.  111(12):  p.  5509-­‐14.  

33.   Dunleavy,  K.,  et  al.,  Differential  efficacy  of  bortezomib  plus  chemotherapy  within  molecular  subtypes  of  diffuse  large  B-­‐cell  lymphoma.  Blood,  2009.  113(24):  p.  6069-­‐76.  

34.   Wilson,  W.H.,  et  al.,  Phase  II  study  of  dose-­‐adjusted  EPOCH  and  rituximab  in  untreated  diffuse  large  B-­‐cell  lymphoma  with  analysis  of  germinal  center  and  post-­‐germinal  center  biomarkers.  Journal  of  clinical  oncology  :  official  journal  of  the  American  Society  of  Clinical  Oncology,  2008.  26(16):  p.  2717-­‐24.  

35.   Mathews  Griner,  L.A.,  et  al.,  High-­‐throughput  combinatorial  screening  identifies  drugs  that  cooperate  with  ibrutinib  to  kill  activated  B-­‐cell-­‐like  diffuse  large  B-­‐cell  lymphoma  cells.  Proceedings  of  the  National  Academy  of  Sciences  of  the  United  States  of  America,  2014.  

36.   Choi,  M.Y.  and  T.J.  Kipps,  Inhibitors  of  B-­‐cell  receptor  signaling  for  patients  with  B-­‐cell  malignancies.  Cancer  journal,  2012.  18(5):  p.  404-­‐10.  

21

Page 39: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

37. Ott,  G.,  et  al.,  Immunoblastic  morphology  but  not  the  immunohistochemicalGCB/nonGCB  classifier  predicts  outcome  in  diffuse  large  B-­‐cell  lymphoma  inthe  RICOVER-­‐60  trial  of  the  DSHNHL.  Blood,  2010.  116(23):  p.  4916-­‐25.

38. Seki,  R.,  et  al.,  Prognostic  impact  of  immunohistochemical  biomarkers  indiffuse  large  B-­‐cell  lymphoma  in  the  rituximab  era.  Cancer  science,  2009.100(10):  p.  1842-­‐7.

39. Gutierrez-­‐Garcia,  G.,  et  al.,  Gene-­‐expression  profiling  and  notimmunophenotypic  algorithms  predicts  prognosis  in  patients  with  diffuselarge  B-­‐cell  lymphoma  treated  with  immunochemotherapy.  Blood,  2011.117(18):  p.  4836-­‐43.

40. Fu,  K.,  et  al.,  Addition  of  rituximab  to  standard  chemotherapy  improves  thesurvival  of  both  the  germinal  center  B-­‐cell-­‐like  and  non-­‐germinal  center  B-­‐cell-­‐like  subtypes  of  diffuse  large  B-­‐cell  lymphoma.  Journal  of  clinicaloncology  :  official  journal  of  the  American  Society  of  Clinical  Oncology,2008.  26(28):  p.  4587-­‐94.

41. Nyman,  H.,  et  al.,  Prognostic  impact  of  immunohistochemically  definedgerminal  center  phenotype  in  diffuse  large  B-­‐cell  lymphoma  patientstreated  with  immunochemotherapy.  Blood,  2007.  109(11):  p.  4930-­‐5.

42. Meyer,  P.N.,  et  al.,  Immunohistochemical  methods  for  predicting  cell  oforigin  and  survival  in  patients  with  diffuse  large  B-­‐cell  lymphoma  treatedwith  rituximab.  Journal  of  clinical  oncology  :  official  journal  of  theAmerican  Society  of  Clinical  Oncology,  2011.  29(2):  p.  200-­‐7.

43. de  Jong,  D.,  et  al.,  Immunohistochemical  prognostic  markers  in  diffuse  largeB-­‐cell  lymphoma:  validation  of  tissue  microarray  as  a  prerequisite  for  broadclinical  applications-­‐-­‐a  study  from  the  Lunenburg  Lymphoma  BiomarkerConsortium.  Journal  of  clinical  oncology  :  official  journal  of  the  AmericanSociety  of  Clinical  Oncology,  2007.  25(7):  p.  805-­‐12.

44. de  Jong,  D.,  et  al.,  Immunohistochemical  prognostic  markers  in  diffuse  largeB-­‐cell  lymphoma:  validation  of  tissue  microarray  as  a  prerequisite  for  broadclinical  applications  (a  study  from  the  Lunenburg  Lymphoma  BiomarkerConsortium).  Journal  of  clinical  pathology,  2009.  62(2):  p.  128-­‐38.

45. Shivakumar,  L.  and  J.O.  Armitage,  Bcl-­‐2  gene  expression  as  a  predictor  ofoutcome  in  diffuse  large  B-­‐cell  lymphoma.  Clinical  lymphoma  &  myeloma,2006.  6(6):  p.  455-­‐7.

46. Iqbal,  J.,  et  al.,  BCL2  expression  is  a  prognostic  marker  for  the  activated  B-­‐cell-­‐like  type  of  diffuse  large  B-­‐cell  lymphoma.  Journal  of  clinical  oncology  :official  journal  of  the  American  Society  of  Clinical  Oncology,  2006.  24(6):p. 961-­‐8.

47. Kulkarni,  M.M.,  Digital  multiplexed  gene  expression  analysis  using  theNanoString  nCounter  system.  Current  protocols  in  molecular  biology  /edited  by  Frederick  M.  Ausubel  ...  [et  al.],  2011.  Chapter  25:  p.  Unit25B10.

48. de  Haij,  S.,  et  al.,  In  vivo  Cytotoxicity  of  Type  I  CD20  Antibodies  CriticallyDepends  on  Fc  Receptor  ITAM  Signaling.  Cancer  Research,  2010.  70(8):  p.3209-­‐3217.

49. Uchida,  J.,  et  al.,  The  Innate  Mononuclear  Phagocyte  Network  Depletes  BLymphocytes  through  Fc  Receptor–dependent  Mechanisms  during  Anti-­‐CD20  Antibody  Immunotherapy.  The  Journal  of  Experimental  Medicine,2004.  199(12):  p.  1659-­‐1669.

22

Page 40: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

50. Clynes,  R.A.,  et  al.,  Inhibitory  Fc  receptors  modulate  in  vivo  cytoxicityagainst  tumor  targets.  Nat  Med,  2000.  6(4):  p.  443-­‐6.

51. Minard-­‐Colin,  V.,  et  al.,  Lymphoma  depletion  during  CD20  immunotherapyin  mice  is  mediated  by  macrophage  FcgammaRI,  FcgammaRIII,  andFcgammaRIV.  Blood,  2008.  112(4):  p.  1205-­‐13.

52. Di  Gaetano,  N.,  et  al.,  Complement  activation  determines  the  therapeuticactivity  of  rituximab  in  vivo.  J  Immunol,  2003.  171(3):  p.  1581-­‐7.

53. Golay,  J.,  et  al.,  CD20  levels  determine  the  in  vitro  susceptibility  to  rituximaband  complement  of  B-­‐cell  chronic  lymphocytic  leukemia:  further  regulationby  CD55  and  CD59.  Blood,  2001.  98(12):  p.  3383-­‐9.

54. Golay,  J.,  et  al.,  Biologic  response  of  B  lymphoma  cells  to  anti-­‐CD20monoclonal  antibody  rituximab  in  vitro:  CD55  and  CD59  regulatecomplement-­‐mediated  cell  lysis.  Blood,  2000.  95(12):  p.  3900-­‐8.

55. Kennedy,  A.D.,  et  al.,  An  anti-­‐C3b(i)  mAb  enhances  complement  activation,C3b(i)  deposition,  and  killing  of  CD20+  cells  by  rituximab.  Blood,  2003.101(3):  p.  1071-­‐9.

56. Kennedy,  A.D.,  et  al.,  Rituximab  infusion  promotes  rapid  complementdepletion  and  acute  CD20  loss  in  chronic  lymphocytic  leukemia.  J  Immunol,2004.  172(5):  p.  3280-­‐8.

57. Byrd,  J.C.,  et  al.,  The  mechanism  of  tumor  cell  clearance  by  rituximab  in  vivoin  patients  with  B-­‐cell  chronic  lymphocytic  leukemia:  evidence  of  caspaseactivation  and  apoptosis  induction.  Blood,  2002.  99(3):  p.  1038-­‐43.

58. Cardarelli,  P.M.,  et  al.,  Binding  to  CD20  by  anti-­‐B1  antibody  or  F(ab')(2)  issufficient  for  induction  of  apoptosis  in  B-­‐cell  lines.  Cancer  immunology,immunotherapy  :  CII,  2002.  51(1):  p.  15-­‐24.

59. Shan,  D.,  J.A.  Ledbetter,  and  O.W.  Press,  Apoptosis  of  malignant  human  Bcells  by  ligation  of  CD20  with  monoclonal  antibodies.  Blood,  1998.  91(5):  p.1644-­‐52.

60. Byrd,  J.C.,  et  al.,  Rituximab  therapy  in  hematologic  malignancy  patientswith  circulating  blood  tumor  cells:  association  with  increased  infusion-­‐related  side  effects  and  rapid  blood  tumor  clearance.  Journal  of  clinicaloncology  :  official  journal  of  the  American  Society  of  Clinical  Oncology,1999.  17(3):  p.  791-­‐5.

61. Winkler,  U.,  et  al.,  Cytokine-­‐release  syndrome  in  patients  with  B-­‐cell  chroniclymphocytic  leukemia  and  high  lymphocyte  counts  after  treatment  with  ananti-­‐CD20  monoclonal  antibody  (rituximab,  IDEC-­‐C2B8).  Blood,  1999.94(7):  p.  2217-­‐24.

62. Voog,  E.,  F.  Morschhauser,  and  P.  Solal-­‐Celigny,  Neutropenia  in  patientstreated  with  rituximab.  The  New  England  journal  of  medicine,  2003.348(26):  p.  2691-­‐4;  discussion  2691-­‐4.

63. Chaiwatanatorn,  K.,  et  al.,  Delayed-­‐onset  neutropenia  associated  withrituximab  therapy.  British  journal  of  haematology,  2003.  121(6):  p.  913-­‐8.

64. Tesfa,  D.,  et  al.,  Late-­‐onset  neutropenia  following  rituximab  therapy  inrheumatic  diseases:  association  with  B  lymphocyte  depletion  and  infections.Arthritis  and  rheumatism,  2011.  63(8):  p.  2209-­‐14.

65. Besada,  E.,  W.  Koldingsnes,  and  J.  Nossent,  Characteristics  of  late  onsetneutropenia  in  rheumatologic  patients  treated  with  rituximab:  a  casereview  analysis  from  a  single  center.  QJM  :  monthly  journal  of  theAssociation  of  Physicians,  2012.  105(6):  p.  545-­‐50.

23

Page 41: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

66. Rozman,  S.,  M.  Sonc,  and  B.J.  Novakovic,  Late-­‐onset  neutropenia  followingprimary  treatment  of  diffuse  large  B-­‐cell  lymphoma  with  rituximab-­‐containing  therapy.  Leukemia  &  lymphoma,  2012.  53(10):  p.  1945-­‐8.

67. Nitta,  E.,  et  al.,  A  high  incidence  of  late-­‐onset  neutropenia  followingrituximab-­‐containing  chemotherapy  as  a  primary  treatment  of  CD20-­‐positive  B-­‐cell  lymphoma:  a  single-­‐institution  study.  Annals  of  oncology  :official  journal  of  the  European  Society  for  Medical  Oncology  /  ESMO,2007.  18(2):  p.  364-­‐9.

68. Weng,  W.K.,  et  al.,  Immunoglobulin  G  Fc  receptor  FcgammaRIIIa  158  V/Fpolymorphism  correlates  with  rituximab-­‐induced  neutropenia  afterautologous  transplantation  in  patients  with  non-­‐Hodgkin's  lymphoma.Journal  of  clinical  oncology  :  official  journal  of  the  American  Society  ofClinical  Oncology,  2010.  28(2):  p.  279-­‐84.

69. Koene,  H.R.,  et  al.,  Fc  gammaRIIIa-­‐158V/F  polymorphism  influences  thebinding  of  IgG  by  natural  killer  cell  Fc  gammaRIIIa,  independently  of  the  FcgammaRIIIa-­‐48L/R/H  phenotype.  Blood,  1997.  90(3):  p.  1109-­‐14.

70. Musolino,  A.,  et  al.,  Immunoglobulin  G  fragment  C  receptor  polymorphismsand  clinical  efficacy  of  trastuzumab-­‐based  therapy  in  patients  with  HER-­‐2/neu-­‐positive  metastatic  breast  cancer.  J  Clin  Oncol,  2008.  26(11):  p.1789-­‐96.

71. Zhang,  W.,  et  al.,  FCGR2A  and  FCGR3A  polymorphisms  associated  withclinical  outcome  of  epidermal  growth  factor  receptor  expressing  metastaticcolorectal  cancer  patients  treated  with  single-­‐agent  cetuximab.  J  Clin  Oncol,2007.  25(24):  p.  3712-­‐8.

72. Kim,  D.H.,  et  al.,  FCGR3A  gene  polymorphisms  may  correlate  with  responseto  frontline  R-­‐CHOP  therapy  for  diffuse  large  B-­‐cell  lymphoma.  Blood,  2006.108(8):  p.  2720-­‐5.

73. Mitrovic,  Z.,  et  al.,  FC{gamma}RIIIA  and  FC{gamma}RIIA  polymorphismsare  not  associated  with  response  to  rituximab  and  CHOP  in  patients  withdiffuse  large  B-­‐cell  lymphoma.  Haematologica,  2007.  92(7):  p.  998-­‐999.

74. Li,  S.C.,  et  al.,  Rituximab-­‐induced  late-­‐onset  neutropenia  in  newly  diagnosedB-­‐cell  lymphoma  correlates  with  Fc  receptor  FcgammaRIIIa  158(V/F)polymorphism.  Am  J  Hematol,  2010.  85(10):  p.  810-­‐2.

75. Weng,  W.K.,  et  al.,  Immunoglobulin  G  Fc  receptor  FcgammaRIIIa  158  V/Fpolymorphism  correlates  with  rituximab-­‐induced  neutropenia  afterautologous  transplantation  in  patients  with  non-­‐Hodgkin's  lymphoma.  JClin  Oncol,  2010.  28(2):  p.  279-­‐84.

76. Hincks,  I.,  B.E.  Woodcock,  and  J.  Thachil,  Is  Rituximab-­‐induced  Late-­‐onsetNeutropenia  a  good  prognostic  indicator  in  lymphoproliferatve  disorders?Br  J  Haematol,  2011.

77. Racila,  E.,  et  al.,  The  pattern  of  clinical  breast  cancer  metastasis  correlateswith  a  single  nucleotide  polymorphism  in  the  C1qA  component  ofcomplement.  Immunogenetics,  2006.  58(1):  p.  1-­‐8.

78. Racila,  E.,  et  al.,  A  polymorphism  in  the  complement  component  C1qAcorrelates  with  prolonged  response  following  rituximab  therapy  of  follicularlymphoma.  Clin  Cancer  Res,  2008.  14(20):  p.  6697-­‐703.

79. Topalian,  S.L.,  et  al.,  Safety,  activity,  and  immune  correlates  of  anti-­‐PD-­‐1antibody  in  cancer.  The  New  England  journal  of  medicine,  2012.  366(26):p. 2443-­‐54.

24

Page 42: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

80.   Brahmer,  J.R.,  et  al.,  Safety  and  activity  of  anti-­‐PD-­‐L1  antibody  in  patients  with  advanced  cancer.  The  New  England  journal  of  medicine,  2012.  366(26):  p.  2455-­‐65.  

81.   Witzig,  T.E.,  et  al.,  An  international  phase  II  trial  of  single-­‐agent  lenalidomide  for  relapsed  or  refractory  aggressive  B-­‐cell  non-­‐Hodgkin's  lymphoma.  Annals  of  oncology  :  official  journal  of  the  European  Society  for  Medical  Oncology  /  ESMO,  2011.  22(7):  p.  1622-­‐7.  

82.   Xu,  Y.,  et  al.,  Prognostic  significance  of  tumour-­‐infiltrating  T  lymphocytes  and  T-­‐cell  subsets  in  de  novo  diffuse  large  B-­‐cell  lymphoma:  a  multiparameter  flow  cytometry  study.  British  journal  of  haematology,  2001.  112(4):  p.  945-­‐9.  

83.   Ansell,  S.M.,  et  al.,  Cd4+  T-­‐cell  immune  response  to  large  B-­‐cell  non-­‐Hodgkin's  lymphoma  predicts  patient  outcome.  Journal  of  clinical  oncology  :  official  journal  of  the  American  Society  of  Clinical  Oncology,  2001.  19(3):  p.  720-­‐6.  

84.   Fridman,  W.H.,  et  al.,  The  immune  contexture  in  human  tumours:  impact  on  clinical  outcome.  Nature  reviews.  Cancer,  2012.  12(4):  p.  298-­‐306.  

85.   deLeeuw,  R.J.,  et  al.,  The  prognostic  value  of  FoxP3+  tumor-­‐infiltrating  lymphocytes  in  cancer:  a  critical  review  of  the  literature.  Clinical  cancer  research  :  an  official  journal  of  the  American  Association  for  Cancer  Research,  2012.  18(11):  p.  3022-­‐9.  

86.   Lee,  A.M.,  et  al.,  Number  of  CD4+  cells  and  location  of  forkhead  box  protein  P3-­‐positive  cells  in  diagnostic  follicular  lymphoma  tissue  microarrays  correlates  with  outcome.  Journal  of  clinical  oncology  :  official  journal  of  the  American  Society  of  Clinical  Oncology,  2006.  24(31):  p.  5052-­‐9.  

87.   Mei,  Z.,  et  al.,  Tumour-­‐infiltrating  inflammation  and  prognosis  in  colorectal  cancer:  systematic  review  and  meta-­‐analysis.  British  journal  of  cancer,  2014.  

88.   Seo,  A.N.,  et  al.,  Tumour-­‐infiltrating  CD8+  lymphocytes  as  an  independent  predictive  factor  for  pathological  complete  response  to  primary  systemic  therapy  in  breast  cancer.  British  journal  of  cancer,  2013.  109(10):  p.  2705-­‐13.  

89.   Besser,  M.J.,  et  al.,  Adoptive  transfer  of  tumor-­‐infiltrating  lymphocytes  in  patients  with  metastatic  melanoma:  intent-­‐to-­‐treat  analysis  and  efficacy  after  failure  to  prior  immunotherapies.  Clinical  cancer  research  :  an  official  journal  of  the  American  Association  for  Cancer  Research,  2013.  19(17):  p.  4792-­‐800.  

90.   Nguyen,  L.T.,  et  al.,  Expansion  and  characterization  of  human  melanoma  tumor-­‐infiltrating  lymphocytes  (TILs).  PloS  one,  2010.  5(11):  p.  e13940.  

91.   Dudley,  M.E.,  et  al.,  Adoptive  cell  therapy  for  patients  with  metastatic  melanoma:  evaluation  of  intensive  myeloablative  chemoradiation  preparative  regimens.  Journal  of  clinical  oncology  :  official  journal  of  the  American  Society  of  Clinical  Oncology,  2008.  26(32):  p.  5233-­‐9.  

92.   Lenz,  G.,  et  al.,  Molecular  subtypes  of  diffuse  large  B-­‐cell  lymphoma  arise  by  distinct  genetic  pathways.  Proceedings  of  the  National  Academy  of  Sciences  of  the  United  States  of  America,  2008.  105(36):  p.  13520-­‐5.  

93.   Monti,  S.,  et  al.,  Molecular  profiling  of  diffuse  large  B-­‐cell  lymphoma  identifies  robust  subtypes  including  one  characterized  by  host  inflammatory  response.  Blood,  2005.  105(5):  p.  1851-­‐61.  

25

Page 43: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

94. Hasselblom,  S.,  et  al.,  The  number  of  tumour-­‐infiltrating  TIA-­‐1+  cytotoxic  Tcells  but  not  FOXP3+  regulatory  T  cells  predicts  outcome  in  diffuse  large  B-­‐cell  lymphoma.  British  journal  of  haematology,  2007.  137(4):  p.  364-­‐73.

95. Alizadeh,  A.A.,  et  al.,  Prediction  of  survival  in  diffuse  large  B-­‐cell  lymphomabased  on  the  expression  of  2  genes  reflecting  tumor  and  microenvironment.Blood,  2011.  118(5):  p.  1350-­‐8.

96. Rimsza,  L.M.,  et  al.,  Loss  of  MHC  class  II  gene  and  protein  expression  indiffuse  large  B-­‐cell  lymphoma  is  related  to  decreased  tumorimmunosurveillance  and  poor  patient  survival  regardless  of  otherprognostic  factors:  a  follow-­‐up  study  from  the  Leukemia  and  LymphomaMolecular  Profiling  Project.  Blood,  2004.  103(11):  p.  4251-­‐8.

97. Phipps-­‐Yonas,  H.,  et  al.,  Low  GILT  Expression  is  Associated  with  PoorPatient  Survival  in  Diffuse  Large  B-­‐Cell  Lymphoma.  Frontiers  inimmunology,  2013.  4:  p.  425.

98. Tran,  H.,  et  al.,  Immunodeficiency-­‐associated  lymphomas.  Blood  reviews,2008.  22(5):  p.  261-­‐81.

99. Quinlan,  S.C.,  et  al.,  Risk  factors  for  early-­‐onset  and  late-­‐onset  post-­‐transplant  lymphoproliferative  disorder  in  kidney  recipients  in  the  UnitedStates.  American  journal  of  hematology,  2011.  86(2):  p.  206-­‐9.

100.   Porcu,  P.,  et  al.,  Successful  treatment  of  posttransplantation  lymphoproliferative  disorder  (PTLD)  following  renal  allografting  is  associated  with  sustained  CD8(+)  T-­‐cell  restoration.  Blood,  2002.  100(7):  p. 2341-­‐8.

101.   Wilcox,  R.A.,  et  al.,  The  absolute  monocyte  and  lymphocyte  prognostic  score  predicts  survival  and  identifies  high-­‐risk  patients  in  diffuse  large-­‐B-­‐cell  lymphoma.  Leukemia  :  official  journal  of  the  Leukemia  Society  of  America,  Leukemia  Research  Fund,  U.K,  2011.  25(9):  p.  1502-­‐9.  

102.   Li,  Z.M.,  et  al.,  Blood  Lymphocyte-­‐to-­‐Monocyte  Ratio  Identifies  High-­‐Risk  Patients  in  Diffuse  Large  B-­‐Cell  Lymphoma  Treated  with  R-­‐CHOP.  PloS  one,  2012.  7(7):  p.  e41658.  

103.   Houot,  R.,  et  al.,  Therapeutic  effect  of  CD137  immunomodulation  in  lymphoma  and  its  enhancement  by  Treg  depletion.  Blood,  2009.  114(16):  p. 3431-­‐8.

104.   Droeser,  R.,  et  al.,  Differential  pattern  and  prognostic  significance  of  CD4+,  FOXP3+  and  IL-­‐17+  tumor  infiltrating  lymphocytes  in  ductal  and  lobular  breast  cancers.  BMC  cancer,  2012.  12:  p.  134.  

105.   Yang,  Z.Z.,  et  al.,  Intratumoral  CD4+CD25+  regulatory  T-­‐cell-­‐mediated  suppression  of  infiltrating  CD4+  T  cells  in  B-­‐cell  non-­‐Hodgkin  lymphoma.  Blood,  2006.  107(9):  p.  3639-­‐46.  

106.   Tzankov,  A.,  et  al.,  Correlation  of  high  numbers  of  intratumoral  FOXP3+  regulatory  T  cells  with  improved  survival  in  germinal  center-­‐like  diffuse  large  B-­‐cell  lymphoma,  follicular  lymphoma  and  classical  Hodgkin's  lymphoma.  Haematologica,  2008.  93(2):  p.  193-­‐200.  

107.   Coutinho  R,  C.A.,  Owen  D,    Greaves  P,  Hallam  S,  Wilson  A,    Matthews  J,  Calaminici  M,    Gribben  J,  ,  Exploring  the  Immune  Microenvironment  of  Diffuse  Large  B  Cell  Lymphoma  in  a  Tissue  Microarray:  Predicting  Survival  with  a  Score  That  Incorporates  Macrophages,  Cytotoxic  and  Regulatory  T  Cells,  in  Oral  Abstract  951  American  Society  of  Haematology  Annual  Meeting2011:  San  Diego.  

26

Page 44: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

108.   Haabeth,  O.A.,  et  al.,  Inflammation  driven  by  tumour-­‐specific  Th1  cells  protects  against  B-­‐cell  cancer.  Nature  communications,  2011.  2:  p.  240.  

109.   Mori,  T.,  et  al.,  T-­‐helper  (Th)1/Th2  imbalance  in  patients  with  previously  untreated  B-­‐cell  diffuse  large  cell  lymphoma.  Cancer  immunology,  immunotherapy  :  CII,  2001.  50(10):  p.  566-­‐8.  

110.   Ding,  Z.C.,  et  al.,  Polyfunctional  CD4+  T  cells  are  essential  for  eradicating  advanced  B-­‐cell  lymphoma  after  chemotherapy.  Blood,  2012.  

111.   Bernd,  H.W.,  et  al.,  Loss  of  HLA-­‐DR  expression  and  immunoblastic  morphology  predict  adverse  outcome  in  diffuse  large  B-­‐cell  lymphoma  -­‐  analyses  of  cases  from  two  prospective  randomized  clinical  trials.  Haematologica,  2009.  94(11):  p.  1569-­‐80.  

112.   Pasqualucci,  L.,  et  al.,  Analysis  of  the  coding  genome  of  diffuse  large  B-­‐cell  lymphoma.  Nature  genetics,  2011.  43(9):  p.  830-­‐7.  

113.   Andorsky,  D.J.,  et  al.,  Programmed  death  ligand  1  is  expressed  by  non-­‐hodgkin  lymphomas  and  inhibits  the  activity  of  tumor-­‐associated  T  cells.  Clinical  cancer  research  :  an  official  journal  of  the  American  Association  for  Cancer  Research,  2011.  17(13):  p.  4232-­‐44.  

114.   Berger,  R.,  et  al.,  Phase  I  safety  and  pharmacokinetic  study  of  CT-­‐011,  a  humanized  antibody  interacting  with  PD-­‐1,  in  patients  with  advanced  hematologic  malignancies.  Clinical  cancer  research  :  an  official  journal  of  the  American  Association  for  Cancer  Research,  2008.  14(10):  p.  3044-­‐51.  

115.   Rotem-­‐Yehudar  R,  A.P.,  Devine  S,  et  al.,  1216  the  human-­‐ized  anti  PD-­‐1  antibody,  CT-­‐011,  increases  specific  CD4+  effector/memory  and  memory  T  lymphocytes  in  patients  with  diffuse  large  B  cell  lymphoma  (DLBCL)  following  autologous  stem  cell  transplantation  (AuSCT).  Blood  (ASH  Annual  Meeting  Abstracts).  2009;114:1216.  

116.   Ansell,  S.M.,  et  al.,  Phase  I  study  of  ipilimumab,  an  anti-­‐CTLA-­‐4  monoclonal  antibody,  in  patients  with  relapsed  and  refractory  B-­‐cell  non-­‐Hodgkin  lymphoma.  Clinical  cancer  research  :  an  official  journal  of  the  American  Association  for  Cancer  Research,  2009.  15(20):  p.  6446-­‐53.  

117.   Westin,  J.R.,  et  al.,  Safety  and  activity  of  PD1  blockade  by  pidilizumab  in  combination  with  rituximab  in  patients  with  relapsed  follicular  lymphoma:  a  single  group,  open-­‐label,  phase  2  trial.  The  lancet  oncology,  2014.  15(1):  p.  69-­‐77.  

118.   Armand,  P.,  et  al.,  Disabling  immune  tolerance  by  programmed  death-­‐1  blockade  with  pidilizumab  after  autologous  hematopoietic  stem-­‐cell  transplantation  for  diffuse  large  B-­‐cell  lymphoma:  results  of  an  international  phase  II  trial.  Journal  of  clinical  oncology  :  official  journal  of  the  American  Society  of  Clinical  Oncology,  2013.  31(33):  p.  4199-­‐206.  

119.   Taube,  J.M.,  et  al.,  Colocalization  of  inflammatory  response  with  B7-­‐h1  expression  in  human  melanocytic  lesions  supports  an  adaptive  resistance  mechanism  of  immune  escape.  Science  translational  medicine,  2012.  4(127):  p.  127ra37.  

120.   Felgar,  R.E.,  et  al.,  T-­‐cell-­‐rich  large-­‐B-­‐cell  lymphomas  contain  non-­‐activated  CD8+  cytolytic  T  cells,  show  increased  tumor  cell  apoptosis,  and  have  lower  Bcl-­‐2  expression  than  diffuse  large-­‐B-­‐cell  lymphomas.  The  American  journal  of  pathology,  1998.  153(6):  p.  1707-­‐15.  

27

Page 45: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

121.   Bollard,  C.M.,  L.J.  Cooper,  and  H.E.  Heslop,  Immunotherapy  targeting  EBV-­‐expressing  lymphoproliferative  diseases.  Best  practice  &  research.  Clinical  haematology,  2008.  21(3):  p.  405-­‐20.  

122.   Kanakry,  J.A.  and  R.F.  Ambinder,  EBV-­‐related  lymphomas:  new  approaches  to  treatment.  Current  treatment  options  in  oncology,  2013.  14(2):  p.  224-­‐36.  

123.   Challa-­‐Malladi,  M.,  et  al.,  Combined  genetic  inactivation  of  beta2-­‐Microglobulin  and  CD58  reveals  frequent  escape  from  immune  recognition  in  diffuse  large  B  cell  lymphoma.  Cancer  cell,  2011.  20(6):  p.  728-­‐40.  

124.   List,  A.F.,  et  al.,  Deficient  tumor-­‐infiltrating  T-­‐lymphocyte  response  in  malignant  lymphoma:  relationship  to  HLA  expression  and  host  immunocompetence.  Leukemia  :  official  journal  of  the  Leukemia  Society  of  America,  Leukemia  Research  Fund,  U.K,  1993.  7(3):  p.  398-­‐403.  

125.   Galand,  C.,  et  al.,  Influence  of  Tumor  Location  on  the  Composition  of  Immune  Infiltrate  and  Its  Impact  on  Patient  Survival.  Lessons  from  DCBCL  and  Animal  Models.  Frontiers  in  immunology,  2012.  3:  p.  98.  

126.   Riemersma,  S.A.,  et  al.,  High  numbers  of  tumour-­‐infiltrating  activated  cytotoxic  T  lymphocytes,  and  frequent  loss  of  HLA  class  I  and  II  expression,  are  features  of  aggressive  B  cell  lymphomas  of  the  brain  and  testis.  The  Journal  of  pathology,  2005.  206(3):  p.  328-­‐36.  

127.   Rydstrom,  K.,  et  al.,  Gene  expression  profiling  indicates  that  immunohistochemical  expression  of  CD40  is  a  marker  of  an  inflammatory  reaction  in  the  tumor  stroma  of  diffuse  large  B-­‐cell  lymphoma.  Leukemia  &  lymphoma,  2012.  53(9):  p.  1764-­‐8.  

128.   Wahlin,  B.E.,  et  al.,  CD8+  T-­‐cell  content  in  diagnostic  lymph  nodes  measured  by  flow  cytometry  is  a  predictor  of  survival  in  follicular  lymphoma.  Clinical  cancer  research  :  an  official  journal  of  the  American  Association  for  Cancer  Research,  2007.  13(2  Pt  1):  p.  388-­‐97.  

129.   Wahlin,  B.E.,  et  al.,  T  cells  in  tumors  and  blood  predict  outcome  in  follicular  lymphoma  treated  with  rituximab.  Clinical  cancer  research  :  an  official  journal  of  the  American  Association  for  Cancer  Research,  2011.  17(12):  p.  4136-­‐44.  

130.   Steidl,  C.,  et  al.,  Tumor-­‐associated  macrophages  and  survival  in  classic  Hodgkin's  lymphoma.  The  New  England  journal  of  medicine,  2010.  362(10):  p.  875-­‐85.  

131.   Steidl,  C.,  J.M.  Connors,  and  R.D.  Gascoyne,  Molecular  pathogenesis  of  Hodgkin's  lymphoma:  increasing  evidence  of  the  importance  of  the  microenvironment.  Journal  of  clinical  oncology  :  official  journal  of  the  American  Society  of  Clinical  Oncology,  2011.  29(14):  p.  1812-­‐26.  

132.   Greaves,  P.,  et  al.,  Expression  of  FOXP3,  CD68,  and  CD20  at  diagnosis  in  the  microenvironment  of  classical  Hodgkin  lymphoma  is  predictive  of  outcome.  Journal  of  clinical  oncology  :  official  journal  of  the  American  Society  of  Clinical  Oncology,  2013.  31(2):  p.  256-­‐62.  

133.   Meyer,  P.N.,  et  al.,  The  stromal  cell  marker  SPARC  predicts  for  survival  in  patients  with  diffuse  large  B-­‐cell  lymphoma  treated  with  rituximab.  American  journal  of  clinical  pathology,  2011.  135(1):  p.  54-­‐61.  

134.   Keane,  C.,  et  al.,  Homozygous  FCGR3A-­‐158V  alleles  predispose  to  late  onset  neutropenia  after  CHOP-­‐R  for  diffuse  large  B-­‐cell  lymphoma.  Internal  medicine  journal,  2012.  42(10):  p.  1113-­‐9.  

28

Page 46: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

135.   Muller,  C.,  et  al.,  The  role  of  sex  and  weight  on  rituximab  clearance  and  serum  elimination  half-­‐life  in  elderly  patients  with  DLBCL.  Blood,  2012.  119(14):  p.  3276-­‐84.  

136.   Kristiansen,  M.,  et  al.,  Identification  of  the  haemoglobin  scavenger  receptor.  Nature,  2001.  409(6817):  p.  198-­‐201.  

137.   Schaer,  D.J.,  et  al.,  CD163  is  the  macrophage  scavenger  receptor  for  native  and  chemically  modified  hemoglobins  in  the  absence  of  haptoglobin.  Blood,  2006.  107(1):  p.  373-­‐80.  

138.   Natkunam,  Y.,  et  al.,  LMO2  protein  expression  predicts  survival  in  patients  with  diffuse  large  B-­‐cell  lymphoma  treated  with  anthracycline-­‐based  chemotherapy  with  and  without  rituximab.  Journal  of  clinical  oncology  :  official  journal  of  the  American  Society  of  Clinical  Oncology,  2008.  26(3):  p. 447-­‐54.

139.   Mikami,  M.,  et  al.,  Monocyte/Macrophage-­‐specific  marker  CD163+  histiocytic  sarcoma:  case  report  with  clinical,  morphologic,  immunohistochemical,  and  molecular  genetic  studies.  International  journal  of  hematology,  2004.  80(4):  p.  365-­‐9.  

140.   Nam,  S.J.,  et  al.,  An  increase  of  M2  macrophages  predicts  poor  prognosis  in  diffuse  large  B-­‐cell  lymphoma  patients  treated  with  Rituximab-­‐CHOP.  Leukemia  &  lymphoma,  2014.  

141.   Wada,  N.,  et  al.,  Tumour-­‐associated  macrophages  in  diffuse  large  B-­‐cell  lymphoma:  a  study  of  the  Osaka  Lymphoma  Study  Group.  Histopathology,  2012.  60(2):  p.  313-­‐9.  

142.   Hasselblom,  S.,  et  al.,  Expression  of  CD68+  tumor-­‐associated  macrophages  in  patients  with  diffuse  large  B-­‐cell  lymphoma  and  its  relation  to  prognosis.  Pathology  international,  2008.  58(8):  p.  529-­‐32.  

143.   Cai,  Q.C.,  et  al.,  High  expression  of  tumor-­‐infiltrating  macrophages  correlates  with  poor  prognosis  in  patients  with  diffuse  large  B-­‐cell  lymphoma.  Medical  oncology,  2012.  29(4):  p.  2317-­‐22.  

144.   Timmermann,  M.,  et  al.,  Interaction  of  soluble  CD163  with  activated  T  lymphocytes  involves  its  association  with  non-­‐muscle  myosin  heavy  chain  type  A.  Immunology  and  cell  biology,  2004.  82(5):  p.  479-­‐87.  

145.   Jones,  K.,  et  al.,  Serum  CD163  and  TARC  as  disease  response  biomarkers  in  classical  Hodgkin  lymphoma.  Clinical  cancer  research  :  an  official  journal  of  the  American  Association  for  Cancer  Research,  2013.  19(3):  p.  731-­‐42.  

146.   Jensen,  T.O.,  et  al.,  Macrophage  markers  in  serum  and  tumor  have  prognostic  impact  in  American  Joint  Committee  on  Cancer  stage  I/II  melanoma.  Journal  of  clinical  oncology  :  official  journal  of  the  American  Society  of  Clinical  Oncology,  2009.  27(20):  p.  3330-­‐7.  

147.   Lin,  Y.,  et  al.,  Immunosuppressive  CD14+HLA-­‐DR(low)/-­‐  monocytes  in  B-­‐cell  non-­‐Hodgkin  lymphoma.  Blood,  2011.  117(3):  p.  872-­‐81.  

148.   Jordan,  K.R.,  et  al.,  Myeloid-­‐derived  suppressor  cells  are  associated  with  disease  progression  and  decreased  overall  survival  in  advanced-­‐stage  melanoma  patients.  Cancer  immunology,  immunotherapy  :  CII,  2013.  62(11):  p.  1711-­‐22.  

149.   Zhang,  B.,  et  al.,  Circulating  and  tumor-­‐infiltrating  myeloid-­‐derived  suppressor  cells  in  patients  with  colorectal  carcinoma.  PloS  one,  2013.  8(2):  p.  e57114.  

29

Page 47: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

150.   Pardoll,  D.M.,  The  blockade  of  immune  checkpoints  in  cancer  immunotherapy.  Nature  reviews.  Cancer,  2012.  12(4):  p.  252-­‐64.  

151.   Myklebust,  J.H.,  et  al.,  High  PD-­‐1  expression  and  suppressed  cytokine  signaling  distinguish  T  cells  infiltrating  follicular  lymphoma  tumors  from  peripheral  T  cells.  Blood,  2013.  121(8):  p.  1367-­‐76.  

152.   Jacobsen,  E.D.,  Restoring  antitumor  immunity  via  PD-­‐1  blockade  after  autologous  stem-­‐cell  transplantation  for  diffuse  large  B-­‐cell  lymphoma.  Journal  of  clinical  oncology  :  official  journal  of  the  American  Society  of  Clinical  Oncology,  2013.  31(33):  p.  4268-­‐70.  

153.   Wolchok,  J.D.,  et  al.,  Nivolumab  plus  ipilimumab  in  advanced  melanoma.  The  New  England  journal  of  medicine,  2013.  369(2):  p.  122-­‐33.  

154.   Greaves,  P.  and  J.G.  Gribben,  The  role  of  B7  family  molecules  in  hematologic  malignancy.  Blood,  2013.  121(5):  p.  734-­‐44.  

155.   Geiss,  G.K.,  et  al.,  Direct  multiplexed  measurement  of  gene  expression  with  color-­‐coded  probe  pairs.  Nature  biotechnology,  2008.  26(3):  p.  317-­‐25.  

156.   Ramaswamy,  V.,  et  al.,  Recurrence  patterns  across  medulloblastoma  subgroups:  an  integrated  clinical  and  molecular  analysis.  The  lancet  oncology,  2013.  14(12):  p.  1200-­‐7.  

157.   Kolbert,  C.P.,  et  al.,  Multi-­‐platform  analysis  of  microRNA  expression  measurements  in  RNA  from  fresh  frozen  and  FFPE  tissues.  PloS  one,  2013.  8(1):  p.  e52517.  

158.   Malkov,  V.A.,  et  al.,  Multiplexed  measurements  of  gene  signatures  in  different  analytes  using  the  Nanostring  nCounter  Assay  System.  BMC  research  notes,  2009.  2:  p.  80.  

159.   Scott,  D.W.,  et  al.,  Determining  cell-­‐of-­‐origin  subtypes  of  diffuse  large  B-­‐cell  lymphoma  using  gene  expression  in  formalin-­‐fixed  paraffin  embedded  tissue.  Blood,  2014.  

160.   Masque-­‐Soler,  N.,  et  al.,  Molecular  classification  of  mature  aggressive  B-­‐cell  lymphoma  using  digital  multiplexed  gene  expression  on  formalin-­‐fixed  paraffin-­‐embedded  biopsy  specimens.  Blood,  2013.  122(11):  p.  1985-­‐6.  

161.   Dowsett,  M.,  et  al.,  Comparison  of  PAM50  risk  of  recurrence  score  with  oncotype  DX  and  IHC4  for  predicting  risk  of  distant  recurrence  after  endocrine  therapy.  Journal  of  clinical  oncology  :  official  journal  of  the  American  Society  of  Clinical  Oncology,  2013.  31(22):  p.  2783-­‐90.  

   

30

Page 48: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

CHAPTER  2  

Research  Design  and  Methods  

31

Page 49: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

Research  Design  and  Methods  Introduction  

Many  of  the  research  design  and  methods  are  described  in  the  published  

chapters  making  up  this  PhD.  However  in  the  following  pages,  I  have  tried  to  

expand  some  of  the  important  methods  in  more  detail.  Published  articles  give  a  

basic  review  of  methods  so  I  felt  it  appropriate  to  include  more  detailed  

explanations  in  this  section.  

2.1  Clinical  Sample  Accrual  

My  research  questions  required  well  annotated  patient  cohorts  in  addition  to  

tissue  availability  to  produce  meaningful  results.  I  will  describe  the  cohorts  used  

in  each  of  my  research  questions  below  as  there  was  minor  changes  in  exact  

numbers  of  patients  used  for  each  of  these  questions  based  on  available  tissue  

and  clinical  information  at  the  time  of  analysis.  

Firstly,  I  acquired  a  clinical  database  from  Dr.  Peter  Mollee  at  Princess  Alexandra  

Hospital  which  included  all  patients  diagnosed  with  DLBCL  between  2003-­‐2009.  

Using  this  database  I  was  able  to  identify  approximately  200  patients  with  

DLBCL.  I  personally  continued  this  database  and  researched  and  obtained  

additional  samples  occurring  between  2009-2011  and  other  patients  missing  

from  the  database  but  treated  at  PA  hospital.  This  time  period  was  chosen  as  it  

reflected  the  introduction  of  rituximab  in  Queensland.  However  not  all  patients  

in  this  time  period  received  rituximab  as  it  only  was  initially  available  to  patients  

over  the  age  of  60  until  early  2004  at  which  stage  government  funding  allowed  

all  patients  with  DLBCL  to  be  treated  with  rituximab  in  association  with  their  

standard  chemotherapy.    

A  formal  request  was  then  made  to  Pathology  Queensland  for  access  to  biopsy  

specimens  related  to  these  patients.  Approval  for  tissue  collection  was  provided  

by  the  Ethics  Committee  of  the  Princess  Alexandra  Hospital.  Unfortunately,  

biopsy  specimens  are  only  kept  on-­‐site  for  6-­‐9  months  after  which  they  are  

stored  at  a  commercial  contractor  by  Pathology  Queensland.  Due  to  significant  

costs  in  contracting  this  commercial  company  to  find  relevant  biopsies  for  my  

study  ($50  per  specimen),  Pathology  Queensland  allowed  me  to  get  special  

access  to  the  offsite  commercial  storage  facility  to  obtain  these  samples.  I  spent  

32

Page 50: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

12-­‐15  hours  reviewing  boxes  of  archived  FFPE  tissue  in  order  to  obtain  DLBCL  

specimens.  

Due  to  Pathology  Queensland  and  legal  guidelines,  I  was  only  allowed  to  obtain  

material  in  samples  with  significant  amounts  of  tissue  as  all  specimens  must  be  

kept  for  10  years  in  case  of  requirement  for  review  and  sufficient  tissue  must  

remain  for  re-­‐analysis.  In  addition,  large  number  of  patients  with  DLBCL  are  

diagnosed  without  ever  having  an  excisional  biopsy,  rather  these  patients  have  

core  biopsies  which  are  generally  so  small  that  is  highly  unlikely  there  will  be  

sufficient  tissue  for  research  processing.  These  factors  had  significant  impact  on  

the  number  of  patient  samples  obtained.  Unsurprisingly,  this  is  also  reflected  in  

the  NHL21  cohort  in  which  at  the  time  of  analysis  I  received  approximately  50%  

of  tissue  samples  compared  to  almost  87%  of  patients  in  whom  we  have  received  

blood  samples  on.  Additional  samples  have  been  received  but  these  were  not  

available  during  the  time  period  of  my  laboratory  analysis  for  this  thesis.  My  

initial  ideal  requirements  were  to  obtain  3x30 micron  slices.  Processing  was  

performed  at  Pathology  Queensland,  PAH  and  at  the  Pathology  Department  at  

Queensland  Institute  of  Medical  Research.  The  tissue  slices  were  used  to  extract  

RNA  and  DNA  required  for  PCR  and  gene  expression  based  analysis.    

The  restrictions  imposed  by  small  diagnostic  biopsies  and  institutional  and  legal  

requirements  has  significant  impacts  on  amount  of  tissue  available  for  research  

studies.    My  research  was  significantly  helped  when  it  became  possible  to  access  

further  tissue  samples  from  another  Australian  retrospective  cohort  based  at  

Canberra,  courtesy  of  Dr  Dipti  Talaulikar.  In  combination  with  current  tissue  

processed,  I  have  developed  a  database  of  195  samples  from  patients  with  

DLBCL  (63  retrospective  from  PAH,  65  retrospective  from  Canberra,  67  samples  

from  the  prospective  NHL21  cohort)  all  with  tissue  available  and  good  clinical  

data.  However,  at  this  stage  there  is  no  survival  data  available  for  the  NHL21  

cohort  with  a  first  survival  analysis  due  to  be  performed  in  mid-­‐2015.  

2.2  Patient  Cohorts  

Retrospective  Cohort  for  Chapter  3  

One  hundred  and  fifteen  patients  were  identified.  R-­‐CHOP  consisted  of  an  

intravenous  infusion  of  cyclophosphamide  750  mg/m2,  adriamycin  50  mg/m2,  

33

Page 51: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

vincristine  1.4  mg/m2  (capped  at  2 mg),  oral  administration  of  100  mg  prednisone  

on  days  1  to  5  (CHOP),  and  Rituximab  375  mg/m2  at  day  1  before  CHOP  

chemotherapy  began.  Patients  with  stage  I/II  disease  typically  received  4  courses  

of  chemoc immunotherapy  followed  by  involvedc field  radiotherapy  (30c 40  

Gy),  while  patients  with  advanced  stage  disease  received  6  to  8  cycles  of  chemoc

immunotherapy  followed  by  radiotherapy  to  bulky  sites.  In  patients  receiving  <8  

cycles  of  combination  therapy,  further  rituximab  was  administered  as  

monotherapy  so  that  in  total  patients  received  8  doses.  Maintenance  rituximab  

after  completion  of  Rc CHOP  therapy  was  not  administered. DNA  extracted  from  

formalinc fixed   paraffinc embedded  tissue  (FFPET)  was  of  sufficient  quality  to  

perform  PCR  analysis  in  90  patients  for  FCGR3A2 V158F  polymorphisms  and  81  

patients   for   C1qA2 A276G  polymorphism.  One  hundred  and  five  consenting  

healthy  adult  volunteers  served  as  controls.  Controls  specifically  denied  

haematological  or  autoimmune  disorders  of  any  kind.  

Retrospective  Cohort  for  Chapter  4  

Analysis   was   restricted   to   DLBCL   patients   treated   with   R-­‐CHOP   between   1st  

January   2003   –   1st   January   2010   at   the   Princess   Alexandra   Hospital,   Brisbane.  

Inclusion   criteria   were   age   ≥18   years,   histologically   confirmed   de   novo  

DLBCL   (grade   IIIB   follicular   lymphoma   and   transformed   follicular  

lymphoma   were  excluded)   with   full   clinical   annotation   including   Rc IPI  

scores,   CBC   and   survival   data.   All   patients   were   assigned   to   Rc CHOP  

chemoc immunotherapy,   as   per  standard  institutional  practice.  Therapy  was  

delivered  as  per  cohort  1  described  above.  HIV  positive  patients  or  those  postc

transplant  were  excluded.    

This   retropective   cohort   included   patients   treated   at   the     Princess   Alexandra  

Hospital.   Tissue   was   not   required   for   assessment   of   absolute   lymphocyte   and  

monocyte   count   and   122   patients   were   available   for   this   assessement.   Flow  

cytometry  data  was  available  for  75  of  these  patients.  

Prospective  NHL21  Cohort  for  Chapter  5  

My   prospective   cohort   consists   of     patients   treated   on   the   ALLG   NHL21   trial.  

This   was   a   planned   prospective   laboratory   subc study   sponsored   by   the   ALLG  

within   the   NHL21   clinical   trial   (Clinical   Trials   Identifier:  

ACTRN12609001077257).  Clinical  parameters  were  source  verified  and  disease  

stage  and  IPI  were  central  reviewed.  Patients  gave  written  informed  consent  to  

34

Page 52: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

provide  blood  samples   for   laboratory  analysis.  Where  possible,   tissue  slices   for  

RNA/DNA  and  TMA  blocks  were  mandated  to  be  supplied  to  our  lab  if  sufficient  

tissue  was  available.  In  addition,  thirty  milliliters  of  blood  were  collected  at  pre-­‐

therapy  and  day  21  after  cycle   four  of  R-­‐CHOP  (post-­‐cycle  4).  Peripheral  blood  

was   also   taken   from   healthy   laboratory   volunteers   without   prior   diagnoses   of  

malignant,   hematological   or   autoimmune   disorders   who   also   provided   written  

informed   consent.   The   study   was   approved   by   all   participating  

Hospital/Research   Institute   Ethics   Committees   and   performed   in   accordance  

with   the   Declaration   of   Helsinki.   Induction   chemotherapy   consisted   of   four  

cycles   of   R-­‐CHOP   administered   every   14   days   (R-­‐CHOP-­‐14),   supported   with  

pegylated   granulocyte   colony   stimulating   factor   (peg-­‐G-­‐CSF).   Post -­‐cycle   4,  

chemo-­‐immunotherapy   w a s   d e layed   a   w e ek   a n d   a n   i n terim-­‐PET/CT   scan  

performed   between   days   17-­‐20.   R-­‐CHOP   consisted   of:   day   1   rituximab   375  

mg/m2   intravenous  (IV)   infusion,  cyclophosphamide  750  mg/m2   IV,  doxorubicin  

50   mg/m2   IV,   vincristine   1.4   mg/m2   (maximum   2 mg)   IV,   and   prednisone   100  

mg/day   orally   for   5   days.   Following   interim-­‐PET/CT,   patients   received   risk-­‐

stratified  therapy.  

Figure  2.  Schema  for  ALLG  NHL21  Study  

35

Page 53: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

2.3  PET/CT  analysis  Prec approved   imaging   centres   performed   dualc modality   PET/CT,  

with   centralised   review   at   the   Peter  MacCallum   Cancer   Centre,  Melbourne.   All  

interim  scans   were   reviewed   centrally   alongside   diagnostic   prec therapy   scans  

(blinded   to   the   local   PET/CT   assessment),   to   verify   residual   abnormal   FDG  

uptake   at   sites   of   previously   identified   activity.   Metabolic   response   was  

categorised   using   the   ‘International   Harmonisation   Project   in  

Lymphoma’   guidelines,   on   which  Professor   Rodney   Hicks   was   a   member  

of   the   working   party.   Patients   with   a   complete   metabolic   response   were  

classified   as   interimc PET/CTc ve,   and   those   remaining   PET   FDGc avid  

interimc PET/CT+ve

General  Methods  

2.4  RNA/DNA  extraction  

Nucleic  acid  extraction  was  performed  using  an  Ambion  Recover  All  Total  

Nucleic  acid  kit  as  per  manufacturer’s  instructions.  In  total  between  

retrospective  and  prospective  cohorts  195  FFPE  samples  had  RNA  and  DNA  

extraction  performed.  This  does  not  include  samples  were  extraction  failed.

FFPE  samples  have  extensive  proteinc protein  and  proteinc nucleic  acid  

crossc linking  due  to  the  fixation  process  which  reduces  yields  and  quality  of  

extraction  compared  to  freshly  prepared  tissue.  Nucleic  acid  modification  causes  

fragmentation  of  RNA  likely  due  to  formaldehyde  used  in  fixation  process.  In  the  

majority  of  cases  simultaneous  DNA  and  RNA  extractions  were  performed  with  

an  approximate  50/50  split  of  sample  to  each  individual  DNA/RNA  pathway  

after  initial  deparaffisation  processing  steps  were  performed.  DNA  was  used  in  

PCRs  for  the  FCG3A  and  C1Q  work.  In  general  good  extractions  were  obtained,  

but  as  expected  DNA  yields  tended  to  be  higher  due  to  relative  age  of  specimens  

and  increased  level  of  RNA  degradation.  DNA/RNA  quantity  and  quality  were  

assesses  using  Nanodrop.  Nanodrop  uses  spectrophotometric  measurement  to  

assess  quality/purity.  The  A260/A280  ratio  was  measured  with  majority  of  

specimens  being  within  or  close  to  target  ranges  of  1.8-­‐2.1  for  RNA  and  1.7-­‐1.9  

for  DNA  when  1.5ul  volumes  are  measured.  

36

Page 54: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

2.5  FCG3A  polymorphism  PCR  

DNA  was  extracted  from  FFPE  tissue  (patients)  or  buccal  scrapes  (controls)  

using  standard  procedures  with  analysis  performed  in  batches.  FCGR3A-­‐V/F158  

genotyping  was  performed  using  allele-­‐specific  PCR  based  on  a  previously  

described  protocol.  This  consisted  of  the  following  20  µl  reaction  (made  up  to  

this  level  with  nuclease  free  water):  0.2  µmol/l  each  primer  (common  forward:  

5'-­‐TCCAAAAGCCACACTCAAAGT-­‐3',  F-­‐allele-­‐specific  

reverse:5'GCGGGCAGGGCGGCGGGGGCGGGGCCGGTGATGTTCACAGTCTCGTAAGA

CACATTTTTACTCCCAGA-­‐3'  and  V-­‐allele-­‐specific  reverse:  5'-­‐

TGAAGACACATTTTTACTCCCATCc 3'),  0.4  µl  Accuprime  Taq  DNA  polymerase  

(Invitrogen),  1×  Accuprime  buffer  I,  1  mmol/l  MgCl  and  10  ng  genomic  DNA.  

Reactions  were  cycled  using  94°C  for  2  min  followed  by  35  cycles  of  94°C  for  15  s  

and  60°C  for  15  s.  Bands  were  visualized  on  agarose  gels  with  the  F-­‐allele  

resulting  in  an  118  bp  and  the  V-­‐allele  in  a  73  bp  band.    

Figure  3.  Electrophoresis  for  FCG3A  polymorphism  

2.6  C1QA  Polymorphism  PCR  

For  C1QA  polymorphism  general  procedures  such  as  DNA  extraction  were  

performed  as  above  for  FCG3A.  C1QA-­‐A/G276  genotyping  was  performed  using  

allele-­‐specific  PCR  based  on  a  previously  described  protocol.  This  consisted  of  

the  following  20  µl  reaction  (made  up  with  nuclease  free  water:    

0.4  µmol/l  each  primer  C1qA  -­‐F1      5-­‐GGGGGAACCTGGGCCCTCTGG-­‐3  ,    

F (118bp)

V (73bp)

VV FFVFVV VF VF FF VV -ve

Patients Controls

37

Page 55: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

C1qAc R1      5  CGGCCGGAGTGGTTCTGGTACGGc 3,  0.2  µl  AmpliTaq  Gold  DNA  

polymerase  (Invitrogen),  2 µl  10×  PCR  buffer  I,    1.2  µl  25  mmol/l  MgCl,  0.4  µl  

10mM  dNTPs  and  50 ng  genomic  DNA.  Reactions  were  cycled  using  95°C  for  10  

min  followed  by  40  cycles  of  94°C  for  15  s  and  60°C  for  30 s.  Bands  were  

visualized  on  12%  acrylamide/TBE  gels  with  the  G-­‐allele  resulting  in  an  170  bp  

and  the  A-­‐allele  in  a  189  bp  band.  With  this  PCR  there  was  significant  difficulties  

in  getting  good  bands  with  the  FFPE  extracted  DNA  which  was  improved  by  

adding  50 ng  DNA  to  each  PCR  reaction,  whereas  for  fresh  bucccal  swabs  only  

10 ng  was  required.  

     AG          GG          AA          AA        AG        AA          AG          AA            AA            AG        AA        AG          AG      -­‐ve  

Figure  4.  Electrophoresis  for  C1QA  polymorphism  

2.7  Flow  cytometric  analysis  of  retrospective  samples  The  following  protocol  was  the  standard  protocol  used  at   the  diagnostic  

flow   laboratory   at   the   Princess   Alexandra   Hospital.   Mononuclear   cell  

preparations  were  made  using  diagnostic  fresh  tissue  by  mechanical  disruption  

in  HANKS  containing  2%  bovine  calf  serum.  Aggregates  and  large  particles  were  

removed  by  filtration  through  nylon  gauze.  A  100 ul  aliquot  of  cells  were  stained  

with   the   appropriate   concentration   of   antibody   for   ten   minutes   in   the   dark   at  

room   temperature.   Red   cells   were   removed   using   ammonium   choride   lysis  

buffer  and  the  cells  fixed  in  FACS  fixative.    

Mononuclear  cells  were  stained  with  a  panel  of  antibodies  against  T-­‐,  and  B-­‐cell  

markers,  including  CD3  (APC  BD  Clone  SK7),  CD4  (FITC  BD  Clone  SK3),  CD5  (CD5  

A  (189  bp)  G  (170  bp)  

38

Page 56: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

PE  BD  Clone  L17F12),  CD8  (PE  BD  Clone  SK1),  CD19  (APC  BD  Clone  SJ25C1),  

CD20  (APC  BD  Clone  L27)  and  CD45  (PerCP  BD  Anti-­‐HLe-­‐1  Clone  2D1),  Flow  

cytometric  data  was  acquired  on  the  FACS  Calibur  4  colour  bench-­‐top  analyser,  

(Becton  Dickenson,  New  Jersey,  USA)  and  analysed  using  BD  CellQuest  Pro  

Software.  A  minimum  of  10,000  cells  were  analysed  per  tube.  An  isotype  control  

was  used  to  set  the  control  levels  of  fluorescence  for  each  fluorchrome.    

A   B  

Figure  5.  (A)  Gating  of  Lymphocytes  (Nodal  Biopsy)  (B)  CD4  Gating  in  high  

expressing  patient  (>20%)  

2.8  NHL21  Blood  processing  

The  received  tubes  of  blood  were  spun  at  1180 rpm  with  no  brake  to  separate  

plasma.  Plasma  was  collected  into  10  to  50 ml  tubes  and  spun  at  3000 rpm  for  

10  mins  to  pellet  platelets.  Plasma  aliquots  of  1ml  was  then  placed  into  Nunc  

cryovials  and  stored  at  c 80*C.  The  remaining  blood  was  transferred  into  50ml  

tubes  with  a  maximum  of  15  mls  of  blood  diluted  up  to  35mls  with  RPMI.  These  

samples  were  mixed  well.  Ficoll  of  10 ml  volumes  was  then  gently  added  as  an  

underlay  with  care  taken  not  to  disturb  the  interface.  These  tubes  were  then  

centrifuged  at  1500 rpm  for  20  minutes.  The  Buffy  coat  was  then  harvested  into  

10 ml  tubes  and  pelleted  after  centrifugation  at  1180 rpm.  The  supernatant  was  

then  aspirated  and  removed  from  each  tube.  Each  pellet  was  then  resuspended  

into  a  single  tube  with  a  small  volume  of  RPMI  and  then  made  up  to  the  10  ml  

mark  with  further  RPMI.  Further  centrifugation  was  performed  to  derive  a  final  

39

Page 57: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

pellet.  The  PBMC  pellet  was  resuspended  in  10ml  of  RPMI  and  20%  fetal  calf  

serum  with  DMSO  as  a  cryoprotectant.  Sample  were  placed  in  controlled  

Mr.FrostyTM  containers  for  gradual  freezing  over  2/3  days  prior  to  transfer  to  

liquid  nitrogen.    

2.9  Flow  Cytometry  NHL21  Study  

Between  1  x105  and  5X105  PBMC  were  diluted  in  100 ul  of  PBS  +  2%  foetal  

bovine  serum  and  added  to  a  well  in  a  96  well  U  bottom  tissue  culture  plate.    A    

pre-determined  amount  of  the  fluorophore  labelled  antibody  was  added  

according  to  the  phenotype  of  the  cells  being  stained.  The  tray  was  placed  in  a  

refrigerator  for  15c 30  minutes.  At  the  completion  of  the  incubation  a  further  

100  ul  of  cool  PBS  was  added  to  each  well.  The  plate  was  centrifuged  for  5  min  at  

400 g.The  supernatant  was  carefully  removed  and  replaced  with  200  ul  of  cool  

PBS.  The  plate  was  centrifuged  for  5  min  at  400 g.The  supernatant  was  carefully  

removed  and  replaced  with  200  ul  of  cool  PBS  +  2%  FBS.  The  supernatant  was  

transferred  to  a  FACS  tube  and  a  further  200ul  of  PBS  +2%  FBS  was  added  to  

each. The  tube  was  either  refrigerated  or  placed  on  ice  and  subject  to  analysis  

within  4  hours  of  staining. The  flow  cytometry  data  was  acquired  using  a  BD  

LSRII  flow  cytometer  controlled  by  FACSDiva  software(BD,  Australia).  Data  

analysis  was  performed  on  compensated  data  using  FlowJo  4.2  or  9.x  software  

(Tree  Star,  USA).  

40

Page 58: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

Figure   6.   CD163   expression   on   moMDSCs   from   healthy,   pre-­‐treatment  

sample  and  post  treatment  sample  (peripheral  blood)  

2.10  Effector  lymphocyte  assays  

The   antiCD20-­‐ADCC   assay   measures   killing   of   a   carboxyfluorescein  

succinimidyl   ester   (CFSE)-­‐labeled   CD20-­‐positive   DLBCL   cell-­‐line   (SU-­‐DHL4)  

incubated   for   4-­‐6  hours   +/-­‐   PBMC  and  +/-­‐   rituximab/obinutuzumab.   CHL   cell-­‐

lines  were  used  as  CD20-­‐ve   control   targets.  Subtraction  of   the  number  of   target  

cells  lysed  by  addition  of  rituximab/obinutuzumab  alone  from  the  total  number  

lysed   by   antiCD20   mAb   with   PBMC,   enabled   enumeration   of   antiCD20-­‐ADCC  

mediated  killing.  CD107ab  de-­‐granulation  of  CD56+  and  CD14+  cells,  and  CD137  

activation  of  CD56+  was  measured  by  flow  cytometry.  For   Tc cell   proliferation,   CFSE   stained   mononuclear   cells   were   seeded   in  

96c well   roundc bottom   plates   at   2c 5x105   cells/well   in   RPMI   1640   with  

10%  FBS  and   1×P/S,   with   10 u/ml   interleukinc 2.   Antic CD3/CD28/

CD137   beads   (Invitrogen)   at   a   1:10   bead:   Cell   ratios   were   added   to  

stimulate   polyclonal   expansion.   Cells   were   cultured   for   96c 120   hours   and  

  assessed  by   flow   cytometry.  

Monocytes  were   depleted   using   an   immunomagnetic   CD14   selection  

procedure   (EasySep,   Stemcell   Technologies)   as   per   manufacturer  

recommendations  achieving  >90%  monocyte  depletion.  

Healthy Pre-Therapy Post-Cycle 4 CD

14

HLA-DR HLA-DR HLA-DR

41

Page 59: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

2.11  Enzyme  linked  immuno-­‐absorbent  assays  (ELISA)  

Plasma  arginase  I  (BioVendor)  and  CD163  (R&D  Systems)  were  quantified  by  

ELISA  according  to  the  manufacturer’s  instructions  (at  1:20  CD163  dilution).  I  

have  summarized  the  protocol  for  CD163    assay  below.  

Basically,  100 ul  of  assay  diluent  was  added  to  each  ELISA  well. 50 ul  of  

standard  control  or  sample  were  added  to  each  well  and  incubated  for  two  

hours  at  room  temperature.  Each  well  was  then  aspirated  and  washed  repeated  

three  times  for  a  total  of  4  washes.  200 ul  of  CD163  conjugate  was  then  added  

and  the  wells  incubated  for  a  further  2  hours.  The  wash  steps  were  repeated  

once  more.  After  this  wash,  200 ul  of  substrate  solution  was  added,  incubated  

for  30minutes  and  protected  from  light.  50 ul  of  stop  solution  was  added  was  

added  to  each  well.  The  optical  density  of  the  wells  were  read  at  450 nm  using  a  

microplate  reader.  Samples  were  run  in  duplicate  with  results  and  data  

extrapolated  from  a  standard  curve.  

2.12  Digital  multiplex  gene  expression  by  NanoString  nCounter.  

Nucleic  acid  was  extracted  from  tumour  biopsies  using  RecoverAll  total  nucleic  

acid  extraction  kit  for  FFPE  (Life  Technologies,  Carlsbad,  CA,  USA).  Using  the  

nCounter  platform  (NanoString  Technologies,  Seattle,  WA,  USA)  gene  expression  

profiling  was  performed  on  191  DLBCL  samples  in  total.  An  initial  pilot  project  

was  performed  on  83  DLBCL  samples  and  this  was  extended  to  191  DLBCL  

samples  based  on  significant  results  garnered  from  this  study.  For  an  initial  pilot  

project,  the  minimum  number  of  genes  that  could  be  tested  on  each  sample  was  

one  hundred.  This  allowed  me  to  assess  important  genes  in  DLBCL.  Given  my  

earlier  work  I  was  most  interested  in  including  immune  based  genes,  but  I  also  

included  cell  of  origin  genes  based  on  the  Wright  algorithm,  and  a  number  of  

genes  found  on  next  generation  sequencing  to  be  mutated  in  DLBCL.  At  that  time,  

there  was  no  physical  machine  in  Australia,  and  to  my  knowledge  this  is  the  first  

large  Nanostring  project  performed  in  Australia,  and  the  largest  study  of  DLBCL  

using  this  technology  anywhere.  All  samples  were  sent  to  Nanostring  in  Seattle,  

USA  for  testing.  All  analysis  was  performed  by  myself  with  self-­‐learning  of  the  

Nanostring  provided  NCounter  software  program.  The  success  of  this  project  has  

42

Page 60: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

now  led  to  my  laboratory  becoming  the  first  in  Queensland  to  acquire  this  

technology.    Hybridisations  were  carried  out  according  to  the  NanoString  Gene  Expression  

Assay  Manual.  Five  microliters  of  each  RNA  sample  (100 ng)  was  mixed  with  20

μl  of  nCounter  Reporter  probes  in  hybridisation  buffer  and  5 μl  of  nCounter  

Capture  probes  for  a  total  reaction  volume  of  30 μl.  The  hybridisations  incubated  

at   65°C   for   approximately   16c 20  hours.  For  this  digital  gene  expression,  two  

separate  runs  were  performed  requiring  the  production  of  two  identical  code  

sets.  Run  1  was  an  initial  pilot  study  of  97  samples  expanded  to  191  patient  

samples  with  run  2.  Expression  counts  were  normalised  between  code  sets  based  

on  relative  differences  between  duplicate  samples  in  both  runs  which  allowing  us  

to  develop  a  correction  factor  for  each  individual  gene  between  the  runs.  

Raw  data  (RCC  files)  was  imported  and  analyzed  in  the  NanoString®  data  

analysis  tool  nSolver.  For  normalization,  gene  expression  data  was  internally  

controlled  to  the  mean  of  the  positive  control  probes  to  account  for  interc assay  

variability.  Gene  normalisation  was  then  performed  using  the  geometric  mean  of  

four  housekeeper  gene  to  account  for  factors  that  affect  RNA  quality  and  quantity  

(PGK1,  GAPDH,  PGAM1,  OAZ1)  Housekeeping  genes  were  selected  as  previously  

described  and  as  per  manufacturer  recommendation.  After  this  normalisation  

procedure  12  of  97  samples  from  run  1  and  11  of  191  samples  from  run  2  did  not  

pass  QC  and  were  excluded  from  further  analysis.  

2.13  Statistics  and  analysis  

I  performed  the  statistical  analysis  for  the  majority  of  the  above  work.  Of  note  

my  co-­‐author  Frank  Vari  performed  statistical  analysis  for  flow  cytometry  data  

related  to  moMDSC  research  in  this  currently  submitted  paper.  I  used  Graphpad  

Prism  for  simple  Mann-­‐Whitney,  Student  –T  tests  and  Kaplan  Meier  survival  

testing.  I  performed  multivariate  survival  analysis  using  SPSS  software.  

Nanostring  data  was  analysed  firstly  using  nSolver  analysis  and  then  data  was  

transferred  to  Prism  based  analysis.  All  my  data  is  stored  in  excel  based  

spreadsheets.  Categorical  data  was  compared  using  Fisher’s  exact  test  or  Chi  

squared  test  as  appropriate.  For  non-­‐parametric  variables  and  analysis  of  factors  

43

Page 61: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

   

influencing  outcome,  Mann-­‐Whitney  U  test  were  applied.  Event  free  survival  

(EFS)  was  measured  from  time  of  diagnostic  biopsy  to  the  date  of  disease  

progression,  relapse  or  death  as  a  result  of  any  cause,  or  the  date  of  last  follow  up.  

Overall  survival  was  measured  from  diagnosis  to  date  of  last  follow  up  or  death.  

Survival  analysis  was  performed  using  Kaplan  Meier  curves  and  the  log  rank  test.  

Multivariate  analysis  was  performed  using  Cox  regression.  All  tests  were  two  

sided  at  the  threshold  of  P=0.05.  All  statistical  analysis  were  prepared  using  

Graphpad  Prism  6  (Graphpad,  La  Jolla,  CA)  or  SPSS  (Statistical  Package  for  the  

Social  Sciences,  IBM,  NY,  USA)  version  13.0  for  Windows.  

 

 

 

 

 

 

 

 

     

                                       

44

Page 62: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

CHAPTER  3  

1. Homozygous  FCGR3A-­‐158V  alleles  predispose  to  lateonset  neutropenia  after  CHOP-­‐R  for  Diffuse  Large  B-­‐cell  Lymphoma  Colm  Keane,  Jamie  P.  Nourse,  Pauline  Crooks,  Do  Nguyen-­‐Van,  Howard  Mutsando,  Peter  Mollee,  Rod  A.  Lea,  Maher  K.  Gandhi  Intern  Med  J.  2011  Sep  1  

2. “Rituximab  induced  Late-­‐onset  Neutropenia”  for  thebook    'Rituximab:  Pharmacology,  Clinical  Uses  and  role  in  Investigating  B  cell  immunology  in  Man"published  by  Novus  in  2012  Colm  Keane,  Jamie  Nourse,  Maher  K.  Gandhi  

45

Page 63: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

Homozygous  FCGR3A-­‐158V  alleles  predispose  to  late  onset  neutropenia  after  CHOP-­‐R  for  Diffuse  Large  B-­‐cell  Lymphoma  Colm  Keane,  Jamie  P.  Nourse,  Pauline  Crooks,  Do  Nguyen-­‐Van,  Howard  Mutsando,  Peter  Mollee,  Rod  A.  Lea,  Maher  K.  Gandhi  Intern  Med  J.  2011  Sep  1.      

Author   Keane,  C   Nourse,  J   Crooks,  P   Nguyen,  D   Mutsando,  H   Mollee,  P   Lea,  R   Gandhi,  M  

Project  Conception   40%   30%            

30%  

Experimental  Design   45%   45%    

10%          

Sample  Collection  and  Processing   100%                Data  Acquisition/Lab  Work   85%  

 15%  

         Analysis  and  Interpretation  of  work   40%   20%       5%   5%   10%   20%  

Manuscript  Preparation   50%              

50%  

Reviewed  and  edited  manuscript   Yes   Yes   Yes   Yes   Yes   Yes   Yes   Yes  

   Rituximab  induced  Late-­‐onset  Neutropenia”  for  the    book    'Rituximab:  Pharmacology,  Clinical  Uses  and  role  in  Investigating  B  cell  immunology  in  Man"published  by  Novus  in  2012  Colm  Keane,  Jamie  Nourse,  Maher  K.  Gandhi      

Author   Keane,  C   Nourse,  J   Gandhi,  M  Project  Conception   40%   20%   40%  

Manuscript  Preparation   40%   20%   40%  Reviewed  and  edited  manuscript   Yes   Yes   Yes  

 

46

s2566871
Typewritten Text
s2566871
Typewritten Text
s2566871
Typewritten Text
s2566871
Typewritten Text
s2566871
Typewritten Text
s2566871
Typewritten Text
s2566871
Typewritten Text
s2566871
Typewritten Text
s2566871
Typewritten Text
The article has been removed.
Page 64: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

       

             CHAPTER  4          CD4(+)   tumor   infiltrating   lymphocytes   are   prognostic  and   independent   of   R-­‐IPI   in   patients   with   DLBCL  receiving  R-­‐CHOP  chemo-­‐immunotherapy. Keane  C,  Gill  D,  Vari  F,  Cross  D,  Griffiths  L,  Gandhi  M.  Am  J  Hematol.  2013  Apr;88(4):273-­‐6.      

           

67

Page 65: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

CD4(+)   tumor   infiltrating   lymphocytes   are   prognostic   and   independent   of   R-­‐IPI   in   patients   with   DLBCL   receiving   R-­‐CHOP  chemo-­‐immunotherapy. Keane  C,  Gill  D,  Vari  F,  Cross  D,  Griffiths  L,  Gandhi  M.  Am  J  Hematol.  2013  Apr;88(4):273-­‐6        

Author    Keane,  C   Gill,  D   Vari,  F   Cross,  F   Griffith,  L   Gandhi,  M  Project  Conception   70%           30%  Experimental  Design   70%           30%  

Sample  Collection  and  Processing   90%       10%      Data  Acquisition/Lab  Work   90%       10%      

Analysis  and  Interpretation  of  work   80%     10%       10%  

Manuscript  Preparation   50%           50%  Reviewed  and  edited  manuscript   Yes   Yes   Yes   Yes   Yes   Yes  

 

68

s2566871
Typewritten Text
s2566871
Typewritten Text
Article has been removed.
Page 66: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

CHAPTER  5  

Measures   of   net   anti-­‐tumoral   immunity   add   to   the  predictive   power   of   conventional   prognostic   factors   in  diffuse  large  B  cell  lymphoma  (DLBCL).  Colm   Keane*,   Frank   Vari*,   Mark   Hertzberg,   John   Seymour,  Rodney   Hicks,   Devinder   Gill,   Pauline   Crooks,   Kimberly   Jones,  Erica  Han,  Rod  Lea,  Lyn  Griffiths,  Maher  Gandhi.  Submitted  to  Cancer  Discovery  May  2014  *Co-­‐Authors

77

Page 67: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

The   immunobiological   score:  a   robust  3-­‐gene  assay   that   segregates   the   international  prognostic   index   into  disparate   survival  categories  in  aggressive  B-­‐cell  lymphoma  Colm  Keane*,  Frank  Vari*,  Mark  Hertzberg,  John  Seymour,  Rodney  Hicks,  Devinder  Gill,  Pauline  Crooks,  Kimberly  Jones,  Erica  Han,  Rod  Lea,  Lyn  Griffiths,  Maher  Gandhi.  *Joint  Authorship  Submitted  to  Cancer  Discovery  May  2014      

Project  Conception   Keane   Vari   Hertzberg   Green   Han   Seymour     Hicks     Gill     Crooks     Gould     Jones   Radford   Griffiths     Jain     Talaulikar     Tobin     Gandhi  

Experimental  Deseign   25%   25%   10%      

5%    

5%        

5%   5%        

30%  Sample  Collection  and  

Processing   25%   25%      

10%        

10%   5%        

5%   5%   5%    

Data  Acquisition/Lab  Work   30%   30%      

10%        

10%   5%   5%              Analysis  and  Interpretation  of  

work   30%   30%    

5%      

5%                    

25%  

Manuscript  Preparation   30%   30%   5%   5%                          

40%  

Reviewed  and  edited  manuscript   Yes   Yes   Yes   Yes   Yes   Yes   Yes   Yes   Yes   Yes   Yes   Yes   Yes   Yes   Yes   Yes   Yes  

78

Page 68: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

1    

   

The immunobiological score: a robust 3-gene assay that segregates the

international prognostic index into disparate survival categories in aggressive

B-cell lymphoma

1,2Frank Vari*, 1,2,3,4Colm Keane*, 5Mark Hertzberg, 6Michael R. Green, 1,2Erica Han,

7John F. Seymour, 7Rodney J. Hicks, 4Devinder Gill, 1,2Pauline Crooks, 1,2Clare

Gould, 1,2Kimberley Jones, 8Kristen J. Radford, 4Lyn R. Griffiths, 9,10Dipti Talaulikar,

10Sanjiv Jain, 9Josh Tobin, 1,2,3Maher K. Gandhi.

1Experimental Haematology, School of Medicine, Translational Research Institute,

University of Queensland, Australia; 2Queensland Institute of Medical Research,

Brisbane, Queensland, Australia; 3Princess Alexandra Hospital, Brisbane,

Queensland, Australia; 4Genomics Research Centre, Griffith University, Queensland,

Australia. 5Department of Haematology, Westmead Hospital, Sydney, New South

Wales, Australia; 6Division of Oncology, School of Medicine, Stanford University,

Stanford, California, USA. 7Peter MacCallum Cancer Centre and University of

Melbourne, Melbourne, Victoria, Australia; 8Mater Medical Research Institute,

Translational Research Institute, Brisbane, Queensland, Australia; 9Canberra

Hospital, Canberra, Australian Central Territory; 10Australian National University

Medical School, Australian Central Territory.

*These authors contributed equally to the manuscript.

Running title. LMO2 +/- CD8:CD163 in DLBCL

Keywords: lymphoma; LMO2; CD8; CD163; gene expression

79

Page 69: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

2    

   

Funding relevant to this project was provided by the Leukaemia Foundation (C.K.), a

bequest from the Kasey-Anne Oklobdzijato Memorial fund, a donation from Malcolm

Broomhead via the ALLG, the Cancer Council of Queensland and the Health and

Medical Research Queensland Office (M.K.G).

Corresponding Author: Maher K. Gandhi, Experimental Haematology, School of

Medicine, Translational Research Institute, University of Queensland, Diamantina

Road West, Brisbane, Queensland, 4102, Australia.

Tel +617 3443 8026; Fax +617 3443 7779; [email protected]

Conflict of Interest

Roche provided funding towards the NHL21 clinical trial but not the laboratory

study.

Word count: 5520

Figures 7, Tables 0. Supplemental Figures 3; Supplemental Tables 3.

80

Page 70: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

3    

   

Abstract

Diffuse large B-cell lymphoma (DLBCL) is a common and aggressive lymphoma with

approximately 30% mortality. Risk-stratification requires prognosticators to identify

poor outcome patients in whom investigational therapeutic intervention is justified.

Circulating lymphocyte:monocyte ratios are prognostic, implicating them as

surrogate immune-effectors and monocyte/macrophage-checkpoint within the tumor

microenvironment. Blood from 140 ‘R-CHOP’ chemo-immunotherapy treated DLBCL

patients from an Australasian Leukaemia and Lymphoma Group trial was analysed.

Detailed functional and quantitative assessment enabled identification of the optimal

immune-effector and monocyte/macrophage-checkpoint molecules to interrogate

within the tissue. CD163 identified a highly immunosuppressive subset of

CD14+HLA-DRlo monocytoid-myeloid-derived-suppressor cells ‘moMDSC’. Ratios of

various immune-effectors to CD163himoMDSC were used as a measure of total anti-

tumoral immunity: i.e. the net balance between the antagonistic forces of immune-

effectors and monocyte/macrophage-checkpoints. All ratios were higher in early R-

CHOP responders compared to delayed responders, with CD8:CD163himoMDSC the

most discriminatory. To test for intratumoral applicability, genes were quantified by

digital hybridization in an independent cohort of 128 R-CHOP treated DLBCL

patients. Co-clustering of CD8 with CD163 was observed, consistent with an

adaptive immune-checkpoint response to immune-effector activation. CD8:CD163

ratios were prognostic independent of cell-of-origin and international prognostic

index (IPI). An immunobiological score combining CD8:CD163 to the germinal-centre

marker LMO2 strengthened the predictive ability, identifying 24% at risk of very poor

outcome. It separated low-risk IPI into 91% and 44%, and high-risk IPI into 76% and

26% 4-year survivals. Results were externally validated in 233 patients. The

81

Page 71: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

4    

   

immunobiological score is a powerful new 3-gene assay that segregates IPI into

markedly disparate survival categories.

250 words.

82

Page 72: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

5  

Introduction

Diffuse large B-cell lymphoma (DLBCL) is a common and aggressive form of

B-cell lymphoma for which approximately only 70% of patients will be cured (1). The

majority of those who die from their lymphoma, either display refractoriness to first-

line therapy, or relapse within 24 months (2). A number of promising new therapeutic

strategies are at various stages of clinical development (3). However, the application

of any novel therapeutic strategy requires accurate identification of those patients

likely to die despite current therapies. In these patients, prolonged exposure to

conventional first-line agents may contribute to the induction of chemo-resistance as

well as unnecessary toxicity. Consequently in refractory/early relapsing patients,

alternate strategies should be instituted early. However, despite the use of

conventional pre-treatment prognosticators such as the international prognostic

index (IPI), very considerable heterogeneity of outcome persists (1). Therefore there

is a pressing need to develop tools to more accurately predict response to initial

therapy.

It has recently been established that patients with low peripheral blood

absolute lymphocyte:monocyte ratios (LMR) have inferior outcomes (4-6). It is known

that circulating lymphocyte and monocyte subsets each have active roles in DLBCL

control (7, 8). For example recent data strongly implicates CD8+ T-cells in the

prevention of murine models of lymphoma (9), and adoptive T-cell therapy has

shown clinical benefit for the treatment of immunosuppression related lymphomas

(10). Within peripheral blood monocytes, the CD14+HLA-DRlo ‘monocytoid-myeloid-

derived-suppressor cells’ (moMDSC) subset is associated with higher rates of

disease progression in patients with B-cell lymphoma (11-13).

83

Page 73: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

6    

   

We have established that circulating immune subsets reflect immunity within

the DLBCL tissue tumor microenvironment (TME) (4). A simple, robust and easily

standardized tissue biomarker, applicable at diagnosis, that provided additional

information to conventional prognosticators, would be a highly useful tool for risk-

stratification. With new digital multiplexed gene expression (DMGE) platforms

applicable to formalin-fixed, paraffin-embedded tissues (FFPET)(14), simultaneous

interrogation of a range of aspects of DLBCL biology, that include the TME, is

achievable by the diagnostic laboratory (15, 16).

Our aim was to develop a gene expression score applicable to FFPET that

reliably identified those patients with DLBCL at high-risk of treatment failure within 24

months following treatment with conventional ‘R-CHOP’ chemo-immunotherapy. A

composite score, incorporating assays of malignant B-cell biology with the balance of

the antagonistic forces of immune-effectors and monocyte/macrophage-checkpoints,

would likely have more prognostic value than a measure of B-cell biology alone. We

rationalized that detailed functional and quantitative assessment of circulating

immune-effector and monocyte-checkpoints would enable identification of the

optimal immune molecules to incorporate within the composite gene expression

score. To develop such a prognostic tool, we utilized sequential blood samples taken

as part of an Australasian Leukaemia and Lymphoma Group (ALLG) clinical trial in

poor-risk DLBCL. Immune-effector and monocyte/macrophage molecules were

identified that were applied to diagnostic tissues. Candidate molecules were

quantified by DMGE in DLBCL tissues in an independent Australian R-CHOP cohort.

The resultant algorithm was then externally validated in an independent international

R-CHOP DLBCL cohort.

84

Page 74: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

7    

   

Materials and Methods

ALLGNHL21

Details of the study and eligibility criteria are provided with the supplemental

methods. Induction chemo-immunotherapy comprised three cycles of R-CHOP

administered every 14 days (R-CHOP-14). After a fourth cycle of R-CHOP, chemo-

immunotherapy was delayed a week and an interim-PET/CT scan performed

between days 17-20. Dual modality PET/CT was performed in pre-approved imaging

centres, with centralized review (R.H.) at the Peter MacCallum Cancer Centre,

Melbourne. All interim scans were reviewed centrally alongside diagnostic pre-

therapy scans (blinded to the local PET/CT assessment), to verify residual abnormal

FDG uptake at sites of previously identified involvement. Blood assays were planned

prospectively within the ALLGNHL21 clinical trial. Thirty millilitres of blood were

collected pre-therapy and on day 21 post-cycle 4 of R-CHOP. Investigators were

blinded to PET/CT results. Blood was also taken from 23 healthy participants without

prior diagnoses of malignant, hematological or autoimmune disorders. All

participants gave written informed consent. The study was approved by responsible

Ethics Committees at participating sites and performed in accordance with the

Declaration of Helsinki.

Tissue cohorts

Tissue cohort one comprised 128 patients with histologically confirmed

DLBCL: 66 from Princess Alexandra Hospital, Queensland; and 62 from Canberra

Hospital, Australian Capital Territory. All patients received R-CHOP, and were

selected on the basis of tissue and outcome data availability. These tissues were

supplemented with 63 FFPET from the ALLG Tissue Bank from whom survival data

85

Page 75: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

8    

   

was not available for tests of co-clustering (191 FFPET). Only de-novo cases were

included. Grade IIIB follicular lymphoma, transformed follicular lymphoma, HIV-

positive and post-transplant lymphoproliferative disorder patients were excluded. The

external validation tissue cohorts utilized a publicly available data-set (17). Patients

were divided into two groups based on treatment regimen (CHOP 181 patients

versus R-CHOP 233 patients). Details of RNA quantification of DLBCL samples is

provided with supplemental methods.

Statistical analysis

Values between groups of data were tested for statistical significance using

the 2-tailed paired (e.g. between time-points) or where appropriate non-paired tests.

Categorical data were compared using Fisher’s exact test or Chi-squared test as

appropriate. Overall survival (OS) was measured from diagnosis to date of last

follow-up or death. Survival analysis was performed using Kaplan–Meier curves and

the log-rank test. Multivariate analysis was performed using Cox regression. All tests

were two sided at the threshold of P=0.05. All analyses were prepared using

GraphPad Prism platform (version 6, GraphPad Software, La Jolla California USA)

and Statistical Package for the Social Sciences SPSS version 13 (International

Business Machines Corporation, New York USA).

86

Page 76: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

9    

   

Results

Patient characteristics.

Of 161 patients with DLBCL accrued to NHL21, 154 had interim-PET/CT. The

140 patients in whom blood samples were obtained (91%) were included in this

study. As anticipated from the inclusion criteria, patients had poorer-risk features

(82% stage III-IV, 43% mass ≥7.5cm) than an unselected DLBCL population. There

were 23 healthy participants. There was no significant difference in age/sex between

healthy participants (median age 49, range 31-68 years, 39% female) and patients

(56 years, range 26-70, 34% female). Patient characteristics for NHL21 and the

Australian tissue cohort are outlined in supplemental Table S1. Details of the

external validation tissue cohorts are as previously published (17).

Monocytes suppress CD8+ and CD4+ T-cell proliferation in poor-risk DLBCL.

Monocytes were increased as a proportion of the mononuclear cells among

the DLBCL patients compared to healthy participants (P<0.0001, Figure 1A). The

impact of monocytes upon immune-effectors was tested. It has previously been

shown that total T-cell proliferation is impaired by monocytes in B-cell lymphomas

(13). However as that study did not interrogate individual T-cell subsets, we tested

the effect of monocyte depletion in order to assess the differential effect upon CD4+

and CD8+ T-cells. Peripheral blood mononuclear cells (PBMC) from randomly

selected patients and healthy participants were tested for T-cell proliferation.

Although total CD3+ T-cells were reduced, the proportion of total and CD8+ and CD4+

T-cell subsets in patients that proliferated in response to in-vitro stimulation were not

different to healthy participants at both time-points (P=NS). However, monocyte

87

Page 77: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

10  

depletion enhanced T-cell proliferation in pre-therapy samples for total CD3+, CD4+

and CD8+ T-cell subsets, conversely monocyte depletion from healthy participant

samples did not (Figure 1B-D).

Monocytes of poor-risk DLBCL patients suppress rituximab but not

obinutuzumab mediated antibody-dependent cell-mediated cytotoxicity.

AntiCD20 monoclonal antibodies (mAB) have improved outcome in DLBCL

(1). However, the impact of circulating monocytes upon antibody-dependent cell-

mediated cytotoxicity (ADCC) in B-cell lymphoma patients has not previously been

explored. CD107ab degranulation by flow cytometry demonstrated that antiCD20-

ADCC was overwhelmingly mediated by NK-cells (as opposed to monocyte

mediated ADCC). We assessed the effect of monocyte depletion of PBMC from

randomly selected poor-risk DLBCL patients and healthy participants. In healthy

participants monocyte depletion did not impact the levels of ADCC mediated by

either rituximab or the type-II antiCD20 mAB obinutuzumab (Figure 1E-F, R- and Ob-

ADCC, respectively). However, monocyte depletion in patients did enhance R-ADCC

(P=0.01), which indicates that any benefit of monocyte mediated antiCD20-ADCC is

masked by monocytes mediated immunosuppression. Interestingly, Ob-ADCC was

not altered by monocyte depletion (P=NS). Comparing healthy participants and pre-

therapy patients, when monocytes were intact, R-ADCC was significantly lower in

patients compared to healthy participants (P=0.01) but became equivalent (P=NS)

when monocytes were depleted (Figure 1G). Ob-ADCC was equivalent between

patients and healthy participants with monocytes intact and depleted (both P=NS).

CD137 (TNFRSF9) is an inducible cell-surface co-stimulatory receptor and

immune-effector activation marker. NK-cell activation was measured upon

88

Page 78: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

11    

   

encountering antiCD20 coated DLBCL cell-lines, by expression of CD137 during R-

or Ob- ADCC (Figure 1H). In R-ADCC, NK-cell activation was markedly reduced pre-

therapy in monocyte replete poor-risk DLBCL patients compared with healthy

participants. However, no difference in NK-cell activation was observed between

patients and healthy participants for Ob-ADCC. These results indicate that in poor-

risk DLBCL monocytes suppress rituximab- but not obinutuzumab mediated ADCC

activity.

CD163 expression identifies a highly immunosuppressive subset of moMDSC

(CD14+HLA-DRlo) in DLBCL.

In contrast to healthy participants, PBMC from DLBCL patients collected pre-

therapy consisted almost exclusively of CD14+CD16- classical monocytes, and had

lower levels of HLA-DR (Figure 2A). The CD14+HLA-DRlo moMDSC subset were ~2-

fold elevated (Figure 2B, P<0.0001) compared to healthy participants (representative

plot shown in Figure 2C). The absolute number of CD163+monocytes was also

increased in patients (P=0.0054). Absolute moMDSC and CD163+monocytes values

were correlated (Figure 2D, r=0.41, P<0.0001), and pre-therapy CD163+moMDSC

were ~4-fold raised relative to healthy participants (Figure 2E, P=0.001). Arginase

production by moMDSC depletes arginine and impairs immune-effector signal

transduction and function (18). Consistent with such an effect mediated by the

monocytes of patients with DLBCL, arginase activity was elevated compared to

healthy participants (Figure 2F, P=0.0005). CD163 mean fluorescent intensity (MFI)

on moMDSC showed moderate correlation with arginase activity in patients and

healthy participants (Figure 2G, r=0.45, P=0.002).

89

Page 79: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

12    

   

To characterize CD163himoMDSC versus CD163lomoMDSC, CD14+HLA-DRlo

cells with the highest and lowest (top and bottom thirds) CD163 expression were

analysed (Figure 3A-I). A higher proportion of CD163himoMDSC expressed lymphoid

migratory markers CD62L (P<0.0001) and CD11c (P=0.035). CD163himoMDSC

expressed more CD120b (a marker associated with MDSC survival, P=0.001) (19).

Cell surface expression of the myeloid specific inhibitory receptor CD33

(P=0.0108),(20) colony stimulating factor-1 (CSF-1R: a monocyte/macrophage

trafficking, differentiation and survival factor, P<0.0001),(21) and CD80 (a T-cell

regulatory receptor, P=0.0088) were also higher in CD163himoMDSC. Levels of the

monocyte/macrophage marker CD68, the integrin alpha M marker CD11b, and the

co-stimulatory molecule CD86 were equivalent.

In aggregate, these results indicate that CD163himoMDSC have distinct

features, including a migratory and regulatory phenotype and elevated arginase

activity.

CD8:CD163+moMDSC ratios are elevated in patients with poor-risk DLBCL that

become interim-PET/CT-ve after post-cycle 4 R-CHOP.

All patients received uniform R-CHOP chemo-immunotherapy for four cycles,

after which therapeutic response was assessed with an interim-PET/CT. The rate of

interim-PET/CT-positivity for the 140 patients was 29%. Neither individual IPI

parameters nor the combined IPI were associated with interim-PET/CT treatment

response (each P=NS).

We then tested for associations of immune-effectors and

monocyte/macrophage-checkpoints with treatment response. Neither pre-therapy

peripheral blood lymphocytes nor any lymphocyte subset were associated with

90

Page 80: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

13  

interim-PET/CT response (P=NS), nor were absolute monocytes (Figure 4A left). It is

known that peripheral blood absolute lymphocyte:monocyte ratios (LMR) are

predictive of overall survival (4-6), but their association with interim-PET/CT

response has not previously been evaluated. There was no difference in LMR

between interim-PET/CT+ve and interim-PET/CT-ve patients (Figure 4B left). Pre-

therapy ratios of total lymphocytes (and NK-cells or CD3+ T-cells) to monocytes were

not associated with interim-PET/CT (Figure 4B) or the individual components of the

IPI and the combined IPI score (P=NS).

Next, based on the elevation of immunosuppressive monocyte subsets

observed, we evaluated the association of absolute moMDSC and CD163+moMDSC

with treatment response. Interim-PET/CT+ve patients had ~1.5-fold and ~3-fold higher

levels of moMDSC and CD163+moMDSC than interim-PET/CT-ve patients (Figure 4A

middle and right panels, P<0.001 and P<0.0001 respectively).

Ratios of various immune-effectors with moMDSC and then CD163+moMDSC

ratios were then evaluated for possible association with treatment response.

Interestingly, ratios of total lymphocytes (and NK-cells or T-cells) to moMDSC were

all ~2-fold elevated in patients that achieved interim-PET/CT negativity (Figure 4C).

When CD163+moMDSC was used as the denominator, ratios to total lymphocytes,

NK and CD3+ T-cells were ~4-fold (P<0.0001), ~6-fold (P=0.0002) and ~6-fold

(P<0.0001) elevated respectively in patients that became interim-PET/CT-ve (Figure

4D). To compare results in specific CD3+ T-cell subsets, ratios of CD8+ T-cells and

CD4+ T-cells divided by CD163+moMDSC were tested for association. Both ratios of

CD8+ T-cell and CD4+ T-cell to CD163+moMDSC were higher in interim-PET/CT-ve

patients (each P<0.0001), at ~10-fold and ~4-fold respectively. Plasmacytoid

dendritic cells (pDC) are circulating poly-functional innate immune-effectors. Ratios

91

Page 81: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

14    

   

of pDC to CD163+moMDSC were also ~6-fold higher in interim-PET/CT-ve patients

(P<0.0001).

Plasma soluble CD163 is associated with lower lymphocytes and higher IPI.

After metalloproteinase-mediated cleavage, CD163 is released from

macrophage or monocyte cell membranes and the extracellular portion of CD163

circulates in blood as a soluble protein (22). Soluble CD163 (sCD163) was

measured in healthy participants and pre-therapy and post-cycle 4 plasma of

patients with poor-risk DLBCL to further establish its ability to serve as a

monocyte/macrophage-checkpoint marker.

Pre-therapy patient sCD163 levels were higher (Figure 5A, P<0.0001) and

receiver operator curve analysis was highly discriminatory versus healthy

participants (Figure 5B, area under curve 0.94, P<0.0001). Pre-therapy sCD163

levels were associated with lower lymphocytes (P=0.004), advanced stage

(P=0.0072), older age (P=0.0143) and higher IPI (P=0.0003), but no other clinical

variables (Figure 5C-F). However, pre-therapy sCD163 levels were not significantly

different in those becoming interim-PET/CT-ve to those remaining interim-PET/CT+ve

(P=NS). Similarly, post-cycle 4 sCD163 was not associated with interim-PET/CT

status (P=NS). Soluble CD163 levels reduced by post-cycle 4 (P<0.0001), but were

still raised relative to healthy participants (P<0.0001). Reduction in sCD163 between

pre-therapy and post-cycle 4 was similar irrespective of whether the patient became

interim-PET/CT-ve or remained positive. Finally, tissue CD163 mRNA expression was

significantly but only modestly correlated with sCD163 (r=0.4, P=0.018).

Monocytes are ‘reset’ post-cycle 4 of R-CHOP.

92

Page 82: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

15    

   

There is minimal data on the kinetics of circulating immune-effectors and

monocyte/macrophage-checkpoints during therapy for DLBCL. By paired analysis,

absolute monocyte counts were not reduced post-cycle 4 relative to pre-therapy

(P=NS). The MFI of HLA-DR expression on monocytes increased between time-

points (P<0.0001). Consistent with this moMDSC numbers fell between time-points

(Figure 6A, P=0.0001) and CD163+moMDSC were lower post-cycle 4 (Figure 6B,

P=0.0002). Plasma arginase, a hallmark of moMDSC, was reduced post-cycle 4

relative to pre-therapy (pre: mean 513ng/ml, 56-733 ng/ml, post: 378 ng/ml, 69-709

ng/ml, P=0.004). Gene expression microarray on monocytes isolated from healthy

participants and paired pre-therapy-post-cycle 4 monocytes showed distinct

clustering of healthy/post-cycle 4 monocytes versus pre-therapy, with up-regulation

of antigen presentation and down-regulation of TH2 cytokine and tumor-associated

macrophage (TAM) genes in healthy/post-cycle 4 monocytes (Figure 6C). In line with

monocytes being ‘reset’ to a healthy profile, there was 2-3 fold up-regulation of

STAT1 and associated genes at post-cycle 4.

Monocytes are a source of blood myeloid dendritic cells (BMDCs), which are

circulating antigen presenting cells central to the development of innate and adaptive

immunity (23). Ex-vivo BMDCs in healthy participants were higher relative to patients

at both time-points (both P≤0.004), and increased between time-points (Figure 6D,

P=0.0002). In parallel with BMDC, there were fewer pDC in patients compared with

healthy participants prior to therapy (P<0.0001). CpG-DNA induced interferon-α

production from pDC in patients was reduced relative to healthy participants (Figure

6E, P=0.006), indicating a functional as well as numerical deficit in pDC in DLBCL

patients. However pDC increased post-cycle 4 (Figure 6F, P=0.0001) so that they

were equivalent to healthy levels.

93

Page 83: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

16    

   

As expected, chemo-immunotherapy resulted in a marked reduction in

lymphocyte subsets post-cycle 4. Ratios of all immune-effectors to moMDSC or

CD163+moMDSC performed post-cycle 4 were not associated with interim-PET/CT

(all P=NS).

Construction of a tissue-based immune-effector:monocyte/macrophage-

checkpoint ratio.

PBMC assays identified a variety of immune-effectors and

monocyte/macrophage-checkpoints that were associated with differential post-cycle

4 treatment response. Of these, CD8 and CD163 were highly discriminatory. To test

the applicability of these immune-effectors and monocyte/macrophage-checkpoints

as prognosticators within the diagnostic biopsy, FFPET from an independent

Australian cohort of 128 patients treated with R-CHOP were utilized. As the median

follow-up of the Australian tissue cohort was 3.9 years, the outcome measure

chosen was 4-year overall survival. IPI and cell-of-origin (COO) were used as co-

variates.

NanoString nCounter was used to perform digital multiplex gene expression

(DMGE). There was a strong correlation in three paired DLBCL frozen-FFPET (all

r>0.94, P<0.0001).

Initially, the predictive ability of multiple immune-effectors was compared. In

addition to CD8/CD4/CD56/CD137 (all of which had been shown to be impaired in

peripheral blood taken pre-therapy), we tested for TNFα, a cytokine known to be

secreted by T-cells, NK-cells and M1 macrophages. Patients were divided as being

above or below the median value for the relevant molecule. For all immune-effectors

except CD4 and CD56, values above the median segregated patients with superior

94

Page 84: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

17    

   

survival, compared to those with values below the median (Table 1). CD8, CD137

and TNFα were selected for further evaluation; of these CD8 was marginally the

most discriminatory (greatest percent difference in 4-year survival).

As CD163 identified a highly immunosuppressive subset of moMDSC, it was

therefore used for further evaluation as a monocyte/macrophage-checkpoint within

the lymphomatous tissue (Table 1). It did not stratify patient outcomes on its own.

However combining immune-effectors with CD163 as a ratio to measure net anti-

tumoral immunity, was highly discriminatory, and a better discriminator than using

immune-effectors on alone. For CD8:CD163, those with high ratios (i.e. above the

median) had superior survival to those with ratios below the median (P=0.0007). We

then tested the remaining immune-effectors as numerators in ratios with CD163 as

the denominator. CD137 but not TNFα in ratio with CD163 stratified patients into two

distinct groupings (Table 1). However CD8:CD163 remained the best discriminatory

ratio with markedly different 4-year survivals for high and low ratios of 89% and 59%

respectively (Table 1). This ratio was therefore chosen for additional appraisal as a

measure of net anti-tumoral immunity.

Interestingly, DMGE in 191 DLBCL tissues found co-clustering of CD8 with

CD163 within the TME (r=0.32, P<0.001). To see if similar findings were present in

blood, correlations in pre-therapy NHL21 blood samples were performed. Consistent

with the tissue findings, CD8+ T-cells and CD163+moMDSC modestly but

significantly correlated (r=0.42, P=0.0016). The blood and tissue data combined

suggest that an adaptive immune response is present, with the

monocyte/macrophage immune-checkpoint CD163+moMDSC activated in response

to CD8+ T-cell anti-tumoral immunity.

95

Page 85: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

18    

   

CD8:CD163 adds to the predictive ability of IPI and COO prognosticators.

In the Australian tissue cohort, IPI as well as a measure of malignant B-cell

biology, the COO (stratified as GCB and non-GCB), stratified patients into high and

low-risk survival categories as expected (supplemental Figure 1, P=0.002 and

P=0.018 and 4-year survivals of 83% versus 61%, and 82% versus 60%

respectively). As expected, few deaths occurred after 24 months.

Median CD8:CD163 ratios were then tested for their ability to sub-stratify IPI

and COO. Firstly, CD8:CD163 ratios were used to sub-divide patients with low-risk

(0-2) and high-risk (3-5) IPI’s (supplemental Figure 2). This showed that survival was

superior in those with high CD8:CD163 ratios for high-risk IPI (P=0.03), with a similar

but non-significant trend seen for low-risk IPI (P=0.07). Next, CD8:CD163 ratios were

used to stratify COO. Patients with high CD8:CD163 ratios had a higher probability

of survival than low CD8:CD163 ratio patients in both GCB and non-GCB groupings

(P=0.047 and P=0.011). For both IPI and COO, the discriminatory value of

CD8:CD163 ratios were most pronounced in those at risk of poorer outcome, i.e.

high-risk IPI and non-GCB (supplemental Figure 2B and 2D), compared to low-risk

IPI and GCB (supplemental Figure 2A and 2C).

Cox Regression multivariate analysis was consistent with the Kaplan-Meier

analysis. This showed that IPI, COO and CD8:CD163 were independently predictive

of OS (P=0.046, P=0.038 and P=0.015 respectively), whereas CD137:CD163 was

not (P=NS). We then performed Cox Regression in an external validation cohort,

comprising 181 patients treated with CHOP chemotherapy-alone and 233 patients

with R-CHOP chemo-immunotherapy. This enabled a comparison of the relative

importance of CD8:CD163 within the TME, with and without the addition of rituximab.

By multivariate analysis IPI, COO and CD8:CD163 remained independently

96

Page 86: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

19  

predictive of OS (P<0.0001, P=0.0006 and P=0.0006 respectively) in R-CHOP

treated patients. Interestingly, although CD8:CD163 was prognostic in the CHOP

chemotherapy-alone cohort (P=0.0007), only IPI was independently predictive in

multivariate analysis.

The 3-gene composite immunobiological score ‘LMO2+/-CD8:CD163’ adds to

the predictive ability of IPI and COO in R-CHOP treated patients.

LIM domain only 2 (LMO2) is a germinal-centre B-cell marker associated with

improved outcome after R-CHOP (24, 25). In keeping with this patients above the

median cut-off for LMO2 typed as GCB in 88% of cases, but only 13% in non-GCB

cases. As expected, in the Australian tissue cohort, patients with higher than median

expression of the germinal-centre B-cell marker LMO2 had superior outcome to

patients with low LMO2 (Figure 7A). The discriminatory value was similar to that of

IPI and COO, at 85% (LMO2 high) versus 62% (LMO2 low) 4-year survival

(P=0.0046).

We hypothesized that a composite score of LMO2 (as a marker of malignant

B-cell biology) and CD8:CD163 as a measure of net anti-tumoral immunity would

provide a simple 3-gene prognosticator with increased discriminator value over either

parameter alone. A binary score was tested in which high LMO2 and/or low LMO2

with a high CD8:CD163 ratio was designated ‘positive’, against a ‘double-negative’ of

low LMO2 and low CD8:CD163. As this measured both malignant B-cell biology and

net anti-tumoral immunity, it was termed the ‘immunobiological’ score. This identified

two groups with markedly different 4-year survivals of 86% (positive) and 33%

(double-negative, P=0.002, Figure 7B). Seventy six percent of patients were positive,

and 24% double-negative. Most deaths (>80%) occurred within 24 months.

97

Page 87: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

20  

The new score was compared to a previously proposed two-gene-scoring

weighted algorithm that used LMO2 and CD137 (26). Although less effective at

identifying a group at risk of a particularly poor outcome than the immunobiological

score, the two-gene-score did also effectively stratify patients (4-year survival 89%

for above median versus 58% below median, P<0.001).

For the immunobiological score to confer additional value to conventional

prognosticators, it was important to ascertain whether it was capable of sub-

stratifying IPI and COO. Critically, for each of low-risk and high-risk IPI (Figure 7C-

D), and GCB and non-GCB (Figure 6E-F), the composite score very strikingly added

to the IPI and COO’s ability to sub-stratify patient survival. With IPI, 4-year survival

was 91% and 44% (low-risk IPI, P<0.0001) and 76% and 26% (high-risk IPI,

P=0.002), and for COO 4-year survival was 89% and 27% (GCB, P<0.0001) and

79% and 36% (non-GCB, P=0.007).

External validation of the immunobiological score in R-CHOP treated DLBCL

patients.

The immunobiological score was then applied to the independent Affymetrix

tested gene-expression cohort of 181 CHOP treated and 233 R-CHOP treated

patients. The score segregated patients into groupings with different survival (Figure

7A-B, P=0.0007 and P<0.0001 respectively). As with the Australian R-CHOP treated

tissue cohort, for the Affymetrix R-CHOP cohort the score was additive to IPI and

COO (Figure 7D,F,H,J). For IPI, it separated the 79% 4-year survival of low-risk IPI

into two categories of 85% and 48% (Figure 7D, P<0.0001). Similarly, the 53% 4-

year survival of high-risk IPI was stratified into two groupings of 66% and 36%

(Figure 7F, P=0.0007). This confirmed that the immunobiological score had

98

Page 88: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

21  

predictive power and could sub-stratify IPI and COO in an external independent

cohort, and that DMGE gave similar findings to Affymetrix tested DLBCL patients.

Interestingly with the CHOP chemotherapy-alone patients, although LMO2+/-

CD8:CD163 had predictive power, this was not additive to non-GCB or low-risk IPI. It

did stratify high-risk IPI (P=0.006) patients and there was a non-significant trend with

GCB (P=0.056).

99

Page 89: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

22  

Discussion

It is established that in patients with DLBCL treated with CHOP-R chemo-

immunotherapy, low peripheral blood absolute lymphocyte:monocyte ratios confer

inferior outcomes (4-6, 27). This implicates circulating lymphocytes and monocytes

as surrogate markers for further analysis of intratumoral immunity. The present study

confirms that detailed functional assessment of blood immune-effector and

monocyte/macrophage-checkpoints, permits the rational identification of the optimal

immune molecules to incorporate within a lymphoma-tissue based prognostic gene

expression score. Furthermore, it demonstrates that the net balance of immune-

effectors and monocyte/macrophage-checkpoints are critical to outcome.

DLBCL biopsies are enriched in TAMs (17, 28-31). TAMs are thought to be

immunosuppressive ‘M2’ macrophages. TAMs derived from primary tumors are

believed to facilitate circulating tumor cell seeding of distant metastases in breast,

pancreatic and prostate cancer (32). Although it is known that monocytes can

migrate to lymph nodes and differentiate into macrophages, the relationship between

moMDSC and TAMs is incompletely understood. Following adoptive transfer of

MDSC into tumor-bearing mice, cells with the characteristics of TAMs can be

recovered from the tumor microenvironment (33). In other murine models TAMs

were shown to express relatively low levels of major histocompatibility class II

molecules, and tumor progression is positively correlated with increasing infiltration

of the tumor tissues by MHC class IIlo TAMs (34). However data in humans are

sparse.

TAMs have high expression of the scavenger receptor CD163, whereas pro-

inflammatory M1 macrophages are CD163lo. CD163 is also expressed on ‘classical’

(CD14+CD16-) monocytes. CD163+monocytes rise with aging and during HIV (35),

100

Page 90: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

23    

   

and are implicated in the lymphopenia of Hodgkin Lymphoma (36). Tissue CD163 is

an adverse prognosticator in melanoma and breast cancer (37, 38). We found that

addition of CD163 to conventional moMDSC indicators identified a highly

immunosuppressive subset of moMDSCs in DLBCL. MoMDSC and

CD163+monocytes values correlated and CD163+moMDSC were enriched within

circulating monocytes. The correlation between the M2 TAM marker CD163 and

HLA-DRlo on circulating CD14+ monocytes suggests a link between circulating

moMDSC and M2 TAMs within the malignant lymph node. This is supported by

CD163himoMDSC expressing markers that permit migration into lymphoid tissues.

Similar to M2 macrophages (M1 are CD68+CD163lo and M2 CD68+CD163hi),

expression of CD68 was equivalent irrespective of CD163.

Within the circulation, the immune-effector:CD163+moMDSC ratios were

lower in those remaining interim-PET/CT+ve. Pre-therapy patient sCD163 levels were

higher and reduced at post-cycle 4, but unlike our observations in Hodgkin

Lymphoma (36), did not become differentially reduced between interim-PET/CT+ve/-ve

patients. As repeat biopsy was not performed, no definitive conclusion can be made

as to whether pre-therapy CD163+moMDSC associate with residual DLBCL versus

inflammation within sites of interim-PET/CT-FDG-avidity. Rather the aim was to

functionally characterize circulating immune-effector and monocyte/macrophage-

checkpoints for further investigation of their expression within the diagnostic FFPET

biopsy, with survival as the outcome and IPI and COO as co-variates. New digital

hybridization technologies that are specifically applicable to FFPET are now

available. In keeping with previous reports, using a DMGE platform we observed

strong correlation between gene expression in paired frozen/paraffin samples across

101

Page 91: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

24  

a range of genes (15, 16, 39), indicating that this approach does accurately quantify

RNA on FFPET in R-CHOP treated DLBCL patients.

Interestingly, intratumoral CD163 expression alone was not prognostic.

However the CD8:CD163 ratio found that those with a lower ratio had inferior

outcome. This may explain why results of intratumoral CD163 alone as a

prognosticator are inconsistent (40, 41), and emphasises the importance of

measuring several markers to more accurately reflect the balance of TME immunity.

Similarly, CD8:CD163 ratios as a measure of net anti-tumoral immunity predicted

outcome more effectively than CD8 alone. CD8:CD163 was independent of IPI and

COO. Results were validated in an external R-CHOP gene-expression cohort.

Interestingly, although CD8:CD163 was predictive in a CHOP cohort, this was not

independent of conventional prognosticators. This may reflect the relatively

increased importance of TAMs in those treated with chemo-immunotherapy versus

chemotherapy-alone, and is consistent with our findings that patient monocytes

suppress R-ADCC.

Gene expression has identified distinct molecular subtypes of DLBCL, based

on the putative cell-of-origin of the malignant B-cell, termed ‘germinal-centre B-cell

(GCB)’ and ‘activated B-cell like (ABC)’ (28, 42, 43). LMO2, a GCB marker, alone is

also an independent predictor of survival (24, 25). In R-CHOP treated patients,

CD8:CD163 ratios were independent of COO, and enhanced the prognostic ability of

LMO2. The combination of a marker of B-cell differentiation with net anti-tumoral

immunity appears to better distinguish patients (than IPI or COO alone) with

markedly different survival. Furthermore LMO2 combined with CD8:CD163

successfully allowed segregation within low and high IPI groups. IPI is influenced by

patient fitness, age and tumor burden, which are non-over-lapping with CD8:CD163.

102

Page 92: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

25    

   

For the R-CHOP Australian tissue cohort, the application of the immunobiological

score to low and high-risk IPI segregated patients into groupings with four distinct,

well-spaced survival outcomes of 91%, 76%, 44% and 26%. Similar results were

seen with the external validation cohort. Although it is known that approximately 30%

of patients will remain refractory or relapse following conventional first-line chemo-

immunotherapy, upfront identification of this group (as candidates for alternative

induction therapy) has remained problematic. A combined clinical and

immunobiological score may permit rational selection of patients in whom novel

therapies should be tested.

CD137 expression on NK-cells is an important marker of mAB-mediated anti-

cancer cell ADCC (44). Interestingly we found that within ex-vivo blood taken from

patients enrolled into the NHL21 trial, CD137 up-regulation was reduced in NK-cells

relative to healthy participants upon exposure to rituximab coated DLBCL targets.

CD137 has also been proposed as a biomarker of tumor-reactive T-cells (45). We

observed that within the diagnostic tissue, CD137 gene expression alone had

equivalent prognostic ability to CD8. However, CD137:CD163 was less

discriminatory than CD8:CD163, and unlike CD8:CD163 was not prognostic by

multivariate analysis. A two-gene-score that combined LMO2 with the immune-

effector molecule CD137 has previously been recognized to be prognostic (26).

Notably, the immunobiological scoring system had markedly greater discriminatory

ability than the two-gene-score, and was especially effective in identifying a group at

risk of a particularly poor outcome.

These findings have other therapeutic implications. Firstly, monocyte

depletion in patients enhanced NK-cell mediated R-ADCC but not Ob-ADCC,

indicating that the immunosuppressive effects of monocytes in DLBCL may be

103

Page 93: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

26    

   

overcome by obinutuzumab (a type II antiCD20 monoclonal antibody). Clinical trials

comparing R-CHOP versus Ob-CHOP are ongoing and translational studies in that

population could further explore this hypothesis. Another notable finding was the

striking co-clustering of CD8 and CD163 within the tissue and circulation. This is in

line with emerging data that up-regulation of immune-checkpoints is an adaptive

(rather than constitutive) immune-checkpoint response to regulate immune-effector

activation (46). The correlations were significant but modest, reflecting the variable

success of the host to counter anti-tumoral immunity within the TME. Blockade of

other immune-checkpoints is a promising therapeutic approach (47), and strategies

that target CD163 may be similarly beneficial (48).

Immune-based strategies are gaining ground in DLBCL (49). The kinetics of

immune cells will likely impact the efficacy of these approaches, and may influence

dose-scheduling. There is minimal data on circulating moMDSC kinetics in DLBCL,

with a small study finding moMDSC returned to normal after therapy (12). We found

CD163+moMDSC reduced post-cycle 4, accompanied by an increase in ex-vivo

BMDCs and pDCs (i.e. antigen-presenting cells that orchestrate adaptive and innate

immunity). Monocytes are an important source of BMDCs in-vivo (23). Reduction in

moMDSC may be associated with an enhanced ability of monocytes differentiating

into BMDCs. The immunosuppressive profile of monocytes reduced by post-cycle 4,

including down-regulation of TH2 cytokines and TAM associated genes, and up-

regulation of STAT1 (18, 50). Similarly plasma CD163 reduced by post-cycle 4. As

with cHL, plasma CD163 levels associated with stage and reduced lymphocytes

(36).

Our data emphasizes the importance of capturing net anti-tumoral immunity

within the TME, by measuring the relative balance of immune-effector to

104

Page 94: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

27    

   

monocyte/macrophage-checkpoints. The immunobiological score is a robust, easily

standardized 3-gene assay applicable to FFPET that segregates IPI into markedly

disparate survival categories. The data indicates a link between human M2 TAMs

and moMDSC, and demonstrate that CD163 identifies a highly immunosuppressive

subset of moMDSC in DLBCL. Further investigation of CD163+moMDSC as a

therapeutic target is warranted, particularly in those with adverse CD8:CD163 ratios.

105

Page 95: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

28  

Acknowledgements

The authors would like to thank Bala Shankar and Ruth Columbus from the

ALLG, the ALLG Tissue Bank, all participating patients, healthy participants,

hospitals and PET/CT centres. The monoclonal antibody Obinutuzumab (GA101)

was provided by Roche Glycart AG (Schlieren, Switzerland).

106

Page 96: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

29    

   

References: 1. Coiffier, B. 2005. State-of-the-art therapeutics: diffuse large B-cell

lymphoma. J Clin Oncol 23:6387-6393. 2. Maurer, M.J., Ghesquieres, H., Jais, J.P., Witzig, T.E., Haioun, C.,

Thompson, C.A., Delarue, R., Micallef, I.N., Peyrade, F., Macon, W.R., et al. 2014. Event-free survival at 24 months is a robust end point for disease-related outcome in diffuse large B-cell lymphoma treated with immunochemotherapy. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 32:1066-1073.

3. Roschewski, M., Dunleavy, K., and Wilson, W.H. 2014. Moving beyond rituximab, cyclophosphamide, doxorubicin, vincristine and prednisone for diffuse large B-cell lymphoma. Leukemia & lymphoma.

4. Keane, C., Gill, D., Vari, F., Cross, D., Griffiths, L., and Gandhi, M. 2013. CD4(+) tumor infiltrating lymphocytes are prognostic and independent of R-IPI in patients with DLBCL receiving R-CHOP chemo-immunotherapy. American journal of hematology 88:273-276.

5. Li, Z.M., Huang, J.J., Xia, Y., Sun, J., Huang, Y., Wang, Y., Zhu, Y.J., Li, Y.J., Zhao, W., Wei, W.X., et al. 2012. Blood Lymphocyte-to-Monocyte Ratio Identifies High-Risk Patients in Diffuse Large B-Cell Lymphoma Treated with R-CHOP. PLoS One 7:e41658.

6. Porrata, L.F., Ristow, K., Habermann, T.M., Ozsan, N., Dogan, A., Macon, W., Colgan, J.P., Witzig, T.E., Inwards, D.J., Ansell, S.M., et al. 2012. Absolute monocyte/lymphocyte count prognostic score is independent of immunohistochemically determined cell of origin in predicting survival in diffuse large B-cell lymphoma. Leuk Lymphoma.

7. Coussens, L.M., and Werb, Z. 2002. Inflammation and cancer. Nature 420:860-867.

8. Wilcox, R.A., Wada, D.A., Ziesmer, S.C., Elsawa, S.F., Comfere, N.I., Dietz, A.B., Novak, A.J., Witzig, T.E., Feldman, A.L., Pittelkow, M.R., et al. 2009. Monocytes promote tumor cell survival in T-cell lymphoproliferative disorders and are impaired in their ability to differentiate into mature dendritic cells. Blood 114:2936-2944.

9. Afshar-Sterle, S., Zotos, D., Bernard, N.J., Scherger, A.K., Rodling, L., Alsop, A.E., Walker, J., Masson, F., Belz, G.T., Corcoran, L.M., et al. 2014.

107

Page 97: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

30    

   

Fas ligand-mediated immune surveillance by T cells is essential for the control of spontaneous B cell lymphomas. Nature medicine.

10. Ahmed, N., Heslop, H.E., and Mackall, C.L. 2010. T-cell-based therapies for malignancy and infection in childhood. Pediatric clinics of North America 57:83-96.

11. Obermajer, N., Muthuswamy, R., Lesnock, J., Edwards, R.P., and Kalinski, P. 2011. Positive feedback between PGE2 and COX2 redirects the differentiation of human dendritic cells towards stable myeloid-derived suppressor cells. Blood.

12. Tadmor, T., Fell, R., Polliack, A., and Attias, D. 2012. Absolute monocytosis at diagnosis correlates with survival in diffuse large B-cell lymphoma-possible link with monocytic myeloid-derived suppressor cells. Hematol Oncol.

13. Lin, Y., Gustafson, M.P., Bulur, P.A., Gastineau, D.A., Witzig, T.E., and Dietz, A.B. 2011. Immunosuppressive CD14+HLA-DR(low)/- monocytes in B-cell non-Hodgkin lymphoma. Blood 117:872-881.

14. Geiss, G.K., Bumgarner, R.E., Birditt, B., Dahl, T., Dowidar, N., Dunaway, D.L., Fell, H.P., Ferree, S., George, R.D., Grogan, T., et al. 2008. Direct multiplexed measurement of gene expression with color-coded probe pairs. Nature biotechnology 26:317-325.

15. Masque-Soler, N., Szczepanowski, M., Kohler, C.W., Spang, R., and Klapper, W. 2013. Molecular classification of mature aggressive B-cell lymphoma using digital multiplexed gene expression on formalin-fixed paraffin-embedded biopsy specimens. Blood 122:1985-1986.

16. Scott, D.W., Wright, G.W., Williams, P.M., Lih, C.J., Walsh, W., Jaffe, E.S., Rosenwald, A., Campo, E., Chan, W.C., Connors, J.M., et al. 2014. Determining cell-of-origin subtypes of diffuse large B-cell lymphoma using gene expression in formalin-fixed paraffin embedded tissue. Blood.

17. Lenz, G., Wright, G., Dave, S.S., Xiao, W., Powell, J., Zhao, H., Xu, W., Tan, B., Goldschmidt, N., Iqbal, J., et al. 2008. Stromal gene signatures in large-B-cell lymphomas. N Engl J Med 359:2313-2323.

108

Page 98: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

31    

   

18. Gabrilovich, D.I., and Nagaraj, S. 2009. Myeloid-derived suppressor cells as regulators of the immune system. Nature reviews. Immunology 9:162-174.

19. Zhao, X., Rong, L., Zhao, X., Li, X., Liu, X., Deng, J., Wu, H., Xu, X., Erben, U., Wu, P., et al. 2012. TNF signaling drives myeloid-derived suppressor cell accumulation. The Journal of clinical investigation 122:4094-4104.

20. Paul, S.P., Taylor, L.S., Stansbury, E.K., and McVicar, D.W. 2000. Myeloid specific human CD33 is an inhibitory receptor with differential ITIM function in recruiting the phosphatases SHP-1 and SHP-2. Blood 96:483-490.

21. DeNardo, D.G., Brennan, D.J., Rexhepaj, E., Ruffell, B., Shiao, S.L., Madden, S.F., Gallagher, W.M., Wadhwani, N., Keil, S.D., Junaid, S.A., et al. 2011. Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy. Cancer discovery 1:54-67.

22. Moller, H.J. 2012. Soluble CD163. Scandinavian journal of clinical and laboratory investigation 72:1-13.

23. Mellman, I., and Steinman, R.M. 2001. Dendritic cells: specialized and regulated antigen processing machines. Cell 106:255-258.

24. Natkunam, Y., Farinha, P., Hsi, E.D., Hans, C.P., Tibshirani, R., Sehn, L.H., Connors, J.M., Gratzinger, D., Rosado, M., Zhao, S., et al. 2008. LMO2 protein expression predicts survival in patients with diffuse large B-cell lymphoma treated with anthracycline-based chemotherapy with and without rituximab. J Clin Oncol 26:447-454.

25. Natkunam, Y., Zhao, S., Mason, D.Y., Chen, J., Taidi, B., Jones, M., Hammer, A.S., Hamilton Dutoit, S., Lossos, I.S., and Levy, R. 2007. The oncoprotein LMO2 is expressed in normal germinal-center B cells and in human B-cell lymphomas. Blood 109:1636-1642.

26. Alizadeh, A.A., Gentles, A.J., Alencar, A.J., Liu, C.L., Kohrt, H.E., Houot, R., Goldstein, M.J., Zhao, S., Natkunam, Y., Advani, R.H., et al. 2011. Prediction of survival in diffuse large B-cell lymphoma based on the expression of 2 genes reflecting tumor and microenvironment. Blood 118:1350-1358.

109

Page 99: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

32    

   

27. Wilcox, R.A., Ristow, K., Habermann, T.M., Inwards, D.J., Micallef, I.N., Johnston, P.B., Colgan, J.P., Nowakowski, G.S., Ansell, S.M., Witzig, T.E., et al. 2012. The absolute monocyte count is associated with overall survival in patients newly diagnosed with follicular lymphoma. Leukemia & lymphoma 53:575-580.

28. Alizadeh, A.A., Eisen, M.B., Davis, R.E., Ma, C., Lossos, I.S., Rosenwald, A., Boldrick, J.C., Sabet, H., Tran, T., Yu, X., et al. 2000. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403:503-511.

29. Monti, S., Savage, K.J., Kutok, J.L., Feuerhake, F., Kurtin, P., Mihm, M., Wu, B., Pasqualucci, L., Neuberg, D., Aguiar, R.C., et al. 2005. Molecular profiling of diffuse large B-cell lymphoma identifies robust subtypes including one characterized by host inflammatory response. Blood 105:1851-1861.

30. Marmey, B., Boix, C., Barbaroux, J.B., Dieu-Nosjean, M.C., Diebold, J., Audouin, J., Fridman, W.H., Mueller, C.G., and Molina, T.J. 2006. CD14 and CD169 expression in human lymph nodes and spleen: specific expansion of CD14+CD169- monocyte-derived cells in diffuse large B-cell lymphomas. Hum Pathol 37:68-77.

31. Challa-Malladi, M., Lieu, Y.K., Califano, O., Holmes, A.B., Bhagat, G., Murty, V.V., Dominguez-Sola, D., Pasqualucci, L., and Dalla-Favera, R. 2011. Combined genetic inactivation of beta2-Microglobulin and CD58 reveals frequent escape from immune recognition in diffuse large B cell lymphoma. Cancer Cell 20:728-740.

32. Adams, D.L., Martin, S.S., Alpaugh, R.K., Charpentier, M., Tsai, S., Bergan, R.C., Ogden, I.M., Catalona, W., Chumsri, S., Tang, C.M., et al. 2014. Circulating giant macrophages as a potential biomarker of solid tumors. Proceedings of the National Academy of Sciences of the United States of America 111:3514-3519.

33. Kusmartsev, S., Nagaraj, S., and Gabrilovich, D.I. 2005. Tumor-associated CD8+ T cell tolerance induced by bone marrow-derived immature myeloid cells. J Immunol 175:4583-4592.

34. Wang, B., Li, Q., Qin, L., Zhao, S., Wang, J., and Chen, X. 2011. Transition of tumor-associated macrophages from MHC class II(hi) to

110

Page 100: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

33  

MHC class II(low) mediates tumor progression in mice. BMC immunology 12:43.

35. Tippett, E., Cheng, W.J., Westhorpe, C., Cameron, P.U., Brew, B.J.,Lewin, S.R., Jaworowski, A., and Crowe, S.M. 2011. Differentialexpression of CD163 on monocyte subsets in healthy and HIV-1 infectedindividuals. PloS one 6:e19968.

36. Jones, K., Vari, F., Keane, C., Crooks, P., Nourse, J.P., Seymour, L.A.,Gottlieb, D., Ritchie, D., Gill, D., and Gandhi, M.K. 2013. Serum CD163and TARC as Disease Response Biomarkers in Classical HodgkinLymphoma. Clin Cancer Res 19:731-742.

37. Jensen, T.O., Schmidt, H., Moller, H.J., Hoyer, M., Maniecki, M.B.,Sjoegren, P., Christensen, I.J., and Steiniche, T. 2009. Macrophagemarkers in serum and tumor have prognostic impact in American JointCommittee on Cancer stage I/II melanoma. J Clin Oncol 27:3330-3337.

38. Medrek, C., Ponten, F., Jirstrom, K., and Leandersson, K. 2012. Thepresence of tumor associated macrophages in tumor stroma as aprognostic marker for breast cancer patients. BMC cancer 12:306.

39. Scott, M.A., Gandhi, M.K., Jestice, H.K., Mahendra, P., Bass, G., andMarcus, R.E. 1998. A trend towards an increased incidence of chronicgraft-versus-host disease following allogeneic peripheral bloodprogenitor cell transplantation: a case controlled study. Bone MarrowTransplant 22:273-276.

40. Wada, N., Zaki, M.A., Kohara, M., Ogawa, H., Sugiyama, H., Nomura, S.,Matsumura, I., Hino, M., Kanakura, Y., Inagaki, H., et al. 2012. Diffuselarge B cell lymphoma with an interfollicular pattern of proliferationshows a favourable prognosis: a study of the Osaka Lymphoma StudyGroup. Histopathology 60:924-932.

41. Yoshida, N., Oda, M., Kuroda, Y., Katayama, Y., Okikawa, Y., Masunari,T., Fujiwara, M., Nishisaka, T., Sasaki, N., Sadahira, Y., et al. 2013.Clinical Significance of sIL-2R Levels in B-Cell Lymphomas. PloS one8:e78730.

42. Rosenwald, A., Wright, G., Chan, W.C., Connors, J.M., Campo, E., Fisher,R.I., Gascoyne, R.D., Muller-Hermelink, H.K., Smeland, E.B., Giltnane,J.M., et al. 2002. The use of molecular profiling to predict survival after

111

Page 101: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

34    

   

chemotherapy for diffuse large-B-cell lymphoma. N Engl J Med 346:1937-1947.

43. Wright, G., Tan, B., Rosenwald, A., Hurt, E.H., Wiestner, A., and Staudt, L.M. 2003. A gene expression-based method to diagnose clinically distinct subgroups of diffuse large B cell lymphoma. Proc Natl Acad Sci U S A 100:9991-9996.

44. Kohrt, H.E., Houot, R., Weiskopf, K., Goldstein, M.J., Scheeren, F., Czerwinski, D., Colevas, A.D., Weng, W.K., Clarke, M.F., Carlson, R.W., et al. 2012. Stimulation of natural killer cells with a CD137-specific antibody enhances trastuzumab efficacy in xenotransplant models of breast cancer. The Journal of clinical investigation 122:1066-1075.

45. Ye, Q., Song, D.G., Poussin, M., Yamamoto, T., Best, A., Li, C., Coukos, G., and Powell, D.J., Jr. 2014. CD137 accurately identifies and enriches for naturally occurring tumor-reactive T cells in tumor. Clinical cancer research : an official journal of the American Association for Cancer Research 20:44-55.

46. Taube, J.M., Anders, R.A., Young, G.D., Xu, H., Sharma, R., McMiller, T.L., Chen, S., Klein, A.P., Pardoll, D.M., Topalian, S.L., et al. 2012. Colocalization of inflammatory response with B7-h1 expression in human melanocytic lesions supports an adaptive resistance mechanism of immune escape. Science translational medicine 4:127ra137.

47. Westin, J.R., Chu, F., Zhang, M., Fayad, L.E., Kwak, L.W., Fowler, N., Romaguera, J., Hagemeister, F., Fanale, M., Samaniego, F., et al. 2013. Safety and activity of PD1 blockade by pidilizumab in combination with rituximab in patients with relapsed follicular lymphoma: a single group, open-label, phase 2 trial. The lancet oncology.

48. Graversen, J.H., Svendsen, P., Dagnaes-Hansen, F., Dal, J., Anton, G., Etzerodt, A., Petersen, M.D., Christensen, P.A., Moller, H.J., and Moestrup, S.K. 2012. Targeting the hemoglobin scavenger receptor CD163 in macrophages highly increases the anti-inflammatory potency of dexamethasone. Molecular therapy : the journal of the American Society of Gene Therapy 20:1550-1558.

112

Page 102: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

35    

   

49. Elstrom, R.L., Martin, P., and Leonard, J.P. 2008. New biologic agents and immunologic strategies. Hematol Oncol Clin North Am 22:1037-1049, x-xi.

50. Yu, H., Pardoll, D., and Jove, R. 2009. STATs in cancer inflammation and immunity: a leading role for STAT3. Nature reviews. Cancer 9:798-809.

113

Page 103: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

36    

   

Figure 1: Depletion of monocytes enhances T-cell proliferation and rituximab

but not obinutuzumab mediated ADCC.

A. Monocytes are increased in poor-risk DLBCL patients compared to healthy

participants;

B-D. CD3+/CD4+/and CD8+ T-cell proliferation with (depleted) and without (intact)

monocyte depletion in healthy participants and pre-therapy patient blood samples;

E. R-ADCC measured in healthy participants (left) and pre-therapy DLBCL patients

(right) with and without monocyte depletion;

F. Ob-ADCC measured in healthy participants (left) and pre-therapy DLBCL patients

(right) with and without monocyte depletion;

G. Monocytes impair R-ADCC but not Ob-ADCC in pre-therapy DLBCL patients;

H. Reduced activation of NK-cells during R- but not Ob- ADCC in healthy

participants and pre-therapy DLBCL patients.

Figure 2: Characterization of CD163+moMDSC.

A. Representative flow cytometry plots showing ‘classical’ (CD14+CD16-),

‘intermediate’ (CD14+CD16+) and ‘non-classical’ (CD14dimCD16+) monocytes in

healthy PBMC, with enrichment of CD14+HLA-DRlo (moMDSC) in classical

monocytes in a pre-therapy DLBCL patient;

B. MoMDSCs are elevated in pre-therapy DLBCL patients compared to healthy

participants;

C. HLA-DR expression on CD14+ monocytes is lower at pre-therapy compared to

the same participant at post-cycle 4 and to a healthy participant. The CD163

expression on DRlo monocytes (moMDSC) is raised pre-therapy. CD163 is indicated

by the shaded histogram, the open histogram is the control;

114

Page 104: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

37    

   

D. Pre-therapy DLBCL moMDSC and CD163+CD14+ cells are correlated;

E. CD163+moMDSC are elevated in pre-therapy DLBCL patients compared to

healthy participants;

F Arginase activity was elevated compared to healthy participants;

G CD163 mean fluorescent intensity (MFI) on moMDSC correlated with arginase

activity in patients and healthy participants.

Figure 3: Cell-surface phenotype of CD163himoMDSC versus CD163lomoMDSC.

Proportion of cell surface markers expressed in CD163hi and CD163lo moMDSC

compared for (A) CD11b, (B) CD11c, (C) CD68, (D) CD120b, (E) CD62L, (F) CD33,

(G) CD80 (H) CD86 and (I) CSF-R1.

Figure 4: Pre-therapy monocyte subsets are elevated in DLBCL patients

remaining interim-PET/CT+ve after 4 cycles of R-CHOP chemo-immunotherapy.

A. Pre-therapy absolute (i) monocyte (ii) moMDSC and (iii) CD163+moMDSC subset

counts in DLBCL patients, grouped by post-cycle 4 interim-PET/CT results.

B. Pre-therapy lymphocyte subset:monocyte ratios in DLBCL patients, grouped by

post-cycle 4 interim-PET/CT results. Numerators: panel (i) total lymphocytes; (ii) NK-

cells; (iii) T-cells.

C. Pre-therapy lymphocyte:CD14+HLA-DRlo ratios in DLBCL patients, grouped by

post-cycle 4 interim-PET/CT results. Numerators: panel (i) total lymphocytes; (ii) NK-

cells; (iii) T-cells.

D. Pre-therapy lymphocyte subset:CD163+moMDSC ratios in DLBCL patients,

grouped by post-cycle 4 interim-PET/CT results. Numerators: panel (i) total

lymphocytes; (ii) NK-cells; (iii) T-cells.

115

Page 105: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

38  

Figure 5: Kinetics of circulating monocytes and dendritic cells in poor-risk

DLBCL patients during R-CHOP.

A. Paired moMDSC counts in blood samples taken pre-therapy and post-cycle 4;

B. Paired CD163+moMDSC counts in peripheral blood samples taken pre-therapy

and post-cycle 4. Arrows denote mean values;

C. Heat map showing gene expression microarray analysis on circulating monocytes

isolated from 5 healthy participants and 6 DLBCL patients taken pre-therapy and

post-cycle 4, showing up-regulation of antigen-presentation genes, and down-

regulation of TAM associated and TH2 cytokine genes at post-cycle 4;

D. Paired BMDC at pre-therapy and post-cycle 4;

E. CpG-DNA induced interferon-α production from pDC in patients and healthy

participants;  

F. Paired pDC at pre-therapy and post-cycle 4.

Arrows denotes mean values.

Figure 6: A binary composite score of LMO2+/-CD8:CD163 added to the ability

of IPI and COO to stratify patient survival.

Kaplan–Meier estimates of OS are shown. A. Patient tissues were divided by median

LMO2 into LMO2 high and low; B. A binary composite score of high LMO2 and/or

high CD8:CD163 (‘positive’), versus low LMO2 and low CD8:CD163 (‘double-

negative’). C. In low-risk (0-2) IPI patients, composite score positive patients had the

higher probability of survival; D. For high-risk IPI, double-negative score patients had

the lower probability of survival; E. GCB positive patients had the higher probability

of survival than GCB double-negative; F. Non-GCB positive patients had the higher

probability of survival than non-GCB double-negative.

116

Page 106: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

39    

   

Figure 7: External validation of the immunobiological score in 199 CHOP and

233 R-CHOP treated DLBCL patients.

The immunobiological score was tested using Kaplan–Meier estimates of survival in

a chemotherapy-alone (CHOP) and a chemo-immunotherapy (R-CHOP) treated

cohort, in the left and right columns respectively. All CHOP (A) and R-CHOP (B)

patients; Low-risk IPI CHOP (C) and R-CHOP (D) patients; High-risk IPI (>2) CHOP

(E) and R-CHOP (F) patients; GCB CHOP (G) and R-CHOP (H) patients; non-GCB

CHOP (I) and R-CHOP (J) patients.

117

Page 107: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

40    

   

Supplemental Table S1. Optimization of immune-effector and

monocyte/macrophage-checkpoint combinations. Significant P values are in

bold.

Supplemental Table S2. Characteristics of the blood and tissue patient cohorts.

Supplemental Table S3. Flow cytometry antibodies used.

Supplemental Figure S1: Plasma CD163 is elevated in poor-risk DLBCL.

A. Plasma CD163 is elevated in pre-therapy DLBCL patients compared to post-cycle

4 (paired analysis) and both pre-therapy and post-cycle 4 plasma CD163 are

elevated relative to healthy participants.

B. ROC analysis of plasma CD163 levels in pre-therapy DLBCL patients and healthy

participants.

C. Plasma CD163 was inversely associated with absolute lymphocyte counts (using

a median cut-off for 120/ml).

D. Plasma CD163 was associated with advanced stage.

E. Plasma CD163 was associated with age >60 years.

F. Plasma CD163 was associated with higher IPI.

Panels A, D-F show mean and SEM.

Supplemental Figure S2. IPI and COO stratification in the Australian tissue

cohort. A. Low (0-2) and high (3-5) risk IPI; B GCB and non-GCB.

118

Page 108: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

41    

   

Supplemental Figure S3. CD8:CD163 ratio adds to the predictive ability of

clinical and malignant B-cell biology prognosticators.

A. Low-risk IPI; B. B. High-risk IPI; C.GCB; D. Non-GCB.

119

Page 109: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

Figure 1.

20

40

60

80 P

% c

lass

ical

mon

ocyt

es li

ve < 0.0001

Intact Depleted Intact Depleted

0

20

40

60

P=NS

Healthy Pre-Therapy

P=0.03

% C

FSEl

o C

D8

T-ce

ll

Intact Depleted Intact Depleted0

10

20

30

40

P=NS

Healthy Healthy

Pre-Therapy

P=0.03

% C

FSEl

o C

D3

T-ce

ll

Intact Depleted Intact Depleted-10

0

10

20

30

40

50P=NS

Healthy Pre-Therapy

P=0.027

% C

FSEl

o C

D4

T-ce

ll

A) B) C)Pre-Therapy

D)

Intact Depleted Intact Depleted0

20406080

100

Healthy Pre-Therapy

% A

DC

C

RituximabP=NS P=0.01

E)Intact Depleted Depleted

020406080

100 P=NS

Healthy Pre-Therapy

P=NS

% A

DC

C

Obinutuzumab

F) H)

Healthy Healthy0

20

40

60

80

100 P=0.02

ObinutuzumabRituximab

% C

D13

7 N

K-ce

lls

Pre-Therapy Pre-Therapy

P=NS

G)

0

20

40

60

80

%A

DC

C

P=0.01

Healthy HealthyPre-Therapy Pre-Therapy

Healthy HealthyPre-Therapy Pre-Therapy

DepletedIntactP=NS P=NS P=NS

Rituximab Obinutuzumab Rituximab Obinutuzumab

120

Page 110: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

CD16

HLA-DR HLA-DR

Healthy Pre

1

231 23

1

221

CD14 CD14

CD16

A) C)B)

Healthy Pre-Therapy Post-Cycle 4

CD14

HLA-DR HLA-DR HLA-DR

CD163 CD163 CD163

Healthy Pre0

10

20

30

40

50 P

% m

o MD

SC

<0.0001

8Arginase

(milli units per 100,000 monocytes)

CD

163

MFI

on

moM

DSC

0 2 4 60

1000

2000

3000r =0.45P=0.002

D) F) G)Healthy Pre

0

10

20

30P=0.001

%C

D16

3+m

oMDS

C

E)Healthy Pre

0

2

4

6

8

Arg

inas

e (m

illi u

nits

per

100

,000

mon

o)

P=0.0005

CD163 counts per µl

0 100 200 300 400 15000

100

200

300

400

1000

1500

moM

DSC

cou

nts

per µ

l

r =0.41P<0.0001

Figure 2.121

Page 111: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

B)A) C)CD163hi CD163 lo

0

20

40

60

80

100

%C

D11

b of

moM

DSC

P=NS

CD163hi CD163 lo0

50

100

%C

D68

of m

oMD

SC

P=NS

CD163hi CD163lo0

20

40

60

80

100

%C

D11

c of

moM

DSC

P=0.035

CD163hi CD163 lo0

50

100

%C

D12

0b o

f moM

DSC

=0P .001

CD163hi CD163lo0

5

10

1520406080

100

%C

SF-1

R o

f moM

DSC

<0.0001P

CD163hi CD163 lo0

50

100

%C

D33

hi o

f moM

DSC

P=0.011

CD163hi CD163 lo0

50

100

%C

D80

of

moM

DSC

P<0.009

CD163hi CD163 lo0

50

100

%C

D86

of m

oMD

SC

P=NS

CD163hi CD163 lo0

50

100

%C

D62

L of

moM

DSC

P<0.0001

E)D) F)

H)G) I)

Figure 3.122

Page 112: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

PET -VE PET +VE0

20

40

60

400

800 P<0.0001

PET -VE PET +VE0

5

10

50

100

150 P=0.0001

NK

-cel

/ C

D16

3+ m

oMD

SC

3

PET-ve PET +VE 0

50

100

150

200400600

P=0.0002

T-ce

ll / C

D16

3+ m

oMD

SC

PET -VE PET +VE0

500

1000

1500

2000

2500 P=NS

mon

ocyt

e pe

r L

PET -VE PET +VE0

500

1000

1500 P=0.004

moM

DSC

C

per

L

A)

PET -VE PET +VE0

2

4

6

8

10

lym

phoc

yte

/ mon

ocyt

e

ePET -VE PET +VE

0

200

400

600

800 P<0.0001

CD

163+

moM

DSC

per

L

PET -VE PET +VE0.0

0.5

1.0

1.5N

K-c

ell /

mon

ocyt

e

e

PET -VE PET +VE0

2

4

6

8

10

T-ce

ll / m

onoc

yte

e

P=NS

PET -VE PET +VE0

1

2

3

468

10 P=0.01

NK

-cel

l / m

oMD

SC

C

PET -VE PET +VE0

10

20

30

4050

100150

P=0.03T-

cell

/ moM

DSC

lym

pho

/ CD

163

/

+ moM

DSC

150 P=0.02

PET -VE PET +VE0

50

100

Lym

phoc

yte

/ moM

DSC

B)

C)

P=NS P=NS

(i) (ii) (iii)

(i) (ii) (iii)

D)

(i) (ii) (iii)

(i) (ii) (iii)

Figure 4. 123

Page 113: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

A)PRE POST

0

500

1000

1500

P=0.0001m

oMD

SC/m

L

PRE POST0

200

400

600

800 P=0.0002

CD

163+

moM

DSC

/mL

B)

Pre

Pre

Pre

Pre

Pre

Pre

Post

Post

Post

Post

Post

Hea

lthy

Hea

lthy

Hea

lthy

Hea

lthy

Hea

lthy

Post

HLA-DRA

HLA-DRB4

HLA-DMBHLA-DOA

HLA-DRB3

HLA-DRB6HLA-DRB1

MFGE8IL4IL10IL1R2IL13CD163

Hea

lthy

Post

Post

Post

Post

Hea

lthy

Hea

lthy

Post

Pre

Pre

Post

Hea

lthy

Pre

Pre

Hea

lthy

Pre

Pre

D)0

5

10

15

20406080

1000.0002P=

BM

DC

cou

nt/m

L

POSTPRE 0

10

20

30

40

% IF

N a

lpha

PD

C

P=0.0006

E) Healthy PRE

F) PRE POST0

5

10

15

400

800

PDC

cou

nts/m

L P<0.0001

Figure 5.124

Page 114: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

0 1 2 3 4 50

50

100

Time (years)

Ove

rall

Surv

ival

(%)

LMO2>MedianLMO2<Median

P = 0.0046

0 1 2 3 4 50

50

100

Time (years)

Ove

rall

Surv

ival

(%)

PositiveDouble negativeP <0.0001

0 1 2 3 4 50

50

100

Time (years)

Ove

rall

Surv

ival

(%)

PositiveDouble negativeP < 0.0001

0 1 2 3 4 50

50

100

Time (years)

Ove

rall

Surv

ival

(%)

PositiveDouble negativeP <0.0001

0 1 2 3 4 50

50

100

Time (years)

Ove

rall

Surv

ival

(%)

PositiveDouble negativeP = 0.002

0 1 2 3 4 50

50

100

Time (years)

Ove

rall

Surv

ival

(%)

PositiveDouble negativeP = 0.007

A B

C D

E F

Figure 6.125

Page 115: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

0 1 2 3 4 50

50

100

Time (years)

Ove

rall

Surv

ival

(%)

PositiveDouble Negative

P = 0.0007

0 1 2 3 4 50

50

100

Time (years)

Ove

rall

Surv

ival

(%)

PositiveDouble negative

P = 0.13

0 1 2 3 4 50

50

100

Time (years)

Ove

rall

Surv

ival

(%)

PositiveDouble negative

P = 0.006

0 1 2 3 4 50

50

100

Time (years)

Ove

rall

Surv

ival

(%)

PositiveDouble negativeP = 0.056

0 1 2 3 4 50

50

100

Time (years)

Ove

rall

Surv

ival

(%)

PositiveDouble Negative

P = <0.0001

0 1 2 3 4 50

50

100

Time (years)

Ove

rall

Surv

ival

(%)

PositiveDouble negativeP = 0.0003

0 1 2 3 4 50

50

100

Time (years)

Ove

rall

Surv

ival

(%)

PositiveDouble negative

P = 0.0007

0 1 2 3 4 50

50

100

Time (years)

Ove

rall

Surv

ival

(%)

PositiveDouble negative

P = 0.0007

A B

C D

E F

G H

I J

0 1 2 3 4 50

50

100

Time (years)

Ove

rall

Surv

ival

(%)

PositiveDouble negativeP = 0.07

0 1 2 3 4 50

50

100

Time (years)

Ove

rall

Surv

ival

(%)

PositiveDouble negative

P = 0.008

Figure 7.126

Page 116: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

Supplemental Methods

ALLGNHL21 Clinical study

Eligible patients were aged between 18-70 years with CD20+ DLBCL with IPI

2-5 or IPI 0-1 with bulky tumor (≥7.5 cm), and FDG-PET–positive evaluable disease.

Patients with non-bulky IPI 0-1 disease were excluded. Patients with non-bulky IPI 0-

1 disease were excluded. Those with previously treated lymphoma, primary central

nervous system (CNS) lymphoma, transformed lymphoma or follicular lymphoma

grade 3B patients were ineligible. Patients had to have an Eastern Cooperative

Oncology Group (ECOG) performance status between 0-3 and be considered

suitable for R-CHOP-14, and high-dose chemotherapy with autologous stem-cell

rescue. Clinical parameters were source verified and IPI centrally reviewed. All

patients had serum creatinine ≤ 150 µmol/L, total bilirubin level ≤ 30 mmol/L,

transaminases ≤ 2.5 maximum normal level, neutrophils ≥1.5 x 109/L or platelets ≥

100 x 109/L unless due to lymphoma. Patients had to be HIV-negative, hepatitis B

virus (HBV) surface antigen negative, and/or HBV core antibody negative with HBV

surface antibody titre <100iu/ml unless clearly due to prior vaccination. Patients with

uncompensated cardiac failure, chronic lung disease with hypoxia, severe

psychiatric disease or any history of cancer during the last 5 years (with the

exception of non-melanoma skin tumours or in situ cervical carcinoma were

excluded.

All interim-PET/CT scans were reviewed centrally alongside diagnostic pre-

therapy scans (blinded to the local PET/CT assessment), to verify residual abnormal

FDG uptake at sites of previously identified activity. Metabolic response

categorisation used a 5-point scale (1). Patients with a complete metabolic response

(≤3 on 5-point scale) were classified as interim-PET/CT-ve, whereas those remaining

127

Page 117: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

PET-FDG-avid (>3) were classified as interim-PET/CT positive. R-CHOP was given

as follows: day 1 rituximab 375 mg/m2 intravenous (IV) infusion, cyclophosphamide

750 mg/m2 IV, doxorubicin 50 mg/m2 IV, vincristine 1.4 mg/m2 (maximum 2 mg) IV,

and prednisone 100 mg/day orally for 5 days. Further therapy was dependent on the

outcome of the interim-PET/CT scan and is not the subject of this study (further

details are available under Clinical Trials Identifier: ACTRN12609001077257).

Immuno-phenotyping The antibodies used are outlined in supplemental Table S2. The flow

cytometry data was acquired using a BD LSRII flow cytometer controlled by

FACSDiva software (BD, Australia). Data analysis was performed on compensated

data using FlowJo 4.2 or 9.x software (Tree Star, USA). MoMDSC were defined as

CD14+ monocytes which were DRlo, i.e. with DR expression lower than the median

DR expression of B-cells in the PBMC population. Blood myeloid dendritic cells

(BMDCs) and plasmacytoid dendritic cells (pDC) were analysed as previously

outlined (2). Briefly, among the lineage negative DRhi cells, pDC were

CD123+CD11c- cells while BMDC were CD123-CD11c+. Intratumoral flow cytometry,

was performed as previously described (3).

Functional assays

T-cell proliferation and antiCD20-ADCC assays were performed with and

without monocyte depletion. Monocytes were depleted using an immunomagnetic

CD14 selection procedure (EasySep, Stemcell Technologies) as per manufacturer

recommendations achieving >90% monocyte depletion.

The antiCD20-ADCC assay measures killing of a carboxyfluorescein

succinimidyl ester (CFSE)-labelled CD20-positive DLBCL cell-line (SU-DHL4)

128

Page 118: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

incubated for 4-6 hours +/- PBMC and +/- rituximab/obinutuzumab. Classical

Hodgkin Lymphoma (cHL) cell-lines (to confirm specificity for CD20) were used as

CD20-ve control targets. The absolute change in targets was measured by flow

cytometry. Subtraction of the number of target cells lysed by addition of

rituximab/obinutuzumab alone (direct lysis) from the total number lysed by antiCD20

monoclonal antibody with PBMC, enabled enumeration of antiCD20-ADCC mediated

killing. CD107ab de-granulation of CD56+ and CD14+ cells was measured by flow

cytometry.

For T-cell proliferation, CFSE stained mononuclear cells were seeded in 96-

well round-bottom plates at 2-5x105 cells/well in RPMI 1640 (Invitrogen) with 10%

foetal calf serum (Invitrogen) supplemented with 2 mmol/l L-glutamine and

1×Penicilin/Streptomycin (Invitrogen), termed ‘R-10’, with 10 u/ml interleukin-2. Anti-

CD3/CD28/CD137 beads (Invitrogen) at a 1:10 bead:cell ratio was added to

stimulate polyclonal expansion. Cells were cultured for 96-120 hours and assessed

by flow cytometry.

Isolated monocytes were tested for arginase activity using the Urea assay kit

(Abnova Urea Assay ABIN1082256 Taiwan). This measured the metabolite urea, a

by-product of arginine degradation.

For pDC function, PBMC in R-10 were cultured at 2 x 106 cells/ml in 96-well

culture plates and stimulated with type A (CpGA) or type B (CpGB) unmethylated

CPG oligodeoxynucleotides (ODN) (5 mM, CpG 2216 and CpG 2016, respectively,

InVivoGen, San Diego, USA) for 6-8 hours in a CO2 incubator. Cells were stained

(CD123, CD11c, lineage-cocktail, HLA-DR) for surface staining of pDC, and fixed

and permeabilized according to the manufacturer’s instructions (Fix and Perm, BD

Bio-sciences). Anti–IFN-alpha (Miltenyi Biotec) was used for intracellular staining.

129

Page 119: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

Enzyme linked immuno-absorbent assays (ELISA)

Plasma levels of arginase I was determined using a human arginase I

sandwich ELISA (BioVendor) according to the manufacturer’s instructions. CD163

was quantified using the Quantikine® Human CD163 ELISA kit (R&D Systems) as

previously outlined (4).

RNA quantification

For DMGE, RNA was extracted from tumor biopsies using RecoverAll total

nucleic acid extraction kit for FFPET (Ambion, Life Technologies, Carlsbad, CA,

USA) as per manufacturer’s instructions and stored at -80oC. CD163 mRNA was

quantified by real-time RT-PCR as previously described using a Rotorgene 3000

real-time PCR machine (Corbett Research) as previously described (4).

Genes for DMGE using the nCounter platform (NanoString Technologies,

Seattle, WA, USA) were chosen to permit COO categorization,(5) and analysis of

immune-effectors and immune-checkpoints. Hybridizations were carried out

according to the NanoString Gene Expression Assay Manual. Five microliter of each

RNA sample (100 ng) was mixed with 20 µl of nCounter Reporter probes in

hybridization buffer and 5 µl of nCounter Capture probes for a total reaction volume

of 30 µl. The hybridizations incubated at 65°C for approximately 16-20 hours. Two

separate runs were performed requiring the production of two identical codesets.

Expression counts were normalized between codesets based on relative differences

between duplicate samples in both runs which allowing us to develop a correction

factor for each individual gene between the runs. Raw data was imported and

130

Page 120: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

analysed in the NanoString® data analysis tool nSolver. For normalization, gene

expression data was internally controlled to the mean of the positive control probes

to account for inter-assay variability. Gene normalization was then performed using

the geometric mean of four housekeeper gene to account for factors that affect RNA

quality and quantity (PGK1, GAPDH, PGAM1, OAZ1). Housekeeping genes were

selected as previously described and as per manufacturer recommendation (6).

Gene expression data from frozen tissues utilized by Lenz et al. was taken

from the NCBI Gene Expression Omnibus database (GEO accession GSE10846)

(7). Normalisation was as described in the original published paper. In instances

where genes on the Affymetrix platform had multiple expression probes, we chose

the single probe that most accurately reflect the actual gene expression as per a

recently described scoring method (8).

For blood, RNA was extracted from FACS-sorted CD14+ monocytes, and

analysed using Illumina Human HT12v4 Bead Array for whole genome expression.

The data was extracted and pre-processed using Illumina’s Genome Studio.

Analysis was performed using Genespring GX11 (Agilent Technologies) with all data

quantile normalised. Clustering was performed using Genesis software (Genomics

and Bioinformatics Graz) (9).

 

 

1.   Meignan  M,  Gallamini  A,  Haioun  C,  Polliack  A.  Report  on  the  Second  International  Workshop  on  interim  positron  emission  tomography  in  lymphoma  held  in  Menton,  France,  8-­‐9  April  2010.  Leuk  Lymphoma.  2010;51:2171-­‐80.  2.   Jongbloed  SL,  Kassianos  AJ,  McDonald  KJ,  Clark  GJ,  Ju  X,  Angel  CE,  et  al.  Human  CD141+  (BDCA-­‐3)+  dendritic  cells  (DCs)  represent  a  unique  myeloid  DC  subset  that  cross-­‐presents  necrotic  cell  antigens.  J  Exp  Med.  2010;207:1247-­‐60.  3.   Keane  C,  Gill  D,  Vari  F,  Cross  D,  Griffiths  L,  Gandhi  M.  CD4(+)  tumor  infiltrating  lymphocytes  are  prognostic  and  independent  of  R-­‐IPI  in  patients  with  DLBCL  receiving  R-­‐CHOP  chemo-­‐immunotherapy.  Am  J  Hematol.  2013;88:273-­‐6.  

131

Page 121: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

4.   Jones  K,  Vari  F,  Keane  C,  Crooks  P,  Nourse  JP,  Seymour  LA,  et  al.  Serum  CD163  and  TARC  as  Disease  Response  Biomarkers  in  Classical  Hodgkin  Lymphoma.  Clin  Cancer  Res.  2013;19:731-­‐42.  5.   Wright  G,  Tan  B,  Rosenwald  A,  Hurt  EH,  Wiestner  A,  Staudt  LM.  A  gene  expression-­‐based  method  to  diagnose  clinically  distinct  subgroups  of  diffuse  large  B  cell  lymphoma.  Proc  Natl  Acad  Sci  U  S  A.  2003;100:9991-­‐6.  6.   de  JHJ,  Fehrmann  RS,  de  BES,  Hofstra  RM,  Gerbens  F,  Kamps  WA,  et  al.  Evidence  based  selection  of  housekeeping  genes.  PloS  one.  2007;2:e898.  7.   Lenz  G,  Wright  G,  Dave  SS,  Xiao  W,  Powell  J,  Zhao  H,  et  al.  Stromal  gene  signatures  in  large-­‐B-­‐cell  lymphomas.  N  Engl  J  Med.  2008;359:2313-­‐23.  8.   Li  Q,  Birkbak  NJ,  Gyorffy  B,  Szallasi  Z,  Eklund  AC.  Jetset:  selecting  the  optimal  microarray  probe  set  to  represent  a  gene.  BMC  Bioinformatics.  2011;12:474.  9.   Sturn  A,  Quackenbush  J,  Trajanoski  Z.  Genesis:  cluster  analysis  of  microarray  data.  Bioinformatics.  2002;18:207-­‐8.  

 

 

132

Page 122: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

1  

Supplemental Tables

% 4 year Survival (% difference)

P value % 4 year Survival

(% difference)

P value

Immune-effectors CD8>Median CD8<Median

CD4>Median CD4<Median

CD56>Median CD56<Median

CD137>Median CD137<Median

TNFα>Median TNFα<Median

85 60 (15)

77 69 (8)

78 71 (7)

85 63 (14)

85 63 (12)

0.006

0.22

0.26

0.006

0.004

Monocyte/Macrophage-checkpoints CD163>Median CD163<Median

Effector:Checkpoint ratios CD8:CD68>Median CD8:CD68<Median

CD8:CD163>Median CD8:CD163<Median

CD137:CD163>Median CD137:CD163<Median

TNFα:CD163>Median TNFα:CD163<Median

71 77 (6)

85 62 (13)

89 59 (30)

84 64 (20)

80 60 (20)

0.5

0.02

0.0007

0.02

0.15

Table 1. Optimization of immune-effector and monocyte/macrophage-checkpoint combinations.

Significant P values are in bold.

133

Page 123: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

Characteristic NHL21 blood cohort Australian Tissue cohort*

Median age (range) 56 years (26-70) 62 years (27-87)

Female F: 34% F: 41%

Interim-PET/CT+ve 29% N/A

IPI 0-1: 17% 0-1: 28%

2: 28% 2: 30%

3: 35% 3: 24%

4,5: 20% 4,5: 19%

Supplemental Table S2. Characteristics of the blood and tissue patient

cohorts.

*Age, sex and IPI were unavailable in 5, 2 and 6 patients respectively.

134

Page 124: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

Specificity (anti-human)

Clone Fluorochrome Manufacturer

CD11b Mac-1 PE BD Pharmingen

CD11c B-ly6 V450 BD Horizon

CD123 9F5 PE BD

CD127 HIL-7R-M21 PE BD Pharmingen

CD137 4B4-1 PE BioLegend

CD14 M5E2 FITC, PerCP-Cy5.5 BD Pharmingen

CD16 3G8 Pacific Blue Invitrogen

CD16 3G8 PE-CY7 BD Pharmingen

CD163 RM3/1 Alexa647, PE BD Pharmingen

CD19 HIB19 Alexa700 BD Pharmingen

CD25 M-2A51 APC BD Pharmingen

CD3 UCHT1 Alexa700, FITC, APC

BD Pharmingen

CD33 WM53 V450 BD Horizon

CD4 RPA-T4 PE BD Pharmingen

CD54 HA-58 PE BD Pharmingen

CD56 AF12-7H3 APC BD

CD56 B159 PE-CY7 BD Pharmingen

CD62L DREG-56 APC eBioscience

CD68 Ki-M7 FITC Molecular Probes

CD8 RPA-T8 PerCP-Cy 5.5 BD Pharmingen

CD80 L307.4 FITC BD Pharmingen

CD83 HB15 FITC BD Pharmingen

CD86 2331 APC BD Pharmingen

CD120b hTNFR-M1 PE BD Pharmingen

HLA-DR L243 APC, PerCP, V500 BD

Lineage cocktail (CD3,CD14, CD16,CD19, CD20,CD56)

SK3,MΦP9,3G8,SJ25C1, L27,NCAM16.2

FITC BD Pharmingen

Supplemental Table S3. Flow cytometry antibodies used.

135

Page 125: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

0

1000

200030004000

CD

163

(ng/

l of p

lasm

a)P<0.0001

P<0.0001 P<0.0001

PRE POST Healthy

A)0 20 40 60 80 100

0

20

40

60

80

100

AUC=0.94P<0.0001

B)

0

1000

200030004000

0

1000

200030004000

0

1000

200030004000

0

1000

200030004000

P=0.004 P=0.007

P=0.014 P=0.0003

1.2 >1.2 I-II III-IV

0-1 260 > 60

CD

163

(ng/

l of p

lasm

a)C

D16

3 (n

g/l o

f pla

sma)

CD

163

(ng/

l of p

lasm

a)C

D16

3 (n

g/l o

f pla

sma)

Lymphocyte count Stage

Age IPI

C) D)

E) F)

% S

ensi

tivity

% Specificity

Figure 1 Supplemental.136

Page 126: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

0 1 2 3 4 50

50

100

Time (years)

Ove

rall

Surv

ival

(%)

Low IPIHigh IPIP = 0.002

0 1 2 3 4 50

50

100

Time (years)

Ove

rall

Surv

ival

(%)

GCBNon-GCBP= 0.018

A B

Figure 2 Supplemental.

137

Page 127: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

0 1 2 3 4 50

50

100

Time (years)

Ove

rall

Surv

ival

(%)

CD8/CD163 HighCD8/CD163 Low

P = 0.07

0 1 2 3 4 50

50

100

Time (years)

Ove

rall

Surv

ival

(%)

CD8:CD163 HighCD8:CD163 Low

P = 0.047

0 1 2 3 4 50

50

100

Time (years)

Ove

rall

Surv

ival

(%)

CD8:CD163 HighCD8:CD163 Low

P= 0.03

0 1 2 3 4 50

50

100

Time (years)

Ove

rall

Surv

ival

(%)

CD8:CD163 HighCD8:CD163 Low

P = 0.011

A B

C D

Figure 3 Supplemental.138

Page 128: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

       

             CHAPTER  6        

           DISCUSSION    

           

139

Page 129: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

Discussion  

DLBCL   is   one   of   the   most   common   aggressive   B   cell   lymphomas.   Despite  

increased   understanding   and   advances   in   therapeutic   modalities   such   as   the  

introduction   of   anti-­‐CD20   monoclonal   antibody   therapy,   up   to   one   third   of  

patients  still  die   from  their  disease.  [1]  Prognostic  outlook  is  guided  by  the  IPI,  

however   considerable   heterogeneity   of   outcome   exists   within   IPI   groupings.   In  

spite  of  its  accuracy,  it  is  limited  by  the  fact  that  the  poorest  scoring  patients  still  

have  survival  rates  greater  than  50%.[2]  In  addition  the  IPI  gives  no  information  

on  the  biological  prognostic  factors  that  relate  to  the  malignant  B  cell  or  the  TME.  

New   therapeutic   options   are   emerging,   however   it   is   still   not   clear   which  

patients   would   most   likely   benefit   from   newer   regimens.   It   is   important   to  

ascertain   immune   correlates   that   might   better   prognosticate   in   patients   with  

DLBCL  treated  with  R-­‐CHOP.   It   is  also   important  to  gain   insight   into  how  these  

factors  might  guide  therapy.    

Primarily,  this  research  focused  on  the  role  of  the  TME  in  predicting  outcome  for  

patients  with  DLBCL  treated  with  chemo-­‐immunotherapy.   Initially  the  research  

focused  on  the  role  of  host  genetics  and  how  this  affects  immune  cells  and  their  

interaction  with  rituximab.  It  is  unclear  how  these  interactions  contribute  to  the  

effectiveness  of  the  drug  and  the  risk  of  LON.  The  research  progressed  focusing  on  

the  immune  macroh  and  microh environment  in  DLBCL.  This  initially  involved  

looking   at   simple   measures   of   immune   response   in   patients   using   a   full   blood  

count  differential.  This  progressed  to  examining  flow  cytometric  identification  of  

immune  cells  in  tumour  biopsies.  Finally,  I  directly  analysed  circulating  immune  

cells   in  detail,  and  applied  these  findings  to  the   immune  TME  using  DMGE.  The  

DMGE  enabled  direct  digital  analysis  of  immune  genes  in  tumour  biopsies  in  the  

largest  lymphoma  dataset  to  be  analysed  using  this  novel  technology.  

6.1  Immuno-­‐genetic  polymorphisms  

The   likely   principle   mechanism   of   action   of   rituximab   is   antibody-­‐dependent  

cytotoxicity   whereby   rituximab   binds   to   FCG3A   receptors   on   NK   Cells   and  

macrophages,  resulting  in  tumour  cell  lysis  by  the  reticulo-­‐endothelial  system.[3-­‐

6] Another  mechanism  of  action   is  complement  mediated  activation,   leading   to

direct  lysis  of  tumour  cells  via  the  complement  cascade.[7,  8]  Finally,  rituximab  

140

Page 130: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

has  a  direct  apoptotic  effect  on  lymphoma  cells.[9-­‐11]  The  relative  importance  of  

these  three  mechanisms  on  the  lysis  of  the  malignant  B  cells   in  DLBCL  remains  

unclear.  

I   investigated   if   polymorphisms   in   the   FCG3A   and   complement   systems   could  

impact  on  response  of  patients’  tumour  to  rituximab.  These  polymorphisms  are  

not  the  only  factors  impacting  on  rituximab  response.  It  has  been  speculated  that  

relative  levels  of  CD20  expression  are  important  in  responsive  lymphomas  with  

high  expression  conferring  good  outcome.[12,  13]  In  addition  prior  exposure  to  rituximab  can  also  promote  down  regulation  of  CD20  and  subsequent  resistance  to  

therapy.[14,   15] There   is   also   accumulating   evidence   for   improved   response  

rates   in   women   compared   to   men   in   DLBCL   treated   with  

chemoh immunotherapy.[16]   Male   patients   and   an   increased   body   weight   in  

patients  with  DLBCL  appear  to  correlate  with  increased  clearance  of  rituximab.

[17,  18]  FCG3A   is   a   low   affinity   receptor   capable   of   binding   to   complexed  

but   not   monomorphic   IgG.   A   polymorphism   at   position   158   substituting  

valine   for  phenylalanine   results   in   stronger   binding   to   IgG.   In   DLBCL   this  

polymorphism   has   been   shown   to   predict   enhanced   responses   in   a   Korean  

population.[19] Binding of C1q to the Fc portion of immune complexes

activates CDC through initiation of the complement cascade. C1q is encoded by

C1qA, whose sole coding polymorphism is at position 276, coding for adenine

(C1qA-A276) or guanine (C1qA-G276). C1qA-A276 results in lower C1q protein

levels than the C1qA-G276 polymorphism. The role of this polymorphism in the

complement cascade and its impact on patient outcome is not well understood at

present.  

At  the  time  of  publication,  my  study  was  the  largest  assessment  of  the  impact  of  

FCG3A   and   C1qA   on   outcome   and   incidence   of   LON   as   a   late   side   effect.   In   a  

uniformly  treated  DLBCL  population,  there  was  no  difference  in  the  occurrence  of  

the   polymorphisms   between   healthy   controls   and   lymphoma   patients.   Only  

small   numbers   of   patients   were   homozygous   for   the   strong   binding  

valine  FCG3A158   allele   (6%).   Higher   occurrence   of   valine   FCG3A158  

allele   homozygosity  is  more  frequent  in  Southh East  Asia  and  may  account  for  a  

survival  benefit   seen   in   some   Asian   studies   in   DLBCL.   [19]   The   low  

frequency   of   VV   homozygotes   observed   in   the   Queensland   cohort  

prevents   any   definitive  

141

Page 131: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

conclusions   regarding   the   impact   of   FCG3A158   on   outcome   for   patients   with  

DLBCL  treated  with  R-­‐CHOP.    

The   frequency   of   VV   homozygosity   that   I   observed   is   consistent   with   other  

studies.  These   find  rates  of  6-­‐15%   in  Caucasian  populations.  However  a   recent  

German  DLBCL  study  found  a  rate  of  28%  for  the  VV  polymorphism.  [20]  In  this  

study  possession  of  the  polymorphism  was  not  predictive  of  OS  but  there  was  a  

trend   towards   improved   PFS   (non-­‐significant)   in   patients   with   VV  

polymorphism.   The   authors   summarise   that   although   FCG3A-­‐V158  

polymorphisms  may   have   a   role   in   predicting   outcome   in   DLBCL   treated  with  

chemo-­‐immunotherapy,   this   cannot   be   definitively   confirmed   or   excluded  

without  a  much  larger  cohort.  They  estimate  this  to  be  over  2000  patients.  The  

authors   postulated   that   the   recent   increased   intensity   of   rituximab   in   14-­‐day  

regimens   may   reduce   the   influence   of   FCG3A   polymorphisms   on   outcome  

parameters.  In  this  scenario,  the  higher  concentrations  of  rituximab  that  occur  as  

a   result   of   the   14-­‐day   administration   may   negate   the   disadvantage   of   a   low  

binding  FCGR3A   allele.  The  retrospective  cohort  used   in  my  study  had  patients  

treated  with  both  14  and  21  day  R-­‐CHOP  regimens,  however   this  data  was  not  

collected   so   definitive   conclusions   cannot   be   made   with   regards   to   timing   of  

rituximab  in  this  cohort.  

Interestingly,  although  there  was  no  statistical  association  between  FCG3A-­‐V158  

polymorphism  and  outcome  in  patients  with  DLBCL  treated  with  R-­‐CHOP,  none  

of  the  six  patients  homozygous  for  valine  have  relapsed.  Studies  have  shown  that  

at  high  concentrations  rituximab  is  equally  effective   in  VV  and  FF  subtypes  but  

that   the   threshold   for   effective   ADCC   in   VV   patients   is   four   times   lower   than  

those   for   FF   patients.[3]   The   VV   polymorphism   has   been   associated   with  

improved   response   in   other   settings   with   a   recent   large   study   in   rheumatoid  

arthritis  showing  improved  ongoing  response  to  rituximab  and  that   integration  

with   other   RA   clinical   factors   was   very   predictive   of   disease   response   to  

rituximab.[21,  22]    

Other   polymorphisms  have   been  described   such   as  FCG2A   that  may   impact   on  

rituximab  effect,  however   it   appears   these  are   in   fact   strongly   linked   to  FCG3A  

due   to   lineage   disequilibrium   and   I   did   not   investigate   this   further.[23]   These  

relatively  consistent  findings  of  differing  trends  of  improved  outcome  related  to  

142

Page 132: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

NK  and  macrophage  cell  binding  has  led  to  the  development  of  new  monoclonal  

antibodies   with   glycol-­‐engineering   to   ensure   optimal   engagement   of   FCG3A  

receptors.  This  has  led  to  the  development  of  GA-­‐101  which  is  a  Type-­‐II  antibody  

undergoing   clinical   trials   with   much   stronger   affinity   for   FCG   receptors   and  

improved  responses  in  early  trials.[24,  25]    

In   spite   of   the   lack   of   association   of   survival   with   regards   to   the   VV  

polymorphism,   I   was   able   to   demonstrate   a   striking   association   between   this  

allele   and   the  occurrence  of   the   established   rituximab   side-­‐effect   LON.  Despite  

the  low  occurrence  of  valine  homozygosity,  this  was  significantly  associated  with  

the  development  of  LON.  We  observed  a  6%  incidence  of  LON  in  DLBCL  patients  

treated   with   R-­‐CHOP   chemo-­‐immunotherapy   however   50%   of   patients  

homozygous  for  valine  developed  LON  in  long  term  follow  up.  Previous  reports  

of   LON   after   induction   chemo-­‐immunotherapy   for   B-­‐cell   lymphoma   have   not  

been   restricted   to   a   single   histological   sub-­‐type   or   treatment   regimen.   In  

addition  the  neutrophil  cut-­‐off  used  to  identify  LON  has  varied  between  grades  2  

to  grade  4.[26-­‐28]  Once  studies  are  restricted  to  those  using  a  definition  of  grade  

3/4   neutropenia,   then   irrespective   of   ethnicity   the   incidence   of   LON   (range   7-­‐

13%)   is  of   a   similar  order  of  magnitude   to  our   series.[29-­‐32]   In   these,   as  with  

our   study,   incidence   may   be   under-­‐estimated   as   patients   are   frequently  

asymptomatic.   [33]   The   incidence   of   LON   appears   to   rise  markedly   in   studies  

that   include   patients   undergoing   high-­‐dose   therapy   with   autologous   stem   cell  

rescue.[33-­‐35]  Put  together,  it  may  be  that  intensity  of  treatment  regimen  (use  of  

high-­‐dose   over   conventional   dose   chemo-­‐immunotherapy)   is   the   principal  

determinant  of  LON  incidence  rather  than  lymphoma  histology.  The  incidence  of  

LON   in   non-­‐malignant   states   is   well   described   and   appears   to   be   lower   than  

levels  seen  in  haematological  malignancy.[36-­‐38]  

  The   mechanism   behind   LON   is   yet   to   be   established.[33,   38]   Notably,  

bone   marrow   histology   at   the   time   of   LON   has   been   variously   reported   as  

maturation   arrest   or   myeloid   hypoplasia,   indicating   that   several   mechanisms  

may  be   responsible.  Mechanisms  postulated   include   anti-­‐neutrophil   antibodies  

or  increased  large  granular  lymphocytes  in  the  absence  of  B-­‐cells  leading  to  FAS  

ligand  mediated  destruction  of  neutrophils.  [39,  40]  However  this  has  not  been  

consistently  observed.  A  report  of   six  cases  of  aggressive   lymphoma  (including  

143

Page 133: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

two   with   AIDS   related   lymphoma)   treated   with   DA-­‐EPOCH-­‐R   (dose-­‐adjusted  

etoposide/prednisone/Oncovin[vincristine]/cyclophosphamide,  

hydroxyduanorubicin  /  rituximab),   implicated  perturbations  of  stromal  derived  

factor-­‐1   (SDF-­‐1)   /   CXCL12   during   B-­‐cell   recovery   as   a   potential   aetiology.[26]  

The  SDF1  chemokine  is  important  for  granulocyte  egress  from  the  bone  marrow  

and   also   in   B-­‐cell   development.   A   shift   of   SDF-­‐1   towards   B-­‐cell   recovery   over  

granulocyte  homeostasis  may  result  in  LON  due  to  neutrophil  maturation  arrest  

whilst   B-­‐cell   recovery   occurs.   Cytokine   kinetics   were   evaluated   in   detail   in   a  

single   case   of   LON   associated   with   granulocytic   hypoplasia   following  

fludarabine,   cyclophosphamide   and   rituximab   for   Waldenstroms  

macroglobulinaemia.   In   this   patient   LON  was   associated  with  markedly   raised  

levels  of  serum  B-­‐cell  activating  factor  (BAFF).[41]  However,  many  of  the  above  

findings   are   in   small   cohorts   or   single   patients   and   are   hypothesis   generating  

only  at  the  current  time.  

It   may   be   that   the   pharmacokinetics   of   rituximab   are   different   in   patients  

homozygous   for   the   FCGR3A-­‐V158   polymorphism.   FCGR3A-­‐V158   has   a   higher  

binding   affinity   for   IgG1   antibodies   (such   as   rituximab)   than  FCGR3A-­‐F158.[42]  

Thus  FCGR3A-­‐V158  may  result  in  enhanced  clearing  of  CD20  expressing  cells  by  

ADCC  by  NK  cells.  FCGR3A  transcripts  are  higher  in  NK  cells  from  subjects  with  

FCGR3A-­‐V/V158   versus   the   V/F   or   F/F   genotype   and   V/V   homozygotes   have  

enhanced  in-­‐vitro  ADCC  activity.  In-­‐vivo  this  may  result  in  more  profound  B-­‐cell  

depletion.[43]   Upon   B-­‐cell   recovery,   heightened   stimulation   of   lymphopoiesis  

may   result   in   temporary   imbalance   of   cytokines   and   transient   ineffective  

granulopoiesis.  

In  contrast  with  our  findings  regarding  FCGR3A-­‐V158F,  there  was  no  significant  

association  between  LON  and  the  C1qA-­‐A276G  polymorphisms.  Furthermore,  the  

combination   of   C1qA-­‐A276G   and   FCGR3A-­‐V158F   did   not   appear   to   expose   any  

linkage  disequilibrium  and  did  not  appear  to  influence  outcome  or  development  

of  LON.  These  findings  suggest  that  C1qA  is  not  implicated  in  the  pathogenesis  of  

LON.  We  did  not  observe  any  difference   in  EFS  or  OS  related  to   the  C1q-­‐A276G  

polymorphism.  The  literature  in  this  area  is  sparse  and  conflicting  with  a  recent  

study   showing   no   effect   of   this   polymorphism   in   a   small   follicular   lymphoma  

population.[44]   Another   study   in   low-­‐grade   lymphoma   showed   a   prolonged  

144

Page 134: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

progression  free  survival  in  patients  receiving  single  agent  rituximab  but  not  in  

overall  survival.[45]  A  single  study  in  breast  cancer  using  a  monoclonal  antibody  

to   Herceptin   demonstrated   reduced   metastases   associated   with   this  

polymorphism,   but   a  more   recently   published   large   study   of   over   2000  breast  

cancer  patients  suggests  no  impact  on  outcome  for  this  polymorphism  in  breast  

cancer  patients.[46,  47]  There  is  one  recent  study  described  of  129  patients  with  

DLBCL  which  does  show  prolonged  PFS  and  OS  for  patients  homozygous  for  the  

A  allele   in  a  study  of  a  population  from  Beijing.[48]  This  study  reported  almost  

30%   of   patients   homozygous   for   G   allele   compared   to   6%   in   our   population  

which  could  make  the  significance  of  the  A  allele  more  significant  in  the  Chinese  

population   studied.   The   G   allele   is   associated   with   worse   outcome   despite  

increased  and  more  active  complement  lysis  of  cells.[49]  It  has  been  postulated  

that   increased   complement   activity   may   reduce   ADCC   and   adaptive   immunity  

and   that   enhanced   complement   activity   rapidly   clears   tumour   cells   allowing  

inadequate  time  for  an  effective  immune  response  to  develop.[50,  51]  

In   conclusion,   in   our   uniformly   treated   group   of  DLBCL  patients  who   received  

rituximab,   6%   of   patients   developed   LON.   The  FCGR3A-­‐158  V/V   genotype  was  

significantly  associated  with  development  of  LON.  Polymorphic  analysis  may  be  

a  predictive  tool  to  identify  those  at  high-­‐risk  of  LON.  Although  no  patients  with  

either   LON   or   FCGR3A-­‐158V   homozygosity   relapsed,   neither   were   associated  

with   improved  EFS  or  OS  after  R-­‐CHOP.  Large  prospective  studies  are  required  

to  establish  if  FCGR3A-­‐V158F  polymorphisms  have  a  bearing  on  response  rates  in  

DLBCL,   and   whether   either   LON   or   FCGR3A-­‐V158F   polymorphisms   are  

predictors  of  outcome.  

 

6.2  Immune  Microenvironment  

There   is   substantial   evidence   demonstrating   the   key   role   of   host   immunity   in  

DLBCL.   Numerous   gene   expression   studies   have   identified   immune   signatures  

that   are   prognostic   in   the   disease.[52-­‐54]   There   have   also   been   a   number   of  

immunohistochemical   studies   confirming   the   importance   of   the   tumour  

microenvironment  in  DLBCL.[55-­‐58]  However,  both  gene  expression  studies  and  

IHC   have   significant   drawbacks.   Gene   expression   is   expensive,   requiring   fresh  

frozen   tissue  and   is  available  only   in  a   limited  number  of  centres.  While   IHC   is  

145

Page 135: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

relatively   cheap   there   is   marked   heterogeneity   in   sample   preparation,   stains  

used  and  interpretations.    

I   set   out   to   identify   immune   markers   that   would   be   relatively   simple   to   use,  

inexpensive  and  available  to  most  diagnostic  centres.  For  this  reason  I  looked  at  

circulating  immune  cells  obtained  from  full  blood  counts  and  also  flow  immune-­‐

phenotyping   taken   from   fresh   diagnostic   tissue.   All   lymphoma   diagnostic  

samples  at   the  Princess  Alexandra  Hospital  have  a   standard  B  and  T  cell  panel  

performed   to   assess   cell   phenotype   at   diagnosis.   In   B   cell   lymphomas,   the  

information  with  regards  to  T  cell   infiltration  is  generally   ignored  as  the  test   is  

performed   for  diagnostic   information  only.   I  was   interested   to   identify   if  T  cell  

infiltration  might  predict  survival   in  patients  with  DLBCL.   In  addition  I  had  the  

ability   to   look   at   circulating   immune   parameters   prior   to   therapy   and   in  

particular,   absolute   lymphocyte   and   monocyte   counts   at   diagnosis   to   see   if  

circulating   immune   status   was   also   important.   My   study   of   122   patients   with  

DLBCL  confirms  the  significance  of  host  immune  status  in  predicting  outcome.  I  

have   shown   for   the   first   time   that   CD4+  T   cell   infiltration   of   fresh   tumour   (as  

assessed  by  flow  cytometric  immune-­‐phenotyping)  is  a  very  strong  predictor  of  

OS   and   EFS   when   patients   with   DLBCL   are   treated   with   standard   chemo-­‐

immunotherapy.   This   was   independent   of   the   IPI.   The   two   groups   of   patients  

separated  by  a  20%  CD4  cut-­‐off  did  not  differ   for  any  of   the  single  parameters  

that   make   up   the   IPI   nor   were   the   groups   significantly   different   in   their   IPI  

scores.  Interestingly,  CD8  TILs  were  not  associated  with  any  outcome  endpoints.  

Importantly   the   level   of   CD4+TILs   was   a   significant   predictor   of   outcome   in  

patients  with  good  prognosis  disease  as  assessed  by  IPI  (0,  1,  2,  3).  In  addition  I  

have   confirmed   the   prognostic   significance   of   the   absolute   lymphocyte   to  

monocyte  ratio  with   this  ratio  able   to  predict  outcome   in   the  whole  cohort  but  

also  predicting  poor  outcome   for  patients   in  good   risk   IPI   categories.  Our  data  

does  indicate  however,  that  the  CD4  TILs  are  the  strongest  predictors  of  outcome  

in  this  cohort  and  were  independent  of  IPI  and  LMR.  

My   findings   are   consistent   with   two   previous   studies   described   prior   to   the  

introduction  of  rituximab.[59,  60]  The  two  smaller  studies  described,  in  55  and  

72   patients   respectively,   demonstrated   a   benefit   for   improved   outcome   in  

patient   samples   with   higher   number   of   CD4+T   lymphocytes   prior   to   the  

146

Page 136: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

introduction   of   rituximab   therapy.   In   the   larger   study   a   cut-­‐off   of   20%  CD4+T  

cells  was  also   the  most  predictive  of  outcome.   Interestingly,   in  agreement  with  

our   results,   neither   of   these   studies   identified   CD8+   TILs   as   being   prognostic.  

Recent  studies  have  confirmed  the  importance  of  T  cell  activation  in  the  tumour  

microenvironment  with  the  T  cell  activation  marker  CD137  predicting  outcome  

in   a   large   DLBCL   cohort.[56]   This   is   of   particular   interest   given   an   agonist  

antibody   to   CD137   may   lead   to   improved   immune   responses   against  

lymphoma.[56,   61]   As   discussed   in   the   introductory   chapter,   CD4   T   cells   are  

relatively  heterogeneous  with  variable  and  diverse  functions  such  as  enhancing  

inflammation  to  overt  immunosuppressive  effects.  In  general  TH1  cells  have  anti-­‐

tumour  effects  and  TH2  may  well  have  an  opposite  effect  by  enhancing  immune  

suppression.  [62,  63]    T  regulatory  cells  in  malignancies  are  generally  associated  

with  inferior  outcome,  however  for  unknown  reasons  at  present  this  may  not  be  

the  case  in  B  cell  lymphomas  where  high  levels  of  these  cells  in  the  TME  can  be  

associated  with  improved  outcome.  It  is  felt  that  increased  numbers  of  Tregs  could  

reflect   a  more   normal   host   immune   system,  while   it   has   also   been   postulated  

that  Tregs  may  have  a  direct  negative  effect  on  proliferation  of  B  cells.  [64-­‐67]  My  

study  gives  no  information  on  the  CD4  T  cell  subsets  in  the  tumour  which  will  be  

key   in   future   research   to   more   adequately   classify   these   cells.   There   is   still  

limited   data   on   the   role   of   these   various   CD4   subsets   in   DLBCL.   Interestingly  

there   is   evidence   from   prior   to   the   introduction   of   rituximab   that   circulating  

lymphocytes   of   patients   with   DLBCL   before   treatment   are   skewed   to   a   TH2  

phenotype  and  revert  to  a  TH1  phenotype  with  successful  treatment.[68]  There  

is  also  emerging  evidence  that  T  helper  cells  are  key  to  inducing  an  anti-­‐tumour  

effect  post  vaccination  with  DLBCL  related  peptides.[69]Animal  models  in  B  cell  

lymphoma  have  shown  that  CD4  T  cells  are  key  cells  in  creating  an  anti-­‐tumour  

microenvironment.[70]  TH1  cells  in  particular  stimulate  and  up  regulate  antigen  

presentation  and  tumour  clearance.[63]  Improved  antigen  presentation  has  been  

shown  to  be  a  key  survival  determinant  in  patients  with  DLBCL.[57,  71-­‐73]These  

animal   models   have   shown   that   cytokines   derived   from   TH1   cells   such   as  

Interferon  gamma,  IL1  and  TNF  alpha  are  the  key  to  stimulating  tumour-­‐killing  

macrophages.  It   is  possible  that  patients  with  low  CD4+TILs  could  benefit   from  

interferon  therapy.  Interferon  has  been  shown  to  be  effective  in  the  treatment  of  

147

Page 137: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

many   lymphomas  but   its  use  has  been  restricted  due  to  short  half-­‐life  and  side  

effects,  however  methods  of  new  local  tumour  delivery  systems  look  promising  

in  lymphomas.[74]      

Mouse  models  have  also  shown  that  PD-­‐1  which  is  present  on  many  CD4  T  cells  

may   eventually   down   regulate   CD4+T   cell   tumour   surveillance   leading   to  

relapse.[70]  PD-­‐1  has  been  found  expressed  in  27%  of  DLBCL  tumours,  but  when  

one   looks   at   the   local   tumour   microenvironment   38%   of   PD1   non-­‐expressing  

DLBCL  have  PD1  positive  histiocytes  surrounding  the  tumours.  It  is  possible  that  

PD-­‐1  could  be  responsible  for  down-­‐regulating  CD4  T  cells  in  a  large  number  of  

DLBCLs.  This  is  of  particular  interest  as  two  highly  successful  trials  targeting  PD-­‐

1  in  advanced  cancers  have  recently  been  described  in  solid  tumours.[75,  76]  To  

date   two   trials   using   an   antibody   to   PD-­‐1   have   been   described   in   B   cell  

lymphomas.[77,  78]  CT-­‐011  (anti-­‐PD1)  directly  increases  the  numbers  of  CD4+T  

cells   post   autograft   for   relapsed   disease   with   survival   higher   than   historical  

controls.[78]  As  of  yet  it  is  unclear  from  these  studies  what  exact  role  T  cells  and  

other   immune   cells   such   as   macrophages   play   in   eliciting   a   response   with  

immune   checkpoint   modulation,   and   it   will   be   important   to   determine   the  

influence  of  PD-­‐1  expression  on  not  only  the  numbers  of  TILs  but  the  activity  of  

these  key  cells  in  future  trials.  

With  regard  to  simple  immune  parameters  garnered  from  the  full  blood  count,  I    

have   confirmed   the   prognostic   significance   of   pre-­‐diagnostic   lymphocyte   and  

monocyte   counts   incorporated   into   the   LMR   ratio   and   also   the   recently  

described   algorithm   from   Wilcox   et   al.[79,   80]   I   have   also   shown   that   a   low  

lymphocyte  count  on   its  own  is  a  predictor  of  poor  outcome.  This  confirms  the  

findings  of  a  number  of  recent  studies  that  show  that  a  low  lymphocyte  count  at  

diagnosis  and  also  post  therapy  is  associated  with  poor  outcome.[81-­‐84]  There  is  

also  emerging  data  that  the  AMC  may  predict  outcome  in  DLBCL.[85]  In  addition  

there   is   evidence   that   specific   subsets   of   monocytes   called   monocyte   derived  

myeloid  suppressor  cells  are  increased  in  patients  with  DLBCL  and  contribute  to  

marked   immune   suppression   and   poor   outcome.[67,   85]   The   importance   of  

these  cells  are  discussed  further  below.  

My  data  identified  the  LMR  as  being  a  significant  prognosticator  independent  of  

IPI.  In  addition  LMR  could  identify  poor  risk  patients  in  groups  of  patients  with  

148

Page 138: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

good   risk   IPI   scores.   It   is   likely   that   these   combined   scores   reflect   the   poor  

outcome  associated  with  systemic  immunosuppression.  It  is  likely  the  combined  

LMR   measures   the   potential   level   of   immune   suppression   dictated   by   the  

monocyte   count   and   the   subsequent   effects   of   this   in   a   low   lymphocyte   count.  

Further  studies  are  required  to   identify   the  subsets  within  these  two  cell   types  

that   are   contributing   to   outcome.   Interestingly   there   did   not   seem   to   be   any  

correlation   between   circulating   and   tumour   infiltrating   lymphocytes   (as  

assessed   from   my   flow   cytometry   data).   This   may   reflect   the   difference   in  

retention  and  recruitment  between  nodal  tissue  and  the  circulation.[80]  

In  summary,  I  have  shown  that  CD4+TILs  appear  to  be  very  strong  predictors  of  

outcome   in   DLBCL   treated   with   chemo-­‐immunotherapy   independent   of   IPI.  

Further   studies   are   required   to   analyse   the   influence   of   other   local  

microenvironment  factors  such  as  macrophages  and  histiocytes  on  CD4  function  

and   numbers.   In   addition  we   need   to   identify   the   particular   CD4   subsets   that  

may   contribute   to   improved   survival   and   thus   investigate   the   specifics   of  why  

the  lymphocyte  to  monocyte  ratio  is  prognostic  in  DLBCL.    

 

6.3  Net  Tumoral  Immunity  

My   findings   described   above   confirm   that   circulating   lymphocyte:monocyte  

ratios   are   prognostic,   implicating   them   as   surrogate   immune-­‐effectors   and  

monocyte/macrophage-­‐checkpoints   within   the   tumor   microenvironment.   I  

hypothesised  that  detailed  functional  and  quantitative  assessment  would  enable  

identification   of   the   optimal   immune-­‐effector   and   monocyte/macrophage-­‐

checkpoint  molecules  to  interrogate  within  the  tissue.  Blood  from  140  ‘R-­‐CHOP’  

chemo-­‐immunotherapy  treated  DLBCL  patients  from  a  prospective  Australasian  

Leukaemia   and   Lymphoma   Group   trial   was   analysed.   PBMC   from   the   patients  

enrolled   on   the   NHL21   clinical   study   were   fully   characterised   so   that   the  

lymphocyte   and   monocyte   subsets   that   may   contribute   to   outcome   were  

identified.  

Amongst   blood   monocyte   immune-­‐checkpoint   markers,   addition   of   CD163   to  

conventional   moMDSC   indicators   (CD14+HLA-­‐DRlo)   identified   a   highly  

immunosuppressive   subset   of   moMDSCs   in   DLBCL.   MoMDSCs   and  

CD163+monocytes  values  correlated  and  CD163+moMDSC  were  enriched  within  

149

Page 139: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

circulating  monocytes.  CD163  is  a  heme  scavenger  molecule  felt  to  be  specific  for  

the  immunosuppressive  M2  Macrophage  in  tissue.[86,  87]  CD163  is  a  surrogate  

of  the  M2  macrophage  and  is  felt  to  predict  inferior  outcome  when  expressed  in  

tumours   in  DLBCL  and  Hodgkin  Lymphoma,  but  also   in  most  solid  cancers.[66,  

88,  89]  Effective   treatment  of  primary   tumour   leads   to   reduced   levels  of   these  

cells.[90]   High   levels   of   M2   macrophages   around   the   tumour   prevents   an  

effective   anti-­‐tumour   response.   The   correlation   between   the   M2   TAM  marker  

CD163   and   HLA-­‐DRlo  on   circulating   CD14+  monocytes   suggests   a   link   between  

circulating   moMDSC   and   M2   TAMs   within   the   malignant   lymph   node.   This   is  

supported  by  CD163himoMDSC  expressing  CD62L  and  CD11c,  enabling  migration  

into  secondary  lymphoid  tissues.    

MoMDSCs   seem   capable   of   causing   immune   suppression   in   the   circulation   but  

also  capable  of  migration  to  lymph  nodes  and  exerting  local  effects  in  the  tumour  

bed.[91]   They   are   cells   in   a   state   of   maturation   block   with   an   inability   to  

progress   to   a   normal  mature  myeloid/monocyte   cell.   Increased   levels   of   these  

cells  in  the  circulation  have  been  described  in  a  number  of  cancers.[92,  93]  Some  

of  these  studies  showed  a  direct  link  between  numbers  of  moMDSCs/MDSCs  and  

tumour   bulk   and   risk   of   metastases.   MoMDSCs/MDSC   related  

immunosuppression   seems   to   be   mediated   through   multiple   mechanisms  

including   arginase,   iNOS,   peroxynitrite,   ROS   and   H2O2   metabolism.[94-­‐98]  

These   cells   also   seem   to   increase   the  production  of  other   immune   suppressive  

cells  such  as  Tregs  via  secretion  of  chemokines  such  as  CCL3.  [99]MDSCs  can  also  

effect   non   immune   parameters   contributing   to   increased   angiogenesis   and  

metastases  of  tumours.[100]  My  findings  make  it  likely  that  moMDSC  migration  

to   tissue   results   in   accumulation   of   M2   macrophages.   An   M2   macrophage   is  

characterised  by  positivity   for  CD68  and  CD163  whereas  M1  pro-­‐inflammatory  

macrophage  has  expression  of  CD68  and  high  levels  of  HLA-­‐DR.  

Within   the   circulation   of   patients   enrolled   on   the   ALLG   NHL21   study,   the  

immune-­‐effector:  CD163+moMDSC  ratios  were  more   informative   than  the  LMR,  

with   ratios   lower   in   those   remaining   interim-­‐PET/CT+ve.   Interim-­‐PET/CT  

imaging  was  delayed  to  day  17-­‐20  post-­‐cycle  4  and  scans  reviewed  centrally.  In  

particular   CD4:CD163+moMDSC   and   CD8:   CD163+moMDSC   ratios   were  

predicative   of   early   lymphoma   clearance   as   assessed   by   PET/CT   negativity.  

150

Page 140: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

However  given  repeat  biopsy  was  not  performed,  no  definitive  conclusion  can  be  

made  as  to  whether  pre-­‐therapy  CD163+moMDSC  associate  with  residual  DLBCL  

versus  inflammation  within  sites  of  interim-­‐PET/CT-­‐FDG-­‐avidity.    

My  core  study  findings  from  the  NHL21  study  indicate  that  in  DLBCL,  the  balance  

of   immune-­‐effectors   and   immune-­‐checkpoints   are   critical   to   interim-­‐PET/CT  

outcome.  Given  the  uncertainty  regarding  the  prognostic  significance  of  interim-­‐

PET/CT   on   overall   survival,   I   went   on   to   validate   the   markers   that   I   had  

identified   in   the   peripheral   blood   in   an   independent   DLBCL   cohort.   Here,   the  

molecules   were   applied   to   the   diagnostic   tissue,   and   overall   survival   was   the  

primary  end-­‐point.    

128  R-­‐CHOP  treated  DLBCL  patients  with  full  clinical  annotation  and  long-­‐term  

(median   4   year)   survival   data   derived   from   two   Australian   centres   (Canberra  

Hospital  and   the  Princess  Alexandra  Hospital)  were   tested.  We  used   the  DMGE  

platform   NanoString   nCounter™   to   permit   accurate   mRNA   quantification   on  

FFPE   tissues.[101-­‐103]   In   keeping   with   previous   reports,   we   observed   strong  

correlation  between  gene  expression  in  paired  frozen/paraffin  samples  across  a  

range  of  genes.    

DMGE   identified   CD8   as   the   strongest   single   immune   predictor   of   outcome   in  

DLBCL.   [104]  CD8  T  cells  are  the  end  effector  cells   for   the   immune  system  and  

are   directly   cytotoxic   to   tumour   cells.   Autologous   and   third-­‐party   T   cells  

generated  against  EBV  have  shown  excellent  responses  in  patients  with  EBV+  B  

cell   lymphomas  in  particular.[105-­‐107]  One  of  the  commonest  mutations  found  

in  DLBCL  relates   to   loss  of   the  key  MHC   I   related  protein  beta-­‐2-­‐microglobulin  

with  a  recent  study  showing  this  molecule  mutated  in  29%  of  DLBCL  cases.[108]  

This   study   also   identified   deletions   in   CD58   which   can   also   affect   CD8  

recognition   of   antigen.   In   addition   to   gene   mutations,   antigen   presentation   is  

impaired  by  other  mechanisms  so  that  overall  60%  of  patients  with  DLBCL  have  

reduced  ability  to  present  antigen.  Loss  of  function  of  the  tumor  suppressor  gene  

PRDM1  or  over-­‐expression  of  the  oncogene  BCL6  occurs  in  a  large  proportion  of  

DLBCL   cases.  However,   BCL6   is   also   frequently  mutated   in   activated  B   cells   of  

healthy   individuals.   A   recent   study   using   PRDM1-­‐deficient   and/or   BCL6   over-­‐

expressing  transgenic  mice,  observed  that  lymphoma  development  was  delayed  

and  relatively  rare.  However  in  the  context  of  polyclonal  T  cell   impairment,  the  

151

Page 141: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

transgenic   mice   exhibited   a   high   incidence   of   rapid-­‐onset   aggressive   B   cell  

lymphomas.[109]   The   implication   is   that   development   of   these   lymphoma  

associated  mutations   is   relatively   common   but   that   a   healthy   immune   system  

eradicates   cells   containing   these   mutations   to   prevent   overt   lymphoma.   Prior  

IHC  based  studies  have  also  shown  that  absence  of  immune  recognition  proteins  

such  as  HLA  Class  I  and  II  molecules  and  CD80/CD86  is  associated  with  inferior  

outcome   and   reduced   levels   of   CD4   and   CD8   tumour   infiltration.[110]It   is  

interesting   that   CD8   was   not   prognostic   in   my   flow   cytometry   model   but   it  

should  be  noted   that   flow  cytometry   reflects   the  proportion  of  CD4  and  CD8  T  

cells,  not  their  absolute  number.  Furthermore,  mRNA  levels  reflect  the  turnover  

of  the  gene  signal   in  a  sample.  Therefore  quantification  of  CD8  gene  expression  

within  the  malignant  node  and  CD8  T  cell  flow  cytometry  can  not  be  considered  

strictly  comparable.  

By   DMGE,   all   markers   of   T   cell   infiltration   predicted   improved   outcome.  

Interestingly,   neither   intratumoral   CD163   nor   CD68   expression   alone   was    

prognostic.   However   the   CD68:CD163   ratio   as   an   estimate   of   the   relative  

proportion  of  macrophage  sub-­‐types  found  that  those  with  a  higher  proportion  

of  M2  macrophages   (low  CD68:CD163)  had   inferior  outcome.  This  may  be  one  

explanation  why  results  of  intratumoral  CD163  alone  by  IHC  as  a  prognosticator  

are   inconsistent,   emphasizing   the   importance  of  measuring   several  markers   to  

more   accurately   reflect   aspects   of   TME   immunity.   [89,   111-­‐113]   Similarly,  

CD8:CD163   ratios   as   a   measure   of   net   anti-­‐tumoral   immunity   was   more  

discriminatory  in  predicting  outcome  than  CD8  alone.  Whereas  the  contribution  

of  immune-­‐effector  molecules  within  the  TME  has  previously  been  recognized  to  

be   prognostic,   this   is   the   first   report   of   immune-­‐effector:   immune-­‐checkpoint  

ratios.  CD8:CD163  was  independent  of  IPI  and  COO.  Results  were  validated  in  an  

external  R-­‐CHOP-­‐like  (233  patients)  gene-­‐expression  cohort.    

IPI  is  influenced  by  factors  such  as  patient  fitness,  age  and  tumour  burden,  which  

might   reasonably   be   expected   to   be   non-­‐over-­‐lapping   with   CD8:CD163.   COO  

reflects   the   postulated   B-­‐cell   differentiation   stage   at   which   malignant  

transformation  occurred.  One  interpretation  is  that  CD8:CD163  ratios  within  the  

TME   are   not   influenced   by   differentiation   stage   of   the   malignant   B-­‐cell.  

Interestingly,  although  CD8:CD163  was  predictive   in   the  CHOP-­‐like  cohort,   this  

152

Page 142: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

was   not   independent   of   conventional   prognosticators.   This   may   reflect   the  

relatively   increased   importance   of   tumour-­‐associated  macrophages   within   the  

TME   in   those   treated  with   immuno-­‐chemotherapy  versus   chemotherapy  alone,  

and  is  consistent  with  our  findings  that  CD163+moMDSC  suppress  R-­‐ADCC.    

Although   COO   did   prognosticate,   it   was   an   inferior   predictor   compared   to   the  

CD8:CD163   immune   signature.[114]   Of   the   18   genes   used   to   determine   COO,  

only   LMO2   as   a   stand-­‐alone   gene   was   predictive   for   survival..   This   confirms  

findings  from  previous  gene  and  immunohistochemical  studies.[99,  114,  115]  In  

R-­‐CHOP   treated   patients,   CD8:CD163   ratios   enhanced   the   prognostic   ability   of  

this   GCB   marker.   Furthermore   LMO2   combined   with   CD8:CD163   successfully  

allowed  segregation  within  low  and  high  IPI  patient  groupings.  The  combination  

of  a  marker  of  B-­‐cell  differentiation  with  net  anti-­‐tumoral   immunity  appears  to  

capture  more  patients  (than  predicted  by  IPI  or  COO  alone)  at  low  and  high-­‐risk.  

This   may   assist   risk-­‐stratification   to   select   patients   in   whom   novel   therapies  

should  be  tested,  and  those   in  whom  R-­‐CHOP  is  sufficient.  Patients  who  have  a  

poor   immune   ratio   and   have   low   LMO2   expression   (dual   negative)   are  

approximately   one   quarter   of   patients.   This   group   of   patients   do   very   poorly  

with  R-­‐CHOP  and  my  work  allows  identification  of  these  patients  failing  current  

therapy  who  need  alternate   strategies   to   improve   their  outcome.   It   also  shows  

that   the   other   75%  of   patients   have   cure   rates   approaching   90%  with   current  

standard  therapy.  This  differentiation  will  be  very  important  given  that  the  cost  

of  new  emerging  therapies  will  be  significant.  These  compounds  will  need  to  be  

targeted  to  those  patients  who  will  derive  most  benefit.  

These   findings  have  other  therapeutic   implications.  Firstly,  monocyte  depletion  

in  patients  enhanced  NK-­‐cell  mediated  R-­‐ADCC  but  not  Ob-­‐ADCC,  indicating  that  

the   immunosuppressive   effects   of   monocytes   in   DLBCL   may   be   overcome   by  

obinutuzumab   (a   type   II   antiCD20   monoclonal   antibody).   Another   notable  

finding   was   the   striking   co-­‐clustering   of   immune-­‐effectors   and   immune-­‐

checkpoints  within   the   tissue   and   circulation,   including   CD8-­‐CD163.   This   is   in  

line  with  emerging  data  that  up-­‐regulation  of  immune-­‐checkpoints  is  an  adaptive  

immune-­‐checkpoint   response   to   immune-­‐effector   activation.[116]   The  

correlations  were   significant   but  modest,   reflecting   the   variable   success   of   the  

host  to  counter  anti-­‐tumoral  immunity  within  the  TME.  However,  an  alternative  

153

Page 143: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

explanation   is   possible,   with   the   high   levels   of   checkpoints   associated   with  

increasing   CD8   and   other   effectors   reflecting   a   healthy   immune   checkpoint  

response   to   prevent   local   tissue   injury   in   the   setting   of   an   effective   immune  

response.  Blockade  of  immune-­‐checkpoints  is  a  promising  therapeutic  approach,  

with   a   variety   of   antagonistic   monoclonal   antibodies   or   small   inhibitory  

molecules  in  development.[117,  118]    

Immune   based   strategies   are   gaining   ground   in   DLBCL.[70,   119-­‐121]   The  

kinetics   of   systemic   host   immune   cells   will   likely   impact   the   efficacy   of   these  

approaches,  and  may  influence  dose-­‐scheduling.  However  there  is  minimal  data  

on  circulating  moMDSC  kinetics   in  DLBCL,  with  a   small   study   finding  moMDSC  

returned  to  normal  once  therapy  was  complete.[122]  We  found  post-­‐cycle  4  that  

CD163+moMDSC  were  reduced  (accompanied  by  an   increase   in  numbers  of   the    

antigen-­‐presenting   cells   BMDCs   and   pDCs).   The   immunosuppressive   profile   of  

monocytes   had   reduced   by   post-­‐cycle   4,   including   down-­‐regulation   of   TH2  

cytokines  and  TAM  associated  genes,  and  up-­‐regulation  of  STAT1.[91,  109,  123]  

Similarly  elevated  plasma  CD163  was  reduced  by  post-­‐cycle  4.  In  line  with  cHL,  

higher  plasma  CD163   levels  were  associated  with  advanced   stage  and   reduced  

lymphocytes.[124]    

My  data  emphasizes  the  importance  of  capturing  the  net  anti-­‐tumoral  immunity  

within  the  DLBCL  TME,  by  measuring  the  relative  balance  of  immune-­‐effector  to  

tumour-­‐associated   macrophages.   Addition   of   LMO2   as   a   marker   of   germinal  

centre   B-­‐cells   to   CD8:CD163   was   powerfully   prognostic.   The   work   provides   a  

link  between  M2  TAMs  and  moMDSC,  and  demonstrate   that  CD163   identifies  a  

highly  immunosuppressive  subset  of  moMDSC  in  DLBCL.  Further  investigation  of  

CD163+moMDSC  as  a  therapeutic  target  is  warranted,  particularly  in  those  with  

adverse   CD8:CD163   ratios.   Emerging   data   from   mouse   models   indicate   the  

possibility  of  switching  macrophage  phenotype  from  M2  to  M1  and  consequent  

improved  immune  clearance  of  the  lymphomas  using  immune  modulating  drugs  

such   as   Pomalidomide.[125]   In   addition,   direct   targeting   of   CD163   using   a  

monoclonal   antibody   has   shown   promise   as   an   anti-­‐inflammatory   agent   and  

could   have   the   potential   for   activity   in   the   setting   of   cancer   as   a   means   of  

targeting  the  tumour  microenvironment.[126]    

154

Page 144: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

To  my  knowledge,  this  data  is  the  first  to    establish  the  importance  of  the  relative  

balance   of   immune   activation   as   being   key   to   outcome   in   DLBCL.   Neither  

intratumoral  immune-­‐effectors  nor  immune-­‐monocyte/macrophage  checkpoints  

should   be   considered   in   isolation.   A   high   level   of   immune   effectors   does   not  

necessarily   predict   good   outcome,   if   countered   by   an   equally   robust   effective  

immune-­‐monocyte/macrophage-­‐checkpoint   response.   This   data   provides   a  

strong  rationale  for  the  use  of  checkpoint  inhibitors  in  the  treatment  of  DLBCL.  

 

 

6.4  Future  directions  

A  pressing  issue  from  my  findings  is  the  identification  of  patients  who  could  be  

targeted  by  prospective  immune  checkpoint  therapy,  targeting  molecules  such  as  

PD-­‐1   and   CTLA-­‐4   or   by   using   other   immune-­‐modulating   agents   such   as  

lenalidomide  given  our  findings  are  based  on  common,  standardised  diagnostic  

tests  available  to  many  laboratories.  Biomarkers  that  might  predict  response  to  

new  therapies  such  as   immune  checkpoint  blockade   in   lymphoma  are  urgently  

required.   This   will   be   a   complex   process.   In   solid   tumours   such   as  melanoma  

while  expression  of  PDL-­‐1  does  predict  response  to  anti-­‐PD1  therapy,  up  to  10%  

of  patients  with  no  PDL-­‐1/PDL-­‐2  expression  in  their  tumours  still  responded  to  

anti-­‐PD1   therapy.  This   indicates   the   complexity  of  predicting   responses   in   this  

new  era  of  immune  checkpoint  blockade.  This  needs  to  be  investigated  further  in  

prospective  studies.  

The   intratumoural  LMO2/CD8:CD163  score  was   independent  of  additive   to   the  

widely  used  clinical  prognosticator  IPI.  One  future  direction  would  be  to  develop  

and  prospectively  validate  an  integrated  clinical  and  biological  score,  that  might  

enhance   stratification   of   DLBCL   patients.   Importantly,   this   would   allow  

identification  of  patients  that  might  benefit  from  novel  agents  (preferably  given  

within   the   context   of   a   clinical   trial),   and   equally   importantly   predict   patients  

highly  likely  to  be  cured  with  conventional  chemo-­‐immunotherapy  alone.    

Should  sufficient  NHL21  tissue  samples  become  available  (acquisition  is  ongoing,  

with  approximately  67%  of  tissues  available  to  date),  this  cohort  will  be  used  to  

prospectively   validate   LM02/CD8:CD163.   Three   year   EFS   analysis   (the   clinical  

studies  primary  end-­‐point)   is  be  performed   in  2015.   It  will   also  be  possible   to  

155

Page 145: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

examine   if   the   strong   association  of   circulating   immune-­‐effector   cells:moMDSC  

ratios   with   tumour   clearance   as   assessed   by   interim   PET/CT   results   in   a  

significant   EFS   benefit.   The   confounding   factor   for   both   these   analyses   is   that  

following  interim-­‐PET/CT,  patients  had  risk-­‐adapted  therapy  and  hence  were  no  

longer  uniformly  treated.    

My   intention   is   also   to   extend   investigation   of   the   immune   TME   into   other  

lymphomas,   including   Hodgkin   Lymphoma   and   Follicular   Lymphoma,   and  

contrast   this   with   post   transplant   lymphoproliferative   disorder   (PTLD).   The  

latter   occurs   as   a   consequence   of   iatrogenic   immunosuppression,   and  

CD14+CD163+   monocytes   are   implicated   in   reducing   the   risk   of   graft  

rejection.[90].    

 

References:  

1.   Coiffier,  B.,  et  al.,  CHOP  chemotherapy  plus  rituximab  compared  with  CHOP  alone   in   elderly   patients   with   diffuse   large-­‐B-­‐cell   lymphoma.   The   New  England  journal  of  medicine,  2002.  346(4):  p.  235-­‐42.  

2.   Sehn,   L.H.,   et   al.,   The   revised   International   Prognostic   Index   (R-­‐IPI)   is   a  better  predictor  of  outcome  than  the  standard  IPI  for  patients  with  diffuse  large  B-­‐cell  lymphoma  treated  with  R-­‐CHOP.  Blood,  2007.  109(5):  p.  1857-­‐61.  

3.   Dall'Ozzo,  S.,  et  al.,  Rituximab-­‐dependent  cytotoxicity  by  natural  killer  cells:  influence  of  FCGR3A  polymorphism  on  the  concentration-­‐effect  relationship.  Cancer  research,  2004.  64(13):  p.  4664-­‐9.  

4.   Uchida,   J.,   et   al.,   The   innate   mononuclear   phagocyte   network   depletes   B  lymphocytes  through  Fc  receptor-­‐dependent  mechanisms  during  anti-­‐CD20  antibody   immunotherapy.   The   Journal   of   experimental   medicine,   2004.  199(12):  p.  1659-­‐69.  

5.   Minard-­‐Colin,  V.,  et  al.,  Lymphoma  depletion  during  CD20  immunotherapy  in   mice   is   mediated   by   macrophage   FcgammaRI,   FcgammaRIII,   and  FcgammaRIV.  Blood,  2008.  112(4):  p.  1205-­‐13.  

6.   Boross,   P.   and   J.H.   Leusen,   Mechanisms   of   action   of   CD20   antibodies.  American  journal  of  cancer  research,  2012.  2(6):  p.  676-­‐90.  

7.   Di   Gaetano,   N.,   et   al.,   Complement   activation   determines   the   therapeutic  activity   of   rituximab   in   vivo.   Journal   of   immunology,   2003.   171(3):   p.  1581-­‐7.  

8.   Golay,   J.,   et   al.,   Biologic   response   of   B   lymphoma   cells   to   anti-­‐CD20  monoclonal   antibody   rituximab   in   vitro:   CD55   and   CD59   regulate  complement-­‐mediated  cell  lysis.  Blood,  2000.  95(12):  p.  3900-­‐8.  

9.   Byrd,  J.C.,  et  al.,  The  mechanism  of  tumor  cell  clearance  by  rituximab  in  vivo  in   patients  with   B-­‐cell   chronic   lymphocytic   leukemia:   evidence   of   caspase  activation  and  apoptosis  induction.  Blood,  2002.  99(3):  p.  1038-­‐43.  

156

Page 146: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

10.   Cardarelli,  P.M.,  et  al.,  Binding  to  CD20  by  anti-­‐B1  antibody  or  F(ab')(2)  is  sufficient   for   induction   of   apoptosis   in   B-­‐cell   lines.   Cancer   immunology,  immunotherapy  :  CII,  2002.  51(1):  p.  15-­‐24.  

11.   Shan,  D.,   J.A.   Ledbetter,   and  O.W.  Press,  Apoptosis  of  malignant  human  B  cells  by  ligation  of  CD20  with  monoclonal  antibodies.  Blood,  1998.  91(5):  p.  1644-­‐52.  

12.   Horvat,   M.,   et   al.,   Predictive   significance   of   the   cut-­‐off   value   of   CD20  expression   in   patients   with   B-­‐cell   lymphoma.   Oncology   reports,   2010.  24(4):  p.  1101-­‐7.  

13.   van   Meerten,   T.,   et   al.,   Complement-­‐induced   cell   death   by   rituximab  depends   on   CD20   expression   level   and   acts   complementary   to   antibody-­‐dependent  cellular  cytotoxicity.  Clinical  cancer  research  :  an  official  journal  of  the  American  Association  for  Cancer  Research,  2006.  12(13):  p.  4027-­‐35.  

14.   Cartron,  G.,  et  al.,  Interindividual  variability  of  response  to  rituximab:  from  biological  origins  to  individualized  therapies.  Clinical  cancer  research   :  an  official   journal   of   the   American   Association   for   Cancer   Research,   2011.  17(1):  p.  19-­‐30.  

15.   Olejniczak,   S.H.,   et   al.,  Acquired  resistance   to  rituximab   is  associated  with  chemotherapy  resistance  resulting  from  decreased  Bax  and  Bak  expression.  Clinical   cancer   research   :   an  official   journal  of   the  American  Association  for  Cancer  Research,  2008.  14(5):  p.  1550-­‐60.  

16.   Pfreundschuh,  M.,  et  al.,  Suboptimal  dosing  of  rituximab  in  male  and  female  patients  with  DLBCL.  Blood,  2014.  123(5):  p.  640-­‐6.  

17.   Muller,   C.,   et   al.,   The   role   of   sex   and  weight   on   rituximab   clearance   and  serum   elimination   half-­‐life   in   elderly   patients   with   DLBCL.   Blood,   2012.  119(14):  p.  3276-­‐84.  

18.   Arpon,  D.R.,  M.K.  Gandhi,  and  J.H.  Martin,  A  new  frontier  in  haematology  -­‐  combining   pharmacokinetics   with   pharmacodynamics   factors   to   improve  choice  and  dose  of  drug.  British  journal  of  clinical  pharmacology,  2014.  

19.   Kim,  D.H.,  et  al.,  FCGR3A  gene  polymorphisms  may  correlate  with  response  to  frontline  R-­‐CHOP  therapy  for  diffuse  large  B-­‐cell  lymphoma.  Blood,  2006.  108(8):  p.  2720-­‐5.  

20.   Ahlgrimm,  M.,   et   al.,  The   impact  of  Fc-­‐gamma  receptor  polymorphisms   in  elderly  patients  with  diffuse  large  B-­‐cell  lymphoma  treated  with  CHOP  with  or  without  rituximab.  Blood,  2011.  118(17):  p.  4657-­‐62.  

21.   Quartuccio,   L.,   et   al.,   The   158VV   Fcgamma   receptor   3A   genotype   is  associated  with  response  to  rituximab  in  rheumatoid  arthritis:  results  of  an  Italian  multicentre  study.  Annals  of  the  rheumatic  diseases,  2013.  

22.   Ruyssen-­‐Witrand,   A.,   et   al.,   Fcgamma   receptor   type   IIIA   polymorphism  influences   treatment   outcomes   in   patients   with   rheumatoid   arthritis  treated  with  rituximab.  Annals  of  the  rheumatic  diseases,  2012.  71(6):  p.  875-­‐7.  

23.   Lejeune,   J.,   et   al.,   Evidence   for   linkage   disequilibrium   between   Fcgamma  RIIIa-­‐V158F   and   Fcgamma   RIIa-­‐H131R   polymorphisms   in   white   patients,  and   for   an   Fcgamma   RIIIa-­‐restricted   influence   on   the   response   to  therapeutic  antibodies.  Journal  of  clinical  oncology  :  official  journal  of  the  American  Society  of  Clinical  Oncology,  2008.  26(33):  p.  5489-­‐91;  author  reply  5491-­‐2.  

157

Page 147: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

24.   Alduaij,   W.,   et   al.,  Novel   type   II   anti-­‐CD20  monoclonal   antibody   (GA101)  evokes   homotypic   adhesion   and   actin-­‐dependent,   lysosome-­‐mediated   cell  death  in  B-­‐cell  malignancies.  Blood,  2011.  117(17):  p.  4519-­‐29.  

25.   Salles,   G.,   et   al.,   Phase   1   study   results   of   the   type   II   glycoengineered  humanized   anti-­‐CD20   monoclonal   antibody   obinutuzumab   (GA101)   in   B-­‐cell  lymphoma  patients.  Blood,  2012.  119(22):  p.  5126-­‐32.  

26.   Dunleavy,   K.,   et   al.,   B-­‐cell   recovery   following   rituximab-­‐based   therapy   is  associated  with  perturbations   in  stromal  derived  factor-­‐1  and  granulocyte  homeostasis.  Blood,  2005.  106(3):  p.  795-­‐802.  

27.   Kim,   M.,   et   al.,   [Late-­‐onset   neutropenia   following   rituximab   therapy   as   a  treatment   of   diffuse   large   B-­‐cell   lymphoma:   a   single   institution   study].  Korean  J  Lab  Med,  2010.  30(6):  p.  575-­‐9.  

28.   Chaiwatanatorn,   K.,   et   al.,   Delayed-­‐onset   neutropenia   associated   with  rituximab  therapy.  Br  J  Haematol,  2003.  121(6):  p.  913-­‐8.  

29.   Tesfa,  D.,  et  al.,  Late-­‐onset  neutropenia  associated  with  rituximab  therapy:  evidence   for   a   maturation   arrest   at   the   (pro)myelocyte   stage   of  granulopoiesis.  Med  Oncol,  2008.  25(4):  p.  374-­‐9.  

30.   Li,  S.C.,  et  al.,  Rituximab-­‐induced  late-­‐onset  neutropenia  in  newly  diagnosed  B-­‐cell   lymphoma   correlates   with   Fc   receptor   FcgammaRIIIa   158(V/F)  polymorphism.  Am  J  Hematol,  2010.  85(10):  p.  810-­‐2.  

31.   Lai,   G.G.,   et   al.,  Late-­‐onset  neutropenia   following  RCHOP  chemotherapy   in  diffuse  large  B-­‐cell  lymphoma.  Am  J  Hematol,  2009.  84(7):  p.  414-­‐7.  

32.   Rozman,  S.,  M.  Sonc,  and  B.J.  Novakovic,  Late-­‐onset  neutropenia  following  primary   treatment   of   diffuse   large   B-­‐cell   lymphoma   with   rituximab-­‐containing  therapy.  Leukemia  &  lymphoma,  2012.  53(10):  p.  1945-­‐8.  

33.   Cairoli,   R.,   et   al.,   High   incidence   of   neutropenia   in   patients   treated   with  rituximab  after  autologous  stem  cell  transplantation.  Haematologica,  2004.  89(3):  p.  361-­‐3.  

34.   Weng,  W.K.,   et   al.,   Immunoglobulin  G  Fc  receptor  FcgammaRIIIa  158  V/F  polymorphism   correlates   with   rituximab-­‐induced   neutropenia   after  autologous   transplantation   in   patients   with   non-­‐Hodgkin's   lymphoma.   J  Clin  Oncol,  2010.  28(2):  p.  279-­‐84.  

35.   Nitta,   E.,   et   al.,   A   high   incidence   of   late-­‐onset   neutropenia   following  rituximab-­‐containing   chemotherapy   as   a   primary   treatment   of   CD20-­‐positive   B-­‐cell   lymphoma:   a   single-­‐institution   study.   Ann   Oncol,   2007.  18(2):  p.  364-­‐9.  

36.   Besada,   E.,   W.   Koldingsnes,   and   J.   Nossent,   Characteristics   of   late   onset  neutropenia   in   rheumatologic   patients   treated   with   rituximab:   a   case  review   analysis   from   a   single   center.   QJM   :   monthly   journal   of   the  Association  of  Physicians,  2012.  105(6):  p.  545-­‐50.  

37.   Tesfa,   D.,   et   al.,   Late-­‐onset   neutropenia   following   rituximab   therapy   in  rheumatic  diseases:  association  with  B  lymphocyte  depletion  and  infections.  Arthritis  and  rheumatism,  2011.  63(8):  p.  2209-­‐14.  

38.   Tesfa,   D.   and   J.   Palmblad,   Late-­‐onset   neutropenia   following   rituximab  therapy:   incidence,   clinical   features   and   possible   mechanisms.   Expert  review  of  hematology,  2011.  4(6):  p.  619-­‐25.  

39.   Papadaki,   T.,   et   al.,   Evidence   for   T-­‐large   granular   lymphocyte-­‐mediated  neutropenia   in  Rituximab-­‐treated   lymphoma  patients:  report  of   two  cases.  Leuk  Res,  2002.  26(6):  p.  597-­‐600.  

158

Page 148: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

40.   Voog,   E.,   et   al.,   Factors   that   predict   chemotherapy-­‐induced  myelosuppression   in   lymphoma  patients:   role  of   the   tumor  necrosis   factor  ligand-­‐receptor  system.  J  Clin  Oncol,  2000.  18(2):  p.  325-­‐31.  

41.   Terrier,  B.,  et  al.,  Late-­‐onset  neutropenia  following  rituximab  results  from  a  hematopoietic  lineage  competition  due  to  an  excessive  BAFF-­‐induced  B-­‐cell  recovery.  Haematologica,  2007.  92(2):  p.  e20-­‐3.  

42.   Koene,   H.R.,   et   al.,   Fc   gammaRIIIa-­‐158V/F   polymorphism   influences   the  binding  of  IgG  by  natural  killer  cell  Fc  gammaRIIIa,  independently  of  the  Fc  gammaRIIIa-­‐48L/R/H  phenotype.  Blood,  1997.  90(3):  p.  1109-­‐14.  

43.   Hatjiharissi,   E.,   et   al.,   Increased   natural   killer   cell   expression   of   CD16,  augmented   binding   and   ADCC   activity   to   rituximab   among   individuals  expressing   the   Fc{gamma}RIIIa-­‐158   V/V   and   V/F   polymorphism.   Blood,  2007.  110(7):  p.  2561-­‐4.  

44.   Cornec,   D.,   et   al.,   Identification  of  patients  with   indolent  B  cell   lymphoma  sensitive  to  rituximab  monotherapy.  Annals  of  hematology,  2012.  91(5):  p.  715-­‐21.  

45.   Racila,   E.,   et   al.,   A   polymorphism   in   the   complement   component   C1qA  correlates  with  prolonged  response  following  rituximab  therapy  of  follicular  lymphoma.   Clinical   cancer   research   :   an   official   journal   of   the   American  Association  for  Cancer  Research,  2008.  14(20):  p.  6697-­‐703.  

46.   Azzato,   E.M.,   et   al.,  Common  germ-­‐line  polymorphism  of  C1QA  and  breast  cancer  survival.  British  journal  of  cancer,  2010.  102(8):  p.  1294-­‐9.  

47.   Racila,  E.,  et  al.,  The  pattern  of  clinical  breast  cancer  metastasis  correlates  with   a   single   nucleotide   polymorphism   in   the   C1qA   component   of  complement.  Immunogenetics,  2006.  58(1):  p.  1-­‐8.  

48.   Jin,   X.,   et   al.,   Homozygous   A   polymorphism   of   the   complement   C1qA276  correlates  with  prolonged  overall   survival   in   patients  with  diffuse   large  B  cell   lymphoma   treated  with   R-­‐CHOP.   Journal   of   hematology   &   oncology,  2012.  5:  p.  51.  

49.   Racila,   D.M.,   et   al.,   Homozygous   single   nucleotide   polymorphism   of   the  complement   C1QA   gene   is   associated   with   decreased   levels   of   C1q   in  patients   with   subacute   cutaneous   lupus   erythematosus.   Lupus,   2003.  12(2):  p.  124-­‐32.  

50.   Castellano,  G.,  et  al.,  Maturation  of  dendritic  cells  abrogates  C1q  production  in  vivo  and  in  vitro.  Blood,  2004.  103(10):  p.  3813-­‐20.  

51.   Wang,   S.Y.,   et   al.,   NK-­‐cell   activation   and   antibody-­‐dependent   cellular  cytotoxicity  induced  by  rituximab-­‐coated  target  cells  is  inhibited  by  the  C3b  component  of  complement.  Blood,  2008.  111(3):  p.  1456-­‐63.  

52.   Lenz,  G.,  et  al.,  Molecular  subtypes  of  diffuse  large  B-­‐cell  lymphoma  arise  by  distinct   genetic   pathways.   Proceedings   of   the   National   Academy   of  Sciences  of  the  United  States  of  America,  2008.  105(36):  p.  13520-­‐5.  

53.   Monti,   S.,   et   al.,   Molecular   profiling   of   diffuse   large   B-­‐cell   lymphoma  identifies  robust  subtypes  including  one  characterized  by  host  inflammatory  response.  Blood,  2005.  105(5):  p.  1851-­‐61.  

54.   Rosenwald,  A.,  et  al.,  The  use  of  molecular  profiling  to  predict  survival  after  chemotherapy  for  diffuse  large-­‐B-­‐cell  lymphoma.  The  New  England  journal  of  medicine,  2002.  346(25):  p.  1937-­‐47.  

159

Page 149: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

55.   Hasselblom,  S.,  et  al.,  The  number  of  tumour-­‐infiltrating  TIA-­‐1+  cytotoxic  T  cells  but  not  FOXP3+  regulatory  T  cells  predicts  outcome  in  diffuse  large  B-­‐cell  lymphoma.  British  journal  of  haematology,  2007.  137(4):  p.  364-­‐73.  

56.   Alizadeh,  A.A.,  et  al.,  Prediction  of  survival  in  diffuse  large  B-­‐cell  lymphoma  based  on  the  expression  of  2  genes  reflecting  tumor  and  microenvironment.  Blood,  2011.  118(5):  p.  1350-­‐8.  

57.   Rimsza,   L.M.,   et   al.,   Loss   of   MHC   class   II   gene   and   protein   expression   in  diffuse   large   B-­‐cell   lymphoma   is   related   to   decreased   tumor  immunosurveillance   and   poor   patient   survival   regardless   of   other  prognostic   factors:   a   follow-­‐up   study   from   the   Leukemia   and   Lymphoma  Molecular  Profiling  Project.  Blood,  2004.  103(11):  p.  4251-­‐8.  

58.   Phipps-­‐Yonas,   H.,   et   al.,   Low   GILT   Expression   is   Associated   with   Poor  Patient   Survival   in   Diffuse   Large   B-­‐Cell   Lymphoma.   Frontiers   in  immunology,  2013.  4:  p.  425.  

59.   Xu,   Y.,   et   al.,   Prognostic   significance   of   tumour-­‐infiltrating  T   lymphocytes  and   T-­‐cell   subsets   in   de   novo   diffuse   large   B-­‐cell   lymphoma:   a  multiparameter   flow   cytometry   study.   British   journal   of   haematology,  2001.  112(4):  p.  945-­‐9.  

60.   Ansell,   S.M.,   et   al.,   Cd4+   T-­‐cell   immune   response   to   large   B-­‐cell   non-­‐Hodgkin's  lymphoma  predicts  patient  outcome.  Journal  of  clinical  oncology  :  official  journal  of  the  American  Society  of  Clinical  Oncology,  2001.  19(3):  p.  720-­‐6.  

61.   Houot,   R.,   et   al.,   Therapeutic   effect   of   CD137   immunomodulation   in  lymphoma  and  its  enhancement  by  Treg  depletion.   Blood,  2009.  114(16):  p.  3431-­‐8.  

62.   Fridman,  W.H.,  et  al.,  The  immune  contexture  in  human  tumours:  impact  on  clinical  outcome.  Nature  reviews.  Cancer,  2012.  12(4):  p.  298-­‐306.  

63.   Haabeth,   O.A.,   et   al.,   Inflammation   driven   by   tumour-­‐specific   Th1   cells  protects  against  B-­‐cell  cancer.  Nature  communications,  2011.  2:  p.  240.  

64.   Tzankov,   A.,   et   al.,   Correlation   of   high   numbers   of   intratumoral   FOXP3+  regulatory   T   cells   with   improved   survival   in   germinal   center-­‐like   diffuse  large   B-­‐cell   lymphoma,   follicular   lymphoma   and   classical   Hodgkin's  lymphoma.  Haematologica,  2008.  93(2):  p.  193-­‐200.  

65.   Coutinho   R,   C.A.,   Owen  D,     Greaves   P,   Hallam   S,  Wilson   A,    Matthews   J,  Calaminici   M,     Gribben   J,   ,   Exploring   the   Immune   Microenvironment   of  Diffuse  Large  B  Cell  Lymphoma  in  a  Tissue  Microarray:  Predicting  Survival  with  a   Score  That   Incorporates  Macrophages,   Cytotoxic   and  Regulatory  T  Cells,   in   Oral   Abstract   951   American   Society   of   Haematology   Annual  Meeting2011:  San  Diego.  

66.   Nam,  S.J.,  et  al.,  An  increase  of  M2  macrophages  predicts  poor  prognosis  in  diffuse   large   B-­‐cell   lymphoma   patients   treated   with   Rituximab-­‐CHOP.  Leukemia  &  lymphoma,  2014.  

67.   Lin,  Y.,  et  al.,  Immunosuppressive  CD14+HLA-­‐DR(low)/-­‐  monocytes  in  B-­‐cell  non-­‐Hodgkin  lymphoma.  Blood,  2011.  117(3):  p.  872-­‐81.  

68.   Mori,   T.,   et   al.,  T-­‐helper   (Th)1/Th2   imbalance   in   patients  with   previously  untreated   B-­‐cell   diffuse   large   cell   lymphoma.   Cancer   immunology,  immunotherapy  :  CII,  2001.  50(10):  p.  566-­‐8.  

160

Page 150: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

69.   Ait-­‐Tahar,   K.,   et   al.,   CD4-­‐positive   T-­‐helper   cell   responses   to   the   PASD1  protein   in   patients   with   diffuse   large   B-­‐cell   lymphoma.   Haematologica,  2011.  96(1):  p.  78-­‐86.  

70.   Ding,   Z.C.,   et   al.,  Polyfunctional   CD4+  T   cells   are   essential   for   eradicating  advanced  B-­‐cell  lymphoma  after  chemotherapy.  Blood,  2012.  

71.   Bernd,   H.W.,   et   al.,   Loss   of   HLA-­‐DR   expression   and   immunoblastic  morphology   predict   adverse   outcome   in   diffuse   large   B-­‐cell   lymphoma   -­‐  analyses   of   cases   from   two   prospective   randomized   clinical   trials.  Haematologica,  2009.  94(11):  p.  1569-­‐80.  

72.   Ott,  G.,  et  al.,  Immunoblastic  morphology  but  not  the  immunohistochemical  GCB/nonGCB  classifier  predicts  outcome  in  diffuse  large  B-­‐cell  lymphoma  in  the  RICOVER-­‐60  trial  of  the  DSHNHL.  Blood,  2010.  116(23):  p.  4916-­‐25.  

73.   Pasqualucci,  L.,   et  al.,  Analysis  of  the  coding  genome  of  diffuse  large  B-­‐cell  lymphoma.  Nature  genetics,  2011.  43(9):  p.  830-­‐7.  

74.   Rossi,   E.A.,   et   al.,   Preclinical   studies   on   targeted   delivery   of   multiple  IFNalpha2b   to   HLA-­‐DR   in   diverse   hematologic   cancers.   Blood,   2011.  118(7):  p.  1877-­‐84.  

75.   Topalian,   S.L.,   et   al.,   Safety,   activity,   and   immune   correlates   of   anti-­‐PD-­‐1  antibody  in  cancer.  The  New  England  journal  of  medicine,  2012.  366(26):  p.  2443-­‐54.  

76.   Brahmer,   J.R.,   et   al.,  Safety  and  activity  of  anti-­‐PD-­‐L1  antibody  in  patients  with   advanced   cancer.   The   New   England   journal   of   medicine,   2012.  366(26):  p.  2455-­‐65.  

77.   Berger,   R.,   et   al.,   Phase   I   safety   and   pharmacokinetic   study   of   CT-­‐011,   a  humanized   antibody   interacting   with   PD-­‐1,   in   patients   with   advanced  hematologic  malignancies.  Clinical  cancer  research   :  an  official   journal  of  the  American  Association  for  Cancer  Research,  2008.  14(10):  p.  3044-­‐51.  

78.   Rotem-­‐Yehudar   R,   A.P.,   Devine   S,   et   al.,   1216   the   human-­‐ized   anti   PD-­‐1  antibody,  CT-­‐011,   increases   specific  CD4+  effector/memory  and  memory  T  lymphocytes   in   patients   with   diffuse   large   B   cell   lymphoma   (DLBCL)  following   autologous   stem   cell   transplantation   (AuSCT).   Blood   (ASH  Annual  Meeting  Abstracts).  2009;114:1216.  

79.   Li,   Z.M.,   et   al.,   Blood   Lymphocyte-­‐to-­‐Monocyte   Ratio   Identifies   High-­‐Risk  Patients  in  Diffuse  Large  B-­‐Cell  Lymphoma  Treated  with  R-­‐CHOP.  PLoS  One,  2012.  7(7):  p.  e41658.  

80.   Wilcox,  R.A.,  et  al.,  The  absolute  monocyte  and  lymphocyte  prognostic  score  predicts   survival   and   identifies   high-­‐risk   patients   in   diffuse   large-­‐B-­‐cell  lymphoma.  Leukemia  :  official  journal  of  the  Leukemia  Society  of  America,  Leukemia  Research  Fund,  U.K,  2011.  25(9):  p.  1502-­‐9.  

81.   Kim,   D.H.,   et   al.,   Absolute   lymphocyte   counts   predicts   response   to  chemotherapy   and   survival   in   diffuse   large   B-­‐cell   lymphoma.   Leukemia   :  official   journal   of   the   Leukemia   Society   of   America,   Leukemia   Research  Fund,  U.K,  2007.  21(10):  p.  2227-­‐30.  

82.   Song,   M.K.,   et   al.,   Influence   of   low   absolute   lymphocyte   count   of   patients  with  nongerminal   center   type  diffuse   large  B-­‐cell   lymphoma  with  R-­‐CHOP  therapy.  Annals  of  oncology   :  official   journal  of   the  European  Society   for  Medical  Oncology  /  ESMO,  2010.  21(1):  p.  140-­‐4.  

83.   Porrata,  L.F.,  et  al.,  New-­‐onset  lymphopenia  assessed  during  routine  follow-­‐up   is   a   risk   factor   for   relapse   postautologous   peripheral   blood  

161

Page 151: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

hematopoietic  stem  cell  transplantation  in  patients  with  diffuse  large  B-­‐cell  lymphoma.  Biology  of  blood  and  marrow  transplantation   :   journal  of   the  American  Society  for  Blood  and  Marrow  Transplantation,  2010.  16(3):  p.  376-­‐83.  

84.   Gergely,  L.,  et  al.,  Pretreatment  T  lymphocyte  numbers  are  contributing  to  the  prognostic   significance  of   absolute   lymphocyte  numbers   in  B-­‐cell   non-­‐Hodgkins  lymphomas.  Pathology  oncology  research  :  POR,  2011.  17(2):  p.  249-­‐55.  

85.   Tadmor,   T.,   et   al.,   Absolute   monocytosis   at   diagnosis   correlates   with  survival   in   diffuse   large   B-­‐cell   lymphoma-­‐possible   link   with   monocytic  myeloid-­‐derived  suppressor  cells.  Hematological  oncology,  2012.  

86.   Kristiansen,  M.,  et  al.,  Identification  of  the  haemoglobin  scavenger  receptor.  Nature,  2001.  409(6817):  p.  198-­‐201.  

87.   Schaer,  D.J.,   et  al.,  CD163  is  the  macrophage  scavenger  receptor  for  native  and  chemically  modified  hemoglobins  in  the  absence  of  haptoglobin.  Blood,  2006.  107(1):  p.  373-­‐80.  

88.   Steidl,   C.,   et   al.,   Tumor-­‐associated   macrophages   and   survival   in   classic  Hodgkin's   lymphoma.   The   New   England   journal   of   medicine,   2010.  362(10):  p.  875-­‐85.  

89.   Yamamoto,   W.,   et   al.,   HLA-­‐DR   expression   on   flow   cytometry   and   tumor-­‐associated   macrophages   in   diffuse   large   B   cell   lymphoma   treated   by   R-­‐CHOP  therapy:  Retrospective  cohort  study.  Leukemia  &  lymphoma,  2014.  

90.   Sekerkova,   A.,   et   al.,   CD14+CD16+   and   CD14+CD163+   monocyte  subpopulations   in   kidney   allograft   transplantation.   BMC   immunology,  2014.  15(1):  p.  4.  

91.   Gabrilovich,   D.I.   and   S.   Nagaraj,   Myeloid-­‐derived   suppressor   cells   as  regulators   of   the   immune   system.   Nature   reviews.   Immunology,   2009.  9(3):  p.  162-­‐74.  

92.   Almand,  B.,  et  al.,  Increased  production  of  immature  myeloid  cells  in  cancer  patients:   a   mechanism   of   immunosuppression   in   cancer.   Journal   of  immunology,  2001.  166(1):  p.  678-­‐89.  

93.   Diaz-­‐Montero,  C.M.,  et  al.,  Increased  circulating  myeloid-­‐derived  suppressor  cells   correlate   with   clinical   cancer   stage,   metastatic   tumor   burden,   and  doxorubicin-­‐cyclophosphamide   chemotherapy.   Cancer   immunology,  immunotherapy  :  CII,  2009.  58(1):  p.  49-­‐59.  

94.   Movahedi,   K.,   et   al.,   Identification   of   discrete   tumor-­‐induced   myeloid-­‐derived   suppressor   cell   subpopulations   with   distinct   T   cell-­‐suppressive  activity.  Blood,  2008.  111(8):  p.  4233-­‐44.  

95.   Bronte,  V.  and  P.  Zanovello,  Regulation  of  immune  responses  by  L-­‐arginine  metabolism.  Nature  reviews.  Immunology,  2005.  5(8):  p.  641-­‐54.  

96.   Rodriguez,   P.C.   and   A.C.   Ochoa,   Arginine   regulation   by   myeloid   derived  suppressor   cells   and   tolerance   in   cancer:   mechanisms   and   therapeutic  perspectives.  Immunological  reviews,  2008.  222:  p.  180-­‐91.  

97.   Szuster-­‐Ciesielska,   A.,   et   al.,  Reactive   oxygen   species   production   by   blood  neutrophils  of  patients  with  laryngeal  carcinoma  and  antioxidative  enzyme  activity  in  their  blood.  Acta  oncologica,  2004.  43(3):  p.  252-­‐8.  

98.   Kusmartsev,  S.,  et  al.,  Antigen-­‐specific  inhibition  of  CD8+  T  cell  response  by  immature  myeloid   cells   in   cancer   is   mediated   by   reactive   oxygen   species.  Journal  of  immunology,  2004.  172(2):  p.  989-­‐99.  

162

Page 152: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

99.   Lossos,   I.S.,   et   al.,   Prediction   of   survival   in   diffuse   large-­‐B-­‐cell   lymphoma  based  on  the  expression  of  six  genes.  The  New  England  journal  of  medicine,  2004.  350(18):  p.  1828-­‐37.  

100.   Murdoch,   C.,   et   al.,   The   role   of  myeloid   cells   in   the   promotion   of   tumour  angiogenesis.  Nature  reviews.  Cancer,  2008.  8(8):  p.  618-­‐31.  

101.   Masque-­‐Soler,  N.,  et  al.,  Molecular  classification  of  mature  aggressive  B-­‐cell  lymphoma   using   digital   multiplexed   gene   expression   on   formalin-­‐fixed  paraffin-­‐embedded  biopsy  specimens.  Blood,  2013.  122(11):  p.  1985-­‐6.  

102.   Scott,   D.W.,   et   al.,   Gene   expression-­‐based   model   using   formalin-­‐fixed  paraffin-­‐embedded   biopsies   predicts   overall   survival   in   advanced-­‐stage  classical  hodgkin  lymphoma.  J  Clin  Oncol,  2013.  31(6):  p.  692-­‐700.  

103.   Scott,  D.W.,  et  al.,  Determining  cell-­‐of-­‐origin  subtypes  of  diffuse  large  B-­‐cell  lymphoma   using   gene   expression   in   formalin-­‐fixed   paraffin   embedded  tissue.  Blood,  2014.  

104.   Plonquet,   A.,   et   al.,  Peripheral  blood  natural  killer  cell  count   is  associated  with   clinical   outcome   in   patients   with   aaIPI   2-­‐3   diffuse   large   B-­‐cell  lymphoma.   Annals   of   oncology   :   official   journal   of   the   European   Society  for  Medical  Oncology  /  ESMO,  2007.  18(7):  p.  1209-­‐15.  

105.   Kanakry,  J.A.  and  R.F.  Ambinder,  EBV-­‐related  lymphomas:  new  approaches  to  treatment.  Current  treatment  options  in  oncology,  2013.  14(2):  p.  224-­‐36.  

106.   Jones,   K.,   et   al.,   Expansion   of   EBNA1-­‐specific   effector   T   cells   in  posttransplantation   lymphoproliferative   disorders.   Blood,   2010.  116(13):  p.  2245-­‐52.  

107.   Nguyen-­‐Van,   D.,   et   al.,   Epstein-­‐Barr   virus-­‐positive   diffuse   large   B-­‐cell  lymphoma   of   the   elderly   expresses   EBNA3A   with   conserved   CD8   T-­‐cell  epitopes.  American  journal  of  blood  research,  2011.  1(2):  p.  146-­‐59.  

108.   Challa-­‐Malladi,   M.,   et   al.,   Combined   genetic   inactivation   of   beta2-­‐Microglobulin  and  CD58  reveals  frequent  escape  from  immune  recognition  in  diffuse  large  B  cell  lymphoma.  Cancer  cell,  2011.  20(6):  p.  728-­‐40.  

109.   Afshar-­‐Sterle,  S.,  et  al.,  Fas  ligand-­‐mediated  immune  surveillance  by  T  cells  is   essential   for   the   control   of   spontaneous   B   cell   lymphomas.   Nature  medicine,  2014.  

110.   List,   A.F.,   et   al.,   Deficient   tumor-­‐infiltrating   T-­‐lymphocyte   response   in  malignant   lymphoma:   relationship   to   HLA   expression   and   host  immunocompetence.  Leukemia  :  official  journal  of  the  Leukemia  Society  of  America,  Leukemia  Research  Fund,  U.K,  1993.  7(3):  p.  398-­‐403.  

111.   Wada,   N.,   et   al.,   Tumour-­‐associated   macrophages   in   diffuse   large   B-­‐cell  lymphoma:  a  study  of   the  Osaka  Lymphoma  Study  Group.   Histopathology,  2012.  60(2):  p.  313-­‐9.  

112.   Wada,   N.,   et   al.,   Diffuse   large   B   cell   lymphoma   with   an   interfollicular  pattern  of  proliferation  shows  a  favourable  prognosis:  a  study  of  the  Osaka  Lymphoma  Study  Group.  Histopathology,  2012.  60(6):  p.  924-­‐32.  

113.   Yoshida,   N.,   et   al.,   Clinical   Significance   of   sIL-­‐2R   Levels   in   B-­‐Cell  Lymphomas.  PloS  one,  2013.  8(11):  p.  e78730.  

114.   Wright,   G.,   et   al.,   A   gene   expression-­‐based   method   to   diagnose   clinically  distinct   subgroups   of   diffuse   large   B   cell   lymphoma.   Proceedings   of   the  National   Academy   of   Sciences   of   the   United   States   of   America,   2003.  100(17):  p.  9991-­‐6.  

163

Page 153: Novel’Biomarkersin DLBCL’ - Griffith University · Novel’Biomarkersin DLBCL’ ColmKeaneM BBChBAOMScMBA School of Medical Science Health Group% Griffith University Submitted

115.   Natkunam,  Y.,   et   al.,  LMO2  protein  expression  predicts  survival   in  patients  with   diffuse   large   B-­‐cell   lymphoma   treated   with   anthracycline-­‐based  chemotherapy  with   and  without   rituximab.   Journal   of   clinical   oncology   :  official  journal  of  the  American  Society  of  Clinical  Oncology,  2008.  26(3):  p.  447-­‐54.  

116.   Taube,   J.M.,   et   al.,   Colocalization   of   inflammatory   response   with   B7-­‐h1  expression   in   human  melanocytic   lesions   supports   an   adaptive   resistance  mechanism   of   immune   escape.   Science   translational   medicine,   2012.  4(127):  p.  127ra37.  

117.   Westin,   J.R.,   et   al.,   Safety   and   activity   of   PD1   blockade   by   pidilizumab   in  combination  with  rituximab  in  patients  with  relapsed  follicular  lymphoma:  a  single  group,  open-­‐label,  phase  2  trial.  The  lancet  oncology,  2013.  

118.   Pardoll,   D.M.,   The   blockade   of   immune   checkpoints   in   cancer  immunotherapy.  Nature  reviews.  Cancer,  2012.  12(4):  p.  252-­‐64.  

119.   Elstrom,   R.L.,   P.   Martin,   and   J.P.   Leonard,   New   biologic   agents   and  immunologic   strategies.   Hematol   Oncol   Clin   North   Am,   2008.   22(5):   p.  1037-­‐49,  x-­‐xi.  

120.   Goldstein,   M.J.,   et   al.,  A  CpG-­‐loaded   tumor   cell   vaccine   induces   antitumor  CD4+  T  cells  that  are  effective  in  adoptive  therapy  for  large  and  established  tumors.  Blood,  2011.  117(1):  p.  118-­‐27.  

121.   Wiernik,   P.H.,   et   al.,   Lenalidomide  monotherapy   in   relapsed   or   refractory  aggressive  non-­‐Hodgkin's  lymphoma.  J  Clin  Oncol,  2008.  26(30):  p.  4952-­‐7.  

122.   Tadmor,   T.,   et   al.,   Absolute   monocytosis   at   diagnosis   correlates   with  survival   in   diffuse   large   B-­‐cell   lymphoma-­‐possible   link   with   monocytic  myeloid-­‐derived  suppressor  cells.  Hematol  Oncol,  2012.  

123.   Jinushi,  M.,   et   al.,  Tumor-­‐associated  macrophages  regulate   tumorigenicity  and  anticancer  drug  responses  of  cancer  stem/initiating  cells.  Proceedings  of  the  National  Academy  of  Sciences  of  the  United  States  of  America,  2011.  108(30):  p.  12425-­‐30.  

124.   Jones,  K.,  et  al.,  Serum  CD163  and  TARC  as  Disease  Response  Biomarkers  in  Classical  Hodgkin  Lymphoma.  Clin  Cancer  Res,  2013.  19(3):  p.  731-­‐42.  

125.   Li,   Z.,   et   al.,   Pomalidomide   shows   significant   therapeutic   activity   against  CNS   lymphoma   with   a   major   impact   on   the   tumor   microenvironment   in  murine  models.  PloS  one,  2013.  8(8):  p.  e71754.  

126.   Graversen,  J.H.,  et  al.,  Targeting  the  hemoglobin  scavenger  receptor  CD163  in   macrophages   highly   increases   the   anti-­‐inflammatory   potency   of  dexamethasone.  Molecular  therapy  :  the  journal  of  the  American  Society  of  Gene  Therapy,  2012.  20(8):  p.  1550-­‐8.  

   

164