Top Banner
Novel Functional Graded Thermal Barrier Coatings in Coal-fired Power Plant Turbines Jing Zhang Department of Mechanical Engineering Indiana University-Purdue University Indianapolis Grant No.: DOE DE-FE0008868 Program Manager: Richard Dunst 2015 NETL Crossingcutting Research Review Meeting, Pittsburgh, PA, April 27-30, 2015
55

Novel Functional Graded Thermal Barrier Coatings in Coal-fired … · 2015. 4. 28. · Novel Functional Graded Thermal Barrier Coatings in Coal-fired Power Plant Turbines Jing Zhang

Feb 07, 2021

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • Novel Functional Graded Thermal Barrier Coatings in Coal-fired Power Plant Turbines

    Jing Zhang Department of Mechanical Engineering

    Indiana University-Purdue University Indianapolis

    Grant No.: DOE DE-FE0008868Program Manager: Richard Dunst

    2015 NETL Crossingcutting Research Review Meeting, Pittsburgh, PA, April 27-30, 2015

  • 2

    Acknowledgement

    • Subcontract: James Knapp (Praxair Surface Technologies)• Collaborators: Li Li, Don Lemen (Praxair Surface

    Technologies)• Yeon-Gil Jung (Changwon National University)• Yang Ren, Jiangang Sun (Argonne National Laboratory)• Changdong Wei (OSU), Bin Hu (Dartmouth)• Ph.D. graduate students: Xingye Guo, Yi Zhang

  • 3

    Outline• Introduction• Coating fabrications• Single ceramic layer (SCL) architecture• Double ceramic layer (DCL) architecture• Characterization of physical and mechanical properties• Microstructure and composition• Porosity and hardness• Bond strength test• Erosion test

    • Characterization of thermal properties• Thermal conductivity and specific heat measurements• Jet engine thermal shock tests• Thermal gradient mechanical fatigue tests

    • Summary and future work

  • 4

    Limitation of yttria stabilized zirconia

    • Zirconia partially stabilized with 7 wt% yttria (7YSZ) is the current state-of-the-art thermal barrier coating material.

    • However, at temperatures higher than 1200 oC, YSZ layers are prone to sintering, which increases thermal conductivity and makes them less effective.

    • The sintered and densified coatings can also reduce thermal stress and strain tolerance, which can reduce the coating’s durability significantly.

  • 5

    Motivation and objective

    • To further increase the operating temperature of turbine engines, alternative TBC materials with lower thermal conductivity, higher operating temperatures and better sintering resistance are required.

    • The objective of the project is to develop a novel lanthanum zirconate based multi-layer thermal barrier coating system.

    • The ultimate goal is to develop a manufacturing process to produce pyrochlore oxide based coating with improved high-temperature properties.

  • 6

    Pyrochlore - A2B2O7

    Pyrochlore-type rare earth zirconium oxides (Re2Zr2O7,Re = rare earth) are promising candidates for thermal barrier coatings, high-permittivity dielectrics, potential solid electrolytes in high-temperature fuel cells, and immobilization hosts of actinides in nuclear waste.

    Pyrochlore crystal structure: A2B2O7. A and B are metals incorporated into the structure in various combinations. (credit: NETL)

  • 7

    Why La2Zr2O7?

    • Higher temperature phase stability. No phase transformation

    • Lower sintering rate at elevated temperature

    • Lower thermal conductivity• Lower CTE

    Phase diagram of La2O3–ZrO2

    Compared with YSZ, La2Zr2O7 has

  • 8

    La2Zr2O7 vs. YSZ

    Materials property 8YSZ La2Zr2O7Melting Point (oC) 2680 2300Maximum Operating Temperature (oC) 1200 >1300Thermal Conductivity (W/m-K) (@ 800oC )

    2.12 1.6

    Coefficient of Thermal Expansion (x10-6/K) (@1000 oC)

    11.0 8.9-9.1

    Density (g/cm3) 6.07 6.00Specific heat (J/g-K) (@1000 oC) 0.64 0.54

  • 9

    Layered coating architecture

    • The coefficient of thermal expansion of La2Zr2O7(10x10-6 /oC) is lower than those of both substrate and bondcoat (about 15x10-6/oC @ 1000 oC). As a result, the thermal cycling properties may be a concern

    • The layered topcoat architecture is believed to be a feasible solution to improve thermal strain tolerance

    • In this work, we develop a multi-layer, functionally graded, pyrochlore oxide based TBC system

  • 10

    La2Zr2O7 spray powder morphology Powder surface morphology

    •Spherical shape with a rough surface•Good flowability and high density•Particle size between 30 ~ 100 m

    + 125 um - 125 um

    Powder cross-section

    •Porous interior

  • 11

    TEM image of La2Zr2O7

    500 nm

    credit: Bin Hu @ Dartmouth

  • 12

    La2Zr2O7 powder XRD analysisPhilips, NL/X''Pert PRO MPD, Eindhoven, NetherlandsK1 wavelength: 1.5405600 Ǻ

    XRD data show that the powder composition is La2Zr2O7

    20 30 40 50 60 70 80

    Cou

    nts

    (a.u

    .)

    2 Theta (deg.)

    (2 2 2)

    (4 0 0)

    (3 3 1)(5 1 1)

    (4 4 0) (6 2 2)

    (4 4 4)(8 0 0)

    (6 6 2)(8 4 0)

  • 13

    Synchrotron XRD

    In situ Synchrotron XRD shows no compositional change at high temperatures

    Wavelength 0.108 Å

    2 (o)

    Cou

    nt (a

    .u.)

    credit: Yang Ren @ ANL

  • 14

    Coating fabrication using APS• La2Zr2O7 coatings were deposited using air plasma spray (APS)

    technique by a Praxair patented plasma spray torch.• Haynes 188 superalloy was used as the substrate.

    • The bond coat is Ni-based intermetallic LN-65 using APS, with a thickness of 228 μm

    • Controlled spray parameters: • Powder feed ratio• Torch current• Torch gas (Argon), Carrier gas (Argon), Shield gas (Argon), Secondary

    gas (Hydrogen)• Standoff distance• Sample rig surface rotation speed (RPM and surface speed)

    LN-65 Ni Cr Al Y O(w%) 67.3 21.12 9.94 1.02 0.19

    Haynes 188 Co Ni Cr W Si C La Fe Mn(w%) 39 22 22 14 0.35 0.10 0.03 3 1.25

  • 15

    Outline• Introduction• Coating fabrications• Single ceramic layer (SCL) architecture – dense coating• Double ceramic layer (DCL) architecture• Characterization of physical and mechanical properties• Microstructure• Hardness and Young’s modulus• Bond strength test• Erosion test

    • Characterization of thermal properties• Thermal properties• Jet engine thermal shock tests• Thermal gradient mechanical fatigue tests

    • Summary and future work

  • 16

    Cross sectional view of dense coating 1 2 3

    4 5 6

    Processing parameters (powder feed rate, surface speed, current, stand off ) were varied to control the porosity.

  • 17

    200 400 600 800 1000 1200 1400 1600 1800 2000 22000

    20

    40

    60

    80

    100

    120

    140

    160

    180

    200

    220

    240

    260

    280

    300

    ■ : 5279-13 line #1 ● : 5279-14 line #2▲ : 5279-15 line #3▼ : 5279-17 line #5◀ : 5279-18 line #6

    Youn

    g’s

    mod

    ulus

    (GP

    a)

    Displacement (nm)

    Nanoindentation Young’s modulus vs. displacement

  • 18

    0

    20

    40

    60

    80

    100

    120

    140

    160

    180

    200

    159.50 ± 5.73156.00 ± 10.03

    133.02 ± 9.52

    121.76 ± 6.81116.26 ± 5.85

    5279-13 line #1 5279-14 line #2 5279-15 line #3 5279-17 line #5 5279-18 line #6

    Youn

    g’s

    mod

    ulus

    (GP

    a)Nanoindentation Young’s modulus

    Specimen species

  • 19

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11

    12

    Har

    dnes

    s (G

    Pa)

    5279-13 line #1 5279-14 line #2 5279-15 line #3 5279-17 line #5 5279-18 line #6

    10.2 ± 0.5 8.8 ± 2.1

    7.87 ± 0.7

    7.3 ± 0.67.0 ± 0.6

    Nanoindentation hardness

    Specimen species

    5279-15 line #310μm 10μm

  • 20

    0

    1

    2

    3

    4

    5

    6

    H

    ardn

    ess

    (GP

    a)

    5279-13 line #1 5279-14 line #2 5279-15 line #3 5279-17 line #5 5279-18 line #6

    5.41 ± 0.33 5.51 ± 0.255.32 ± 0.28

    4.85 ± 0.29 4.82 ± 0.24

    Specimen species

    Vicker’s indentation hardness

    5279-15 line #310μm 10μm

  • 21

    Rockwell’s indentation hardness

    0102030405060708090

    5279-13-#1 5279-14-#2 5279-15-#3 5279-16-#4 5279-17-#5 5279-18-#6

    Rockwell hardnessPorosity (%)

    • Low density coatings with porosity between 7~10 % were achieved. • Porosity and hardness can be tuned via changing processing conditions• Powder feed rate or current porosity hardness

    [Hardness = 1.99×(100-porosity) -100]

  • 22

    Outline• Introduction• Coating fabrications• Single ceramic layer (SCL) architecture – porous coating• Double ceramic layer (DCL) architecture• Characterization of physical and mechanical properties• Microstructure and composition• Porosity and hardness• Bond strength test• Erosion test

    • Characterization of thermal properties• Thermal properties• Jet engine thermal shock tests• Thermal gradient mechanical fatigue tests

    • Summary and future work

  • 23

    Cross sections of SCL La2Zr2O7 coatings

    #1 #2 #3 #4 #5

  • 24

    Vickers hardness indentation

    #1 #2 #3 #4 #5

    10 µm 10 µm 10 µm

    10 µm

    10 µm

    10 µm 10 µm 10 µm 10 µm 10 µm

    10 µm

    10 µm

    10 µm10 µm10 µm

  • 25

    Nanoindentation

    5 µm

    5 µm 5 µm

    5 µm

    5 µm5 µm

    #3 #4 #5

    5 µm

    5 µm

    5 µm

  • 26

    0

    1

    2

    3

    4

    5

    6

    H

    ardn

    ess

    (GP

    a)

    4.22 ± 0.14 4.22 ± 0.20 3.97 ± 0.44 4.09 ± 0.30 3.90 ± 0.45

    Samples#1 #2 #3 #4 #5

    Vickers indentation hardness

  • 27

    0 500 1000 1500 2000 25000

    20

    40

    60

    80

    100

    120

    140

    160

    180

    200

    220

    240

    0 500 1000 1500 2000 25000

    20

    40

    60

    80

    100

    120

    140

    160

    180

    200

    220

    240

    0 500 1000 1500 2000 25000

    20

    40

    60

    80

    100

    120

    140

    160

    180

    200

    220

    240

    0 500 1000 1500 2000 25000

    20

    40

    60

    80

    100

    120

    140

    160

    180

    200

    220

    240

    0 500 1000 1500 2000 25000

    20

    40

    60

    80

    100

    120

    140

    160

    180

    200

    220

    240

    Yo

    ung’

    s m

    odul

    us(G

    Pa)

    Displacement (nm)

    ■ : #1■ : #2■ : #3■ : #4■ : #5

    Nano indentation Young’s modulus vs. displacement

  • 28

    0

    20

    40

    60

    80

    100

    120

    140

    Youn

    g’s

    mod

    ulus

    (Gpa

    )

    #1 #2 #3 #4 #5

    89.04 ± 8.83

    104.28 ± 9.45

    100.83 ± 4.08101.11 ± 10.72

    91.77 ± 14.55

    Samples

    Nanoindentation Young’s modulus

  • 29

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    H

    ardn

    ess

    (GP

    a)

    5.24 ± 1.14

    6.09 ± 1.06

    5.41 ± 0.13

    5.41 ± 0.82 4.88 ± 1.44

    Samples#1 #2 #3 #4 #5

    Nanoindentation hardness

  • 30

    Porosity of low density SCL coating

    Line # Density (g/cm3) Porosity (%)

    7 5.3182 11.36

    8 5.2587 12.36

    9 5.2584 12.36

    10 5.2917 11.81

    11 5.2614 12.31

    12 5.0089 16.52

    Low density coatings with porosity between 11~17% were achieved.

  • 31

    Outline• Introduction• Coating fabrications• Single ceramic layer (SCL) architecture• Double ceramic layer (DCL) architecture• Characterization of physical and mechanical properties• Microstructure and composition• Porosity and hardness• Bond strength test• Erosion test

    • Characterization of thermal properties• Thermal properties• Jet engine thermal shock tests• Thermal gradient mechanical fatigue tests

    • Summary and future work

  • 32

    Double ceramic layer (DCL) architectures

    Bond coat (NiCrAlY)

    Porous La2Zr2O7 top

    coat

    Substrate (Haynes‐188)

    432μm

    228 μm 1

    27 μ

    m

    Bond coat (NiCrAlY)

    Porous La2Zr2O7 coat

    Substrate Haynes‐188

    Porous 8YSZ coat

    305 μm

    228 μm

    #6

    Bond coat (NiCrAlY)

    Porous 8YSZ top coat

    Substrate (Haynes‐188)

    432μm

    228

    μm

    #7 #8

    127 μm

    Bond coat (NiCrAlY)

    Porous La2Zr2O7 coat

    Substrate Haynes‐188

    Dense 8YSZ coat

    305 μm

    228 μm

    #9

  • 33

    Interfaces of DCL coatings

    #6 La2Zr2O7 and bond coat interface

    #8 La2Zr2O7 and porous 8YSZ interface #9 La2Zr2O7 and dense 8YSZ interface

    #7 porous 8YSZ and bond coat interface

  • 34

    Energy-dispersive X-ray spectroscopy

    34

    Applied heat treatments on sample #8

    Heat treatment1080 4h

    Ar atmosphere

    LD La2Zr2O7, 12 mils

    LD 8YSZ, 5 mils

  • 35

    Vickers hardness of DCL

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    Sample 9Sample 8Sample 6

    La2Zr2O7 layer

    Dense 8YSZ layerPorous 8YSZ layer

    Har

    dnes

    s (G

    Pa)

    Sample 7

    3.58±1.013.96±0.6

    4.86±1.66

    3.21±0.77

    7.05±1.01

    4.32±0.6

  • 36

    Bond strength testEpoxy (FM 1000 adhesive film) to glue coating buttons to a mating cap. Tensile test according to ASTM-C-633.

    8YSZLa2Zr2O70

    2

    4

    6

    8

    10

    12

    14

    16

    0

    2

    4

    6

    8

    10

    12

    14

    16

    Sample 7 Porous 8YSZ

    Strength

    10.48±1.66 MPa

    13.59±1.97 MPa

    5.31±0.33 kN

    Stre

    ngth

    (MP

    a)

    Lo

    ad (k

    N)

    Load

    6.88±0.99 kN

    Sample 6, SCL La2Zr2O7

  • 37

    Residual stress distribution in coating 

    -3.2 -2.8 -2.4 -2.0 -1.6 -1.2 -0.8 -0.4 0.0 0.4-200

    -150

    -100

    -50

    0

    50

    100

    150

    Res

    idua

    l stre

    ss (G

    Pa)

    Distance (mm)

    Townsend et al

    Zhang et al

    Bond coat

    Substrate

    La2Zr2O7

    1

    ( )n

    k ki k i

    k s s

    E tT TE t

    1

    ni i

    si s s

    E t TE t

    11

    22

    ns i i

    i ii s s

    t E t h tE t

    21

    6n i ii s s

    E t TKE t

    where α is the coefficient of thermal expansion (CTE), k is the ceramic coating layers range from 1 to n, ti is the thickness of ith layer.

    s s sE K z i i iE K z

    X.C. Zhang, Thin Solid Films, 488 (2005) 274-282.

    where

  • 38

    Erosion test

    #9, La2Zr2O7 +Dense 8YSZ#7, Porous 8YSZ. #8, La2Zr2O7 +Porous 8YSZ#6, Single layer La2Zr2O7

    • 600±0.2g alumina sands with a diameter of 50 μm

    • Spray rate 6 g/s; duration 100 s; spray angle 20o

  • 39

    0

    200

    400

    600

    800

    1000

    Sample 9Sample 8Sample 7Sample 6

    Crit

    ical

    vel

    ocity

    (m/s

    )

    La2Zr2O7

    Porous 8YSZ

    Dense 8YSZ

    Erosion rate & critical erosion velocity

    3/4 3

    13/4 1/2 3/2105IC

    critE KV

    H R

    Critical erosion velocity is used toexpress the critical condition to initiatecracks [2]:

    0

    400

    800

    1200

    1600

    2000

    2400

    1562.0±25.8

    1858.8±12.8

    Sample 9Sample 8Sample 7

    Ero

    sion

    rate

    (μg/

    g)

    Sample 6

    831.3±20.7

    1914.6±7.3

    Erosion rate describes the erosionresistance of TBC sample [1]:

    [1] D. Park, Int J Adv Manuf Technol, 23 (2004) 444-450. [2] R.G. Wellman, Wear, 256 (2004) 889-899.

    E: Young’s modulusH: hardnessKIC :fracture toughnessρ: density of erodent particleR: particle radius

  • 40

    Relationship between Vcrit and erosion rate

    800 1000 1200 1400 1600 1800 20000.000

    0.002

    0.004

    0.006

    0.008

    0.010

    0.012

    0.014

    0.016

    1/

    Crit

    ical

    vel

    ocity

    (s/m

    )

    Erosion rate (g/g)

    ● Sample 1 ▲ Sample 2■ Sample 3◆ Sample 4

    6789

  • 41

    Outline• Introduction• Coating fabrications• Single ceramic layer (SCL) architecture• Double ceramic layer (DCL) architecture• Characterization of physical and mechanical properties• Microstructure and composition• Porosity and hardness• Bond strength test• Erosion test

    • Characterization of thermal properties• Thermal properties• Jet engine thermal shock tests• Thermal gradient mechanical fatigue tests

    • Summary and future work

  • 42

    Thermal conductivity

    Thermal conductivity is determined from thermal diffusivity Dth, specific heat capacity Cp, and measured density ρ:

    Thermal diffusivity is measured using laser flash diffusivity system (TA instrument DLF1200). Specific heat is measured by analytical method (TA instrument DLF1200)

    k = Dth·Cp·ρ

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0 200 400 600 800 1000

    Spe

    cific

    hea

    t (kJ

    /kg/

    o C)

    Temperature (oC)

    -

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    0 200 400 600 800 1000

    Ther

    mal

    con

    duct

    ivity

    (W/m

    /o C)

    Temperature (oC)

    Sample #6 porous La2Zr2O7

    Porous 8 wt% YSZ sample

  • 43

    Thermal conductivity and heat capacity map

    TBC is 90.55% dense (=5.478g/cc), with a nominal thickness of 600mIndentation marks are from previous study

    credit: Jiangan Sun @ ANL

  • 44

    TBC: Material: La2Zr2O7Thickness: ~600m (this is used in calculation)Density: 90.55% dense, dense density=6 g/cc, so density = 5.478 g/ccSpecific heat: c = 0.54 J/g-K @1000C

    Substrate (following are room temperature properties obtained from matweb):Material: Haynes 188Density: = 8.98 g/ccThermal conductivity: k = 10.4 W/m-K,Specific heat: c = 0.403 J/g-K, (therefore, c = 3.62 J/cm3-K)Thickness used in calculation: L = 4 mm (may have a small effect to results)

    Sample information

    Test conditionFlash thermal imaging test with one flash lampImaging speed: 994 Hz; imaging duration: 3 seconds

    Thermal conductivity and heat capacity map

  • 45

    Measured TBC thermal properties

    Predicted average TBC properties (within red rectangular area): k = 0.55 W/m-K, c = 2.16 J/cm3-K

    Thermal conductivity k image Heat capacity c image

    0 1 W/m-K 0 2.5 J/cm3-K

    These results were based on a TBC thickness of 600 m TBC specific heat @RT: c = 0.393 J/g-K; predicted TBC density is: =c/c=2.16/0.393=5.5 g/cc

    credit: Jiangan Sun @ ANL

  • 46

    3

    4

    5

    6

    7

    8

    9

    10

    11

    12

    0 200 400 600 800 1000 1200 1400

    Coe

    ffici

    ent o

    f the

    rmal

    exp

    ansi

    on (×

    10-6

    /K)

    Temperature (oC)

    This work

    LZ CTE expriment ( Lehmann )

    8YSZ CTE expriment ( Hayashi )

    LZ CTE Experiment ( Zhang )

    LZ CTE Experiment ( Kutty )

    LZ CTE Experiment ( Xu )

    H. Lehmann, D. Pitzer, G. Pracht, R. Vassen, D. Stöver, Journal of the American Ceramic Society, 86 (2003) 1338-1344.H. Hayashi, T. Saitou, N. Maruyama, H. Inaba, K. Kawamura, M. Mori, Solid State Ionics, 176 (2005) 613-619.J. Zhang, J. Yu, X. Cheng, S. Hou, Journal of Alloys and Compounds, 525 (2012) 78-81.K.V.G. Kutty, S. Rajagopalan, C.K. Mathews, U.V. Varadaraju, Materials Research Bulletin, 29 (1994) 759-766C. Xu, C. Wang, C. Chan, K. Ho, Physical Review B, 43 (1991) 5024-5027.

    CTE is measured using a BAEHR dilatometer from 25 to 1400 oC.

    Coefficient of thermal expansion (CTE)

  • 47

    Jet engine thermal shock tests (JETS)• Jet engine thermal shock (JETS) tests are

    conducted to investigate the thermal cycling performance.

    • TBC samples are heated to 2250 oF (1232.2 oC) at the center for 20 s, and then cooled by compressed N2 cooling for 20 s, and then ambient cooling for 40 s.

    • Temperatures are measured by thermal couple and pyrometer.

  • 48

    Jet engine thermal shock test (JETS) results

    #6, Single layer La2Zr2O7 #7, Porous 8YSZ

    #8, Porous 8YSZ+ La2Zr2O7 #9, Dense 8YSZ+ La2Zr2O7

    0

    200

    400

    600

    800

    1000

    1200

    1400

    1600

    1800

    2000

    0 10 20 30 40 50

    Tem

    prea

    ture

    diff

    eren

    ce (F

    )

    Cycles

    #6-A

    #6-B

    #6-C

    #7-A

    #7-B

    #7-C

  • 49

    Thermal gradient mechanical fatigue (TGMF)

    0 10 20 30 400

    200

    400

    600

    800

    1000

    Time (minute)

    Tem

    pera

    ture

    (�)

    0

    50

    100

    150

    200

    Ten

    sile

    load

    (MP

    a)

    Sample

    Sample jig

    TorchThermalcouple

    Load sensor

    Sample Test cycleSCL porous 8YSZ 1200

    DCL porous 8YSZ + La2Zr2O7 220

    DCL dense 8YSZ + La2Zr2O7 50

    At 850 oC

    Sample Test cycleDCL porous 8YSZ + La2Zr2O7 38

    DCL dense 8YSZ + La2Zr2O7 49

    At 1100 oC

  • 50

    La2Zr2O7 thermal conductivity calculation1x1x20 super cell

    Replicate 20 conventional cells along the heat flow direction to form a super cell

    (K)

    The calculated thermal conductivity is 1.2 W/m/K at the temperature of 1000 oC, which is reasonably in agreement with the experimentally measured thermal conductivity ~1.5 W/m/K [1].

    [1] R. Vassen, X. Cao, F. Tietz, J. Am. Ceram. Soc., 83 (2000) 2023–2028.

  • 51

    Imaged based FEM calculation of thermal conductivity of La2Zr2O7 TBC

    k=0.723 W/m/K

    k=0.538 W/m/K

    k=0.550 W/m/K

    Thermal conductivity of fully dense LZ k=1.5 W/m/K

    SEM image Binary image FEM model

  • 52

    0 200 400 600 800 10000.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    Ther

    mal

    con

    duct

    ivity

    (W/m

    /o C)

    Temperature (oC)

    Experiment Calculation

    Imaged based FEM calculation of thermal conductivity of La2Zr2O7 coating

    Calculated thermal conductivity 0.60±0.08 W/m-K, in good agreement with experimental data.

  • 53

    Summary• La2Zr2O7 powder, coating microstructure and chemistry

    characterizations show that La2Zr2O7 is stable at high temperatures, which makes it suitable for TBC applications.

    • Mechanical properties (hardness, bond strength) are similar to 8YSZ.

    • Thermal conductivity of La2Zr2O7 is lower than 8YSZ of similar porosity.

    • Thermal properties using ab initio and image-based finite element model calculations are in good agreement with experiments.

    • Thermal cycling behavior of La2Zr2O7 needs to be improved.

    Future work

  • 54

    Composite coatings with buffer layers

    Bond coat (NiCrAlY)

    La2Zr2O7 (50 vol%) +

    8YSZ (50 vol%)coat

    Substrate

    430μm

    1

    60 μ

    m

    Bond coat (NiCrAlY)

    La2Zr2O7 (50 vol%) +

    8YSZ (50 vol%)coat

    Substrate

    Porous YSZ coat

    370μm

    1

    120 μm

    Bond coat (NiCrAlY[1])

    La2Zr2O7 (75 vol%) +

    8YSZ (25 vol%)coat

    Substrate

    310μm

    2

    LZ (25)+YSZ (75)

    Porous YSZ coat

    60 μm

    Composite top coats:thermal conductivity + matching CTEs

    Introducing buffer layer:Increasing strain compliance + Decreasing CTEs mismatch

    2nd buffer layer:Further decrease CTEs mismatch

    Bond coat (NiCrAlY)

    La2Zr2O7 (25 vol%) +

    8YSZ (75 vol%)coat

    Substrate

    430μm

    2

  • 55

    Publications and presentations1. Jing Zhang, Yeon-Gil Jung, Li Li, co-organize “Advanced Coating Materials for Energy and

    Environmental Applications” symposium in Materials Science & Technology 2015 (MS&T15), October 4-8, 2015, Columbus, OH

    2. Jing Zhang, Yeon-Gil Jung (eds.), 1st International Joint Mini-Symposium on Advanced Coatings, Materials Today: Proceedings, 2014

    3. Yeon-Gil Jung, Zhe Lu, Ungyu Paik, and Jing Zhang, Lifetime Performance of Thermal Barrier Coatings in Thermally Graded Mechanical Fatigue Environments, The 11th International Conference of Pacific Rim Ceramic Societies(PacRim-11), Jeju, Korea, August 30 - September 4, 2015

    4. Yeon-Gil Jung, Zhe Lu, Qi-Zheng Cui, Sang-Won Myoung, and Jing Zhang, Thermal Durability and Fracture Behavior of Thermal Barrier Coatings in Thermally Graded Mechanical Fatigue Environments, the International Symposium on Green Manufacturing and Applications 2015 (ISGMA 2015), Qingdao, China, June 23 - June 27, 2015

    5. Xingye Guo, Jing Zhang, Zhe Lu, Yeon-Gil Jung, Theoretical prediction of thermal and mechanical properties of lanthanum zirconate nanocrystal, the 1st International Conference & Exhibition for Nanopia, Changwon Exhibition Convention Center, Gyeongsangnam-do Province, Miryang City, Korea, November 13-14, 2014

    6. Sang-Won Myoung, Zhe Lu, Qizheng Cui, Je-Hyun Lee, Yeon-Gil Jung, Jing Zhang, Thermomechanical properties of thermal barrier coatings with microstructure design in cyclic thermal exposure, the 1st International Conference & Exhibition for Nanopia, Changwon Exhibition Convention Center, Gyeongsangnam-do Province, Miryang City, Korea, November 13-14, 2014

    7. Zhang, J., X. Guo, Y.-G. Jung, L. Li, and J. Knapp, Microstructural Non-uniformity and Mechanical Property of Air Plasma-sprayed Dense Lanthanum Zirconate Thermal Barrier Coating. Materials Today: Proceedings, 2014. 1(1): p. 11-16.

    8. Guo, X. and J. Zhang, First Principles Study of Thermodynamic Properties of Lanthanum Zirconate. Materials Today: Proceedings, 2014. 1(1): p. 25-34.