Top Banner
Nonlinear Dynamics & Vision Hugh R. Wilson Biology & Centre for Vision Research York University
28

Nonlinear Dynamics & Vision - University of Torontoamnih/cifar/talks/wilson_tutorial_2.pdf · Nonlinear Dynamics & Vision Hugh R. Wilson Biology & Centre for Vision Research York

May 04, 2018

Download

Documents

nguyendan
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Nonlinear Dynamics & Vision - University of Torontoamnih/cifar/talks/wilson_tutorial_2.pdf · Nonlinear Dynamics & Vision Hugh R. Wilson Biology & Centre for Vision Research York

Nonlinear Dynamics & Vision

Hugh R. WilsonBiology & Centre for Vision Research

York University

Page 2: Nonlinear Dynamics & Vision - University of Torontoamnih/cifar/talks/wilson_tutorial_2.pdf · Nonlinear Dynamics & Vision Hugh R. Wilson Biology & Centre for Vision Research York

Outline

• Whirlwind tour of nonlinear dynamics• Overview of higher form vision areas• Marroquin illusion• Detailed analysis of competitive

networks in rivalry

Page 3: Nonlinear Dynamics & Vision - University of Torontoamnih/cifar/talks/wilson_tutorial_2.pdf · Nonlinear Dynamics & Vision Hugh R. Wilson Biology & Centre for Vision Research York

Nonlinear Dynamics: Equilibria & Linearization

• Coupled, first order equations• Solve for steady states or

equilibrium points• Compute Jacobian matrix• Evaluate at each steady state• Determine eigenvalues

Page 4: Nonlinear Dynamics & Vision - University of Torontoamnih/cifar/talks/wilson_tutorial_2.pdf · Nonlinear Dynamics & Vision Hugh R. Wilson Biology & Centre for Vision Research York

Linearized Stability Analysis

dxdt

= F(x,y)

dydt

=G(x,y)

J =

∂F∂x

∂F∂y

∂G∂x

∂G∂y

x,y=Equilibrium

• All real(eig) < 0, asymptotic stability• Any real(eig) > 0, unstable• Pure imaginary eig: theorem does not

apply

Page 5: Nonlinear Dynamics & Vision - University of Torontoamnih/cifar/talks/wilson_tutorial_2.pdf · Nonlinear Dynamics & Vision Hugh R. Wilson Biology & Centre for Vision Research York

Nonlinear Oscillations• Limit cycles: cannot exist in linear systems• Only one general theorem: Hopf Bifurcation

Theorem• Conservative oscillations (analogous to

linear systems) can exist, but not in neural systems

• Chaos can occur in > 2 dimensions• All neural oscillations are limit cycles!

Page 6: Nonlinear Dynamics & Vision - University of Torontoamnih/cifar/talks/wilson_tutorial_2.pdf · Nonlinear Dynamics & Vision Hugh R. Wilson Biology & Centre for Vision Research York

Hopf Bifurcation Theorem

• Equilibrium is asymptotically stable for b < a

• Pair of pure imaginary eig for b = a• For all other eig, real(eig) < 0• Equilibrium point unstable for b > a• Asymptotically stable limit cycle for

b > a; or unstable for b < a

dr X

dt=

r F

r X ,β( )

Page 7: Nonlinear Dynamics & Vision - University of Torontoamnih/cifar/talks/wilson_tutorial_2.pdf · Nonlinear Dynamics & Vision Hugh R. Wilson Biology & Centre for Vision Research York

Hopf Addendum

• Limit cycle emerges with infinitesimal amplitude

• Frequency = Im(eig)/2pi• Hodgkin Huxley Euations exhibit

Hopf bifurcation

dr X

dt=

r F

r X ,β( )

Page 8: Nonlinear Dynamics & Vision - University of Torontoamnih/cifar/talks/wilson_tutorial_2.pdf · Nonlinear Dynamics & Vision Hugh R. Wilson Biology & Centre for Vision Research York

Nonlinear Oscillations Caveats• Not all limit cycles emerge via Hopf

bifurcations• Example: Mammalian cortical neurons• Conservative oscillations (analogous to

linear systems) can exist, but not in neural systems

• Chaos can occur in > 2 dimensions• All neural oscillations are limit cycles!

Page 9: Nonlinear Dynamics & Vision - University of Torontoamnih/cifar/talks/wilson_tutorial_2.pdf · Nonlinear Dynamics & Vision Hugh R. Wilson Biology & Centre for Vision Research York

Conduction & Spiking Dynamics

• Two-compartment model (Rinzel et al)• Excitatory neurons: slow AHP currents• Simple but accurate cubic model (Wilson, 1999)

dVdt = – a V2 – b V V – ENa – R V – EK + Iinput

τ Rd Rdt = – R + cV2

(conductance)x(potential)

Page 10: Nonlinear Dynamics & Vision - University of Torontoamnih/cifar/talks/wilson_tutorial_2.pdf · Nonlinear Dynamics & Vision Hugh R. Wilson Biology & Centre for Vision Research York

Phase Plane & Spike Generation

-0.2 0 0.2 0.4 0.6 0.8-0.2

0

0.2

0.4

0.6

0.8

1

V

R

-0.2 0 0.2 0.4 0.6 0.8-0.2

0

0.2

0.4

0.6

0.8

1

V

R

0 10 20 30 40 50 60 70 80 90 100-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

V (N

orm

alize

d Un

its)

Time (arbitrary units)

Page 11: Nonlinear Dynamics & Vision - University of Torontoamnih/cifar/talks/wilson_tutorial_2.pdf · Nonlinear Dynamics & Vision Hugh R. Wilson Biology & Centre for Vision Research York

Fit to Human Action Potentials

-80

-60

-40

-20

0

20

40

0 1 2 3

HumanEqn (9.10)

Pote

ntia

l (m

V)

Time (msec)

A

-80

-60

-40

-20

0

20

40

0 1 2 3

HumanEqn (9.10)

Pote

ntia

l (m

V)

Time (msec)

A

Foehring et al, 1991

Page 12: Nonlinear Dynamics & Vision - University of Torontoamnih/cifar/talks/wilson_tutorial_2.pdf · Nonlinear Dynamics & Vision Hugh R. Wilson Biology & Centre for Vision Research York

Spike Rate Adaptation• Human excitatory cortical neurons:

slow hyperpolarizing current• Causes spike rate adaptation

dVdt = – a V2 – b V V – E Na – R V – EK – H V – EK +I

τ Rd Rdt = – R + cV2

τ Hd Hdt = – H + gV2 Very slow K+ current

Page 13: Nonlinear Dynamics & Vision - University of Torontoamnih/cifar/talks/wilson_tutorial_2.pdf · Nonlinear Dynamics & Vision Hugh R. Wilson Biology & Centre for Vision Research York

Spike Frequency Adaptation

0 100 200 300 4000

50

100

150

200

Time (ms)

B

Spik

e Ra

te (H

z)

0 20 40 60 80 100 120 140 160 180 200-100

-80

-60

-40

-20

0

20

40I = 0.85

Time (ms)

Pote

ntia

l (m

V)

AfterHyperpolarization

A

Controlled by neuromodulators (dopamine, serotonin)

Page 14: Nonlinear Dynamics & Vision - University of Torontoamnih/cifar/talks/wilson_tutorial_2.pdf · Nonlinear Dynamics & Vision Hugh R. Wilson Biology & Centre for Vision Research York

Lyapunov Functions & Memory

• Positive definite function U(t) around an equilibrium

• dU/dt < 0 along trajectories in a region surrounding equilibrium

• Then equilibrium is asymptotically stable• Lyapunov fcns. always exist, but not unique

dUdt

=∂U∂xii

∑ dxidt

Page 15: Nonlinear Dynamics & Vision - University of Torontoamnih/cifar/talks/wilson_tutorial_2.pdf · Nonlinear Dynamics & Vision Hugh R. Wilson Biology & Centre for Vision Research York

Lyapunov Functions & Memory• Apply where linearization fails• Permit estimate of domain of attraction

dxdt

= −y − x 3

dydt

= x − y 3

U(x,y) =x 2 + y 2

2dUdt

= −x 4 − y 4

Page 16: Nonlinear Dynamics & Vision - University of Torontoamnih/cifar/talks/wilson_tutorial_2.pdf · Nonlinear Dynamics & Vision Hugh R. Wilson Biology & Centre for Vision Research York

Form Pathway Connections

Retina & LGN: Local contrast differencesV1: Contour & edge orientationsV2: Curvature, anglesV4: Elliptical object shapes, T & Y junctionsHigher Areas: Combines V4 info to represent faces & objects

Retina VisualCortex

FaceArea

V4

Page 17: Nonlinear Dynamics & Vision - University of Torontoamnih/cifar/talks/wilson_tutorial_2.pdf · Nonlinear Dynamics & Vision Hugh R. Wilson Biology & Centre for Vision Research York

Form Pathway Connections

Area to area feedback connectionsSkipping connectionsFeedback local but patchy

V1 V4 TEO TEV2

Page 18: Nonlinear Dynamics & Vision - University of Torontoamnih/cifar/talks/wilson_tutorial_2.pdf · Nonlinear Dynamics & Vision Hugh R. Wilson Biology & Centre for Vision Research York

fMRI of V4

Wilkinson et al, Current Biology (2000)

Page 19: Nonlinear Dynamics & Vision - University of Torontoamnih/cifar/talks/wilson_tutorial_2.pdf · Nonlinear Dynamics & Vision Hugh R. Wilson Biology & Centre for Vision Research York

V4 & FFA Activation

0

0.2

0.4

0.6

0.8

1

1.2

1.4

V1 V4 FFA

ConcentricRadialParallelFaces

Resp

onse

(% s

igna

l cha

nge)

Cortical Area

0

0.2

0.4

0.6

0.8

1

1.2

1.4

V1 V4 FFA

ConcentricRadialParallelFaces

Resp

onse

(% s

igna

l cha

nge)

Cortical Area

0

0.2

0.4

0.6

0.8

1

1.2

1.4

V1 V4 FFA

ConcentricRadialParallelFaces

Resp

onse

(% s

igna

l cha

nge)

Cortical Area

0

0.2

0.4

0.6

0.8

1

1.2

1.4

V1 V4 FFA

ConcentricRadialParallelFaces

Resp

onse

(% s

igna

l cha

nge)

Cortical Area

* *

**

Page 20: Nonlinear Dynamics & Vision - University of Torontoamnih/cifar/talks/wilson_tutorial_2.pdf · Nonlinear Dynamics & Vision Hugh R. Wilson Biology & Centre for Vision Research York

Gallant et al, 2000: V4 damage

Normal V4Damaged V4

But: Orientation Discrimination normal (normal V1)

Page 21: Nonlinear Dynamics & Vision - University of Torontoamnih/cifar/talks/wilson_tutorial_2.pdf · Nonlinear Dynamics & Vision Hugh R. Wilson Biology & Centre for Vision Research York

Receptive Field Size Increases

0.1°

10°

100°Receptive Field Sizes

RF DiameterKobatake & TanakaOp de Beeck et al

RF D

iam

eter

Cortical Area

Diameter = 0.09°·Area3.04

V1 V2 V4 TEO TE

Page 22: Nonlinear Dynamics & Vision - University of Torontoamnih/cifar/talks/wilson_tutorial_2.pdf · Nonlinear Dynamics & Vision Hugh R. Wilson Biology & Centre for Vision Research York

Construction of V4 Units

3x

3x

Σ

Rectification&

Gain Control

V1 V2 V4

3x

3x

Σ

Rectification&

Gain Control

Page 23: Nonlinear Dynamics & Vision - University of Torontoamnih/cifar/talks/wilson_tutorial_2.pdf · Nonlinear Dynamics & Vision Hugh R. Wilson Biology & Centre for Vision Research York
Page 24: Nonlinear Dynamics & Vision - University of Torontoamnih/cifar/talks/wilson_tutorial_2.pdf · Nonlinear Dynamics & Vision Hugh R. Wilson Biology & Centre for Vision Research York

fMRI & Distance from MeanMean Face

1

1.2

1.4

1.6

2 4 6 8 10 12 14 16Face geometry (%)

FFA neurons increase firing with distance from mean faceNature Neuroscience, October, 2005

Page 25: Nonlinear Dynamics & Vision - University of Torontoamnih/cifar/talks/wilson_tutorial_2.pdf · Nonlinear Dynamics & Vision Hugh R. Wilson Biology & Centre for Vision Research York

Marroquin Illusion (1976)

Page 26: Nonlinear Dynamics & Vision - University of Torontoamnih/cifar/talks/wilson_tutorial_2.pdf · Nonlinear Dynamics & Vision Hugh R. Wilson Biology & Centre for Vision Research York

Competitive Marroquin Model

τEdE n

d t= – E n +

100P +2

10+H n2+P +

2

where P = S Marroquin – 0.6 I k exp – R nk5 σ5– R nk5 σ5Σ

n ≠ k

τId I n

d t= – I n + E n

τHdH n

d t= – H n +gE n

Slow adapt (400-900 ms) Ca++ - K+ potential McCormick, Avoli

Spatial Competitive Inhibition

Describe neurons by spike rate equations

Sigmoid Nonlinearity

Page 27: Nonlinear Dynamics & Vision - University of Torontoamnih/cifar/talks/wilson_tutorial_2.pdf · Nonlinear Dynamics & Vision Hugh R. Wilson Biology & Centre for Vision Research York

Competitive Model (demo)

• Spatially Regional Winner Take All• Winner slowly adapts, so new winners

emerge• Model generates gamma distribution

Page 28: Nonlinear Dynamics & Vision - University of Torontoamnih/cifar/talks/wilson_tutorial_2.pdf · Nonlinear Dynamics & Vision Hugh R. Wilson Biology & Centre for Vision Research York

Gamma Distribution

0

5

10

15

20

0 2 4 6 8 10

FWGamma

Inte

rval

Cou

nt

Interval Duration (sec)

N = 103

0

10

20

30

40

50

60

70

0 2 4 6 8 10

ModelGamma

Interval Duration (sec)

N = 478

Too many long intervals for true Gamma!