Top Banner
Non-Linear Parameter Optimisation of a Terrestrial Biosphere Model Using Atmospheric CO 2 Observation - CCDAS Marko Scholze 1 , Peter Rayner 2 , Wolfgang Knorr 1 , Thomas Kaminski 3 , Ralf Giering 3 & Heinrich Widmann 1 European Geosciences Union, Nice, 27 th April 2004 FastOpt 1 2 3
15

Non-Linear Parameter Optimisation of a Terrestrial Biosphere Model Using Atmospheric CO 2 Observation - CCDAS Marko Scholze 1, Peter Rayner 2, Wolfgang.

Jan 05, 2016

Download

Documents

Morris Dennis
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Non-Linear Parameter Optimisation of a Terrestrial Biosphere Model Using Atmospheric CO 2 Observation - CCDAS Marko Scholze 1, Peter Rayner 2, Wolfgang.

Non-Linear Parameter Optimisation of a Terrestrial

Biosphere Model Using Atmospheric CO2 Observation -

CCDAS

Marko Scholze1, Peter Rayner2, Wolfgang Knorr1, Thomas Kaminski3, Ralf Giering3 & Heinrich

Widmann1

European Geosciences Union, Nice, 27th April 2004FastOpt1 2 3

Page 2: Non-Linear Parameter Optimisation of a Terrestrial Biosphere Model Using Atmospheric CO 2 Observation - CCDAS Marko Scholze 1, Peter Rayner 2, Wolfgang.

Overview

• CCDAS set-up• Calculation and propagation of

uncertainties• Data fit• Global results• Summary

Page 3: Non-Linear Parameter Optimisation of a Terrestrial Biosphere Model Using Atmospheric CO 2 Observation - CCDAS Marko Scholze 1, Peter Rayner 2, Wolfgang.

Carbon Cycle Data Assimilation System (CCDAS) set-up

2-stage-assimilation:

1. AVHRR data(Knorr, 2000)

2. Atm. CO2 data

Background fluxes:1. Fossil emissions (Marland et al., 2001 und Andres et al., 1996)2. Ocean CO2 (Takahashi et al., 1999 und Le Quéré et al., 2000)3. Land-use (Houghton et al., 1990)

Transport Model TM2 (Heimann, 1995)

Page 4: Non-Linear Parameter Optimisation of a Terrestrial Biosphere Model Using Atmospheric CO 2 Observation - CCDAS Marko Scholze 1, Peter Rayner 2, Wolfgang.

Calibration Step

Flow of information in CCDAS. Oval boxes represent the various quantities. Rectangular boxes denote mappings between these fields.

Page 5: Non-Linear Parameter Optimisation of a Terrestrial Biosphere Model Using Atmospheric CO 2 Observation - CCDAS Marko Scholze 1, Peter Rayner 2, Wolfgang.

Prognostic Step

Oval boxes represent the various quantities. Rectangular boxes denote mappings between these fields.

Page 6: Non-Linear Parameter Optimisation of a Terrestrial Biosphere Model Using Atmospheric CO 2 Observation - CCDAS Marko Scholze 1, Peter Rayner 2, Wolfgang.

Methodology

Minimize cost function such as (Bayesian form):

DpMDpMpp pppJ D

T

pT

)()()( 2

1

2

1 10

10 0

-- C C

where- is a model mapping parameters to observable quantities- is a set of observations- error covariance matrixC

DM

p

need of (adjoint of the model)Jp

Page 7: Non-Linear Parameter Optimisation of a Terrestrial Biosphere Model Using Atmospheric CO 2 Observation - CCDAS Marko Scholze 1, Peter Rayner 2, Wolfgang.

Calculation of uncertainties

• Error covariance of parameters

1

2

2

ji,

p pJ

C = inverse Hessian

T

pX p)p(X

p)p(X

CC

• Covariance (uncertainties) of prognostic quantities

Page 8: Non-Linear Parameter Optimisation of a Terrestrial Biosphere Model Using Atmospheric CO 2 Observation - CCDAS Marko Scholze 1, Peter Rayner 2, Wolfgang.

Figure from Tarantola, 1987

Gradient Method

1st derivative (gradient) ofJ (p) to model parameters p:

yields direction of steepest descent.

p

p

ppJ

)(

cost function J (p) p

Model parameter space (p)p

2nd derivative (Hessian)of J (p):

yields curvature of J.Approximates covariance ofparameters.

p

22 ppJ

)(

Page 9: Non-Linear Parameter Optimisation of a Terrestrial Biosphere Model Using Atmospheric CO 2 Observation - CCDAS Marko Scholze 1, Peter Rayner 2, Wolfgang.

Data fit

Page 10: Non-Linear Parameter Optimisation of a Terrestrial Biosphere Model Using Atmospheric CO 2 Observation - CCDAS Marko Scholze 1, Peter Rayner 2, Wolfgang.

Global Growth Rate

Calculated as:

observed growth rate

optimised modeled growth rate

Atmospheric CO2 growth rate

MLOSPOGLOB CCC 75.025.0

Page 11: Non-Linear Parameter Optimisation of a Terrestrial Biosphere Model Using Atmospheric CO 2 Observation - CCDAS Marko Scholze 1, Peter Rayner 2, Wolfgang.

Parameters I

• 3 PFT specific parameters (Jmax, Jmax/Vmax and )

• 18 global parameters• 57 parameters in all plus 1 initial value (offset)

Param InitialPredicted

Prior unc. (%) Unc. Reduction (%)

fautleafc-costQ10 (slow)

(fast)

0.41.251.51.5

0.241.271.351.62

2.50.57075

3917278

(TrEv)(TrDec) (TmpDec) (EvCn) (DecCn) (C4Gr) (Crop)

1.01.01.01.01.01.01.0

1.440.352.480.920.731.563.36

25252525252525

7895629591901

Page 12: Non-Linear Parameter Optimisation of a Terrestrial Biosphere Model Using Atmospheric CO 2 Observation - CCDAS Marko Scholze 1, Peter Rayner 2, Wolfgang.

Parameters II

Relative Error Reduction

Page 13: Non-Linear Parameter Optimisation of a Terrestrial Biosphere Model Using Atmospheric CO 2 Observation - CCDAS Marko Scholze 1, Peter Rayner 2, Wolfgang.

Carbon Balance

latitude N*from Valentini et al. (2000) and others

Euroflux (1-26) and othereddy covariance sites*

net carbon flux 1980-2000gC / (m2 year)

Page 14: Non-Linear Parameter Optimisation of a Terrestrial Biosphere Model Using Atmospheric CO 2 Observation - CCDAS Marko Scholze 1, Peter Rayner 2, Wolfgang.

Posterior uncertainty in net flux

Uncertainty in net carbon flux 1980-2000gC / (m2 year)

Page 15: Non-Linear Parameter Optimisation of a Terrestrial Biosphere Model Using Atmospheric CO 2 Observation - CCDAS Marko Scholze 1, Peter Rayner 2, Wolfgang.

Summary

• CCDAS with 58 parameters can fit 20 years of CO2 concentration data.

• Significant reduction of uncertainty for ~15 parameters.

• A tool to test model with uncertain parameters and to deliver a posterior uncertainties on parameters and prognostics.

• Model is developed further within the system a low resolution version of the biosphere model is available (~20 times faster).

• Adjoint, tangent linear and Hessian code is derived by automatic differentiation (TAF) extremely easy update of derivative code for improved model versions.