Top Banner
Non-Linear Fuzzy Dark Matter Modelling with Extended LPT Alex Laguë, Renée Hložek, George Stein, and Dick Bond
24

Non-Linear Fuzzy Dark Matter Modelling with Extended LPTlague/Alex_Lague-CCA-2018.pdf · 2018. 12. 13. · Non-Linear Fuzzy Dark Matter Modelling with Extended LPT Alex Laguë, Renée

Feb 03, 2021

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • Non-Linear Fuzzy Dark Matter Modelling with Extended LPTAlex Laguë, Renée Hložek, George Stein, and Dick Bond

  • Fuzzy Dark Matter (FDM)

    ✤ Ultra-light boson:

    ✤ Scale-dependent sound speed:

    ✤ Jeans scale:

    10−26 eV ≲ m ≲ 10−21 eV

    c2s =ℏ2k2

    4m2a2

    kJ = 66.5a1/4( ΩFDMh2

    0.12 )1/4

    ( m10−22 eV )1/2

    Mpc−1

    Marsh (1510.07633)

  • CκκlPmatter(k, z)

  • Cκκl

    Nori et al. (1801.08144)

    Pmatter(k, z)

    N-Body(AX-Gadget,

    Modified AREPO, etc.)

  • N-Body(AX-Gadget,

    Modified AREPO, etc.)

    Cκκl

    LPT (Peak-Patch,

    Pinocchio, COLA,etc.)

    Pmatter(k, z)

    Nori et al. (1801.08144)

  • Why Modified LPT

    1. Non-linear CMB lensing from LSS

    2. Low computational cost

    3. Large simulation volume

    Image: ESA

  • Peak-Patch Method

    Stein et al. (1810.07727)

  • Peak-Patch Method

    Stein et al. (1810.07727)

  • Peak-Patch Method

    Stein et al. (1810.07727)

  • Peak-Patch Method

    Stein et al. (1810.07727)

  • Peak-Patch Method Modifications

    FDM-Modified Steps

    A.B.

    C.

    LPT Step

    Stein et al. (1810.07727)

  • A. Initial Conditions

    Heavier Particles

    Computed with AxionCAMB (1607.08208)

  • Lensing ConstraintsC

    κκ lΔ

    Cκκ l

    /Cκκ l

    Cψl ≈ ∫χ

    0χ′�dχ′�PΨ(l/χ′�; η0 − χ′�)( χ − χ′�χχ′� )

    2

    l

  • Lensing Constraints

    ACT Limit

    Cκκ l

    ΔC

    κκ l/C

    κκ l

    l

  • ConstrainedRegion

    ObservationallyUnexplored

    ComputationallyAccessible

    ΔC

    κκ l/C

    κκ l

    l

    log10(m) [eV]

    ΩFDMΩDM

  • C. LPT Displacements

    Final PositionInitial Position

    ∇x ⋅ (d2Ψ

    dτ2+ 2

    ·aa

    dΨdτ ) = − 4πGρ̄δ(x) − c

    2s

    a2∇2xδ(x)

    Fuzzy DM Term

    x = q + Ψ Displacement Ψ ≈ Ψ(1) + Ψ(2)

    Linear Quadratic

    Axion Sound Speed

  • Ove

    rden

    sity

    δ(x)

    1 Mpc

    CDM

  • Ove

    rden

    sity

    δ(x)

    1 Mpc

    FDM

  • kSZ Contribution

    ΔTTCMB

    ∝ vpec

  • Future Outlook

    ✤ Part B. of the modifications: Ellipsoidal Collapse

    ✤ Further constraints from CMB lensing

    ✤ Comparison with N-Body/Hydro simulations

  • Thank you!

  • Baryon-Dominated Suppression

    L ≈ 3000 Nguyễn et al. (1710.03747)

  • Dynamical Effects (QP)

    Both

    Adding Pressure

    Changing I.C.

    m = 10−22 eV

    N-Body (AX-GADGET)

    z = 3

    Nori et al. (2018)

  • Dynamical Effects (QP)

    Both

    Adding Pressure

    Changing I.C.

    m = 10−22 eV

    N-Body (AX-GADGET)

    z = 3

    Nori et al. (2018)

    Pressure subdominant compared to change in I.C.