Top Banner
EE 201A Modeling and Optimization for VLSI Layout Jeff Wong and Dan Vasquez EE 201A Noise Modeling Jeff Wong and Dan V asquez Electrical Engineering Department University of California, Los Angeles
45

noise modelling

Apr 09, 2018

Download

Documents

Ket Patel
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: noise modelling

8/7/2019 noise modelling

http://slidepdf.com/reader/full/noise-modelling 1/45

EE 201A Modeling and Optimization for VLSI Layout Jeff Wong and Dan Vasquez

EE 201A

Noise Modeling

Jeff Wong and Dan Vasquez

Electrical Engineering Department

University of California, Los Angeles

Page 2: noise modelling

8/7/2019 noise modelling

http://slidepdf.com/reader/full/noise-modelling 2/45

MEMS Research Laboratory Joe Zendejas and Jack W. Judy

Efficient Coupled Noise Estimation

for On-Chip Interconnects

Anirudh Devgan

Austin Research Laboratory

IBM Research Division, Austin TX

Page 3: noise modelling

8/7/2019 noise modelling

http://slidepdf.com/reader/full/noise-modelling 3/45

EE 201A Modeling and Optimization for VLSI Layout Jeff Wong and Dan Vasquez

Motivation

Noise failure can be more severe thantiming failure ± Difficult to control from chip terminals

 ±

Expensive to correct (refabrication) Circuit or timing simulation (like SPICE)

can be used ± Linear reduction techniques can be applied for 

linearly modeled circuits i.e. moment matching methods

 ± Inefficient for noise verification and avoidanceapplications

Page 4: noise modelling

8/7/2019 noise modelling

http://slidepdf.com/reader/full/noise-modelling 4/45

EE 201A Modeling and Optimization for VLSI Layout Jeff Wong and Dan Vasquez

Noise Estimation

The paper presents an electrical metric for efficiently estimating coupled noise for on-chip interconnects

Capacitive coupling between an aggressor net and a victim net leads to couplednoise ± Aggressor net: switches states; source of 

noise for victim net

 ± Victim net: maintains present state; affected bycoupled noise from aggressor net

Page 5: noise modelling

8/7/2019 noise modelling

http://slidepdf.com/reader/full/noise-modelling 5/45

EE 201A Modeling and Optimization for VLSI Layout Jeff Wong and Dan Vasquez

Circuit Schematic

Switchingsignal

Vs(t)

Coupling

capacitors

CC = [CC,ii]

C1 = [C1,ii]

C2 = [C2,ii]

Let¶s analyze the case for one aggressor net and one victim net

V2,1 V2,n

V1,1 V1,n

Page 6: noise modelling

8/7/2019 noise modelling

http://slidepdf.com/reader/full/noise-modelling 6/45

EE 201A Modeling and Optimization for VLSI Layout Jeff Wong and Dan Vasquez

Circuit Equations

Coupled equation for circuit:

In Laplace domain:

1 1 111 12 1

2 2 221 22 2

d C  dt 

 sd 

C  dt 

C C v t v t    A A Bv t 

C C v t v t    A A B

« » « »« » « » « »! ¬ ¼ ¬ ¼¬ ¼ ¬ ¼ ¬ ¼

- ½ - ½- ½ - ½ - ½

r r 

r r 

1 11 12 11 1

2 21 22 22 2

C  s

C C A A B  sV s V s V sC C A A B  sV s V s

« » « »« » « » « »! ¬ ¼ ¬ ¼¬ ¼ ¬ ¼ ¬ ¼¬ ¼ ¬ ¼- ½ - ½- ½ - ½ - ½

r r 

r r 

Page 7: noise modelling

8/7/2019 noise modelling

http://slidepdf.com/reader/full/noise-modelling 7/45

EE 201A Modeling and Optimization for VLSI Layout Jeff Wong and Dan Vasquez

Circuit Equations

Aggressor net:

Victim net:

1 1 2 11 1 12 2 1

1

1 1 11 12 2 1

C  s

C  s

 sC V  sC V A V A V BV  

V  sC A A sC V BV  

!

« » ! - ½

r r r r  

r r 

1 2 2 21 1 22 2 2

1

2 2 22 21 1 2

C s

C s

 sC V sC V A V A V B V  V sC A A sC V B V  

!

« »! - ½

r r r r  

r r 

Page 8: noise modelling

8/7/2019 noise modelling

http://slidepdf.com/reader/full/noise-modelling 8/45

EE 201A Modeling and Optimization for VLSI Layout Jeff Wong and Dan Vasquez

Transfer Function

Transfer function:

Simplifications (details later):

Simplified transfer function:

1

21 1 11 1 22

1

2 22 21 1 11 12

 s C C 

  A sC sC A B BV  H s

V  sC A A sC sC A A sC  

! !

12 21 20, 0, 0  A A B! ! !

1

1 11 12

2 1

2 22 1 11

 s C 

  sC sC A BV  H s

V  sC A sC sC A

! !

Page 9: noise modelling

8/7/2019 noise modelling

http://slidepdf.com/reader/full/noise-modelling 9/45

EE 201A Modeling and Optimization for VLSI Layout Jeff Wong and Dan Vasquez

Simplifications

A12

= 0

 ± No resistive (or DC) path exists from the

aggressor net to the victim net

A21 = 0

 ± No resistive (or DC) path exists from the victim

net to the aggressor net

B2

= 0

 ± No resistive (or DC) path exists from thevoltage/noise source to the victim net

Page 10: noise modelling

8/7/2019 noise modelling

http://slidepdf.com/reader/full/noise-modelling 10/45

EE 201A Modeling and Optimization for VLSI Layout Jeff Wong and Dan Vasquez

Maximum Induced Noise

H ( s=0) = 0

 ± Coupling between aggressor and victim

net is purely capacitive

 ± Maximum induced noise can be

computed

Assume V  s is a finite or infinite ramp

 ± max

2 2lim 0 is finited dt 

t V V 

pg!

r r 

Page 11: noise modelling

8/7/2019 noise modelling

http://slidepdf.com/reader/full/noise-modelling 11/45

EE 201A Modeling and Optimization for VLSI Layout Jeff Wong and Dan Vasquez

Final value theorem:

 ±

Ramp input u( s): ±

 ±

 ±

1

1 11 1max

2 2 102 22 1 11

limC 

 sC 

C  sC A BV  u

 sC A sC  sC A

p

!

r &

Maximum Induced Noise

max

2 2 20

lim limt s

V v t sV spg p

« »| ! - ½r r r 

max

2 20 0 0lim lim lim  s s s

 H suV sH s u s sH s u

 s sp p p

! ! !r 

max 1 1

2 22 11 1C V A C A B u !

Page 12: noise modelling

8/7/2019 noise modelling

http://slidepdf.com/reader/full/noise-modelling 12/45

EE 201A Modeling and Optimization for VLSI Layout Jeff Wong and Dan Vasquez

Circuit Interpretation

max 1 1

2 22 11 1C V A C A B u

!

Switching

slope

1

 ssV &

C  I 

Page 13: noise modelling

8/7/2019 noise modelling

http://slidepdf.com/reader/full/noise-modelling 13/45

EE 201A Modeling and Optimization for VLSI Layout Jeff Wong and Dan Vasquez

Circuit Computations

(matrix method)

Step 1: Compute

 ± Requires circuit analysis of the

aggressor net

Step 2: Compute

 ± Requires a matrix multiplication

Step 3: Compute

 ± Requires circuit analysis of the victim

net

1

1 11 1

 ssV A B u!

& &

1

 ss

C C  I  C V !r  &

max 1

2 22 C V A I 

!r r 

Page 14: noise modelling

8/7/2019 noise modelling

http://slidepdf.com/reader/full/noise-modelling 14/45

Page 15: noise modelling

8/7/2019 noise modelling

http://slidepdf.com/reader/full/noise-modelling 15/45

EE 201A Modeling and Optimization for VLSI Layout Jeff Wong and Dan Vasquez

Circuit Computations

(by inspection)

Step 1: Compute

 ± Typical interconnects:

Negligible loss: no resistive path to ground

1

1 11 1

 ssV A B u!

& &

1

 ss

 sV V !& &

Page 16: noise modelling

8/7/2019 noise modelling

http://slidepdf.com/reader/full/noise-modelling 16/45

EE 201A Modeling and Optimization for VLSI Layout Jeff Wong and Dan Vasquez

Circuit Computations

(by inspection)

Step 2: Compute

 ± Convert steady state derivative on the

aggressor net to a current on the victim

net

 ±

 ± 

i : index of node on the victim net ±  j : index of node on the aggressor net

1

 ss

C C   I C V  !r r 

&

? A , 1

 ss

C i C ij j

 j

  I I C V  « »

! ! ¬ ¼- ½§

r &

Page 17: noise modelling

8/7/2019 noise modelling

http://slidepdf.com/reader/full/noise-modelling 17/45

EE 201A Modeling and Optimization for VLSI Layout Jeff Wong and Dan Vasquez

Circuit Computations

(by inspection)

Step 3: Compute

 ± Victim circuit transformation:

Replace capacitors with coupling currents

The voltage at each node corresponds to

that node¶s maximum induced noise

max max 1

2 22 C   N V A I 

| !r r r 

Page 18: noise modelling

8/7/2019 noise modelling

http://slidepdf.com/reader/full/noise-modelling 18/45

EE 201A Modeling and Optimization for VLSI Layout Jeff Wong and Dan Vasquez

Circuit Computations

(by inspection)

Step 3: Compute

 ± Typical interconnects:

Compute by inspection in linear time

max max 1

2 22 C   N V A I 

| !r r r 

max max max

1

i

C  i i j i

 L

V V R I  N 

« »« »! ! ¬ ¼- ½

- ½

Page 19: noise modelling

8/7/2019 noise modelling

http://slidepdf.com/reader/full/noise-modelling 19/45

EE 201A Modeling and Optimization for VLSI Layout Jeff Wong and Dan Vasquez

Circuit Computations

(by inspection)

Step 3: Compute

 ± 3RC Circuit example:

max max 1

2 22 C   N V A I 

| !r r r 

max max

1

i

i i j i

 L

 N R I  N 

! §

max

1 1 1 2 3 N R I I I !

max

2 1 1 2 3 2 2 N R I I I  R I !

max

1 1 1 2 3 3 3 N R

I I I R

I !

Page 20: noise modelling

8/7/2019 noise modelling

http://slidepdf.com/reader/full/noise-modelling 20/45

Page 21: noise modelling

8/7/2019 noise modelling

http://slidepdf.com/reader/full/noise-modelling 21/45

EE 201A Modeling and Optimization for VLSI Layout Jeff Wong and Dan Vasquez

Experiment

Typical small RC interconnect

structure

 ± Rise time of 200 ps or 100 ps

 ± Power supply voltage of 1.8 V

 ± Conventional circuit simulation vs.

proposed metric

 ± Run-time comparisons for variouscircuit sizes

Page 22: noise modelling

8/7/2019 noise modelling

http://slidepdf.com/reader/full/noise-modelling 22/45

EE 201A Modeling and Optimization for VLSI Layout Jeff Wong and Dan Vasquez

Accuracy Results

ode ircuit Simulation roposed Metric % Error 1 0.0084 0.0084 0.00%

2 0.016 0.016 0.00%

3 0.0227 0.0227 0.00%

4 0.0286 0.0286 0.00%

5 0.0336 0.0336 0.00%6 0.0378 0.0379 0.26%

7 0.0412 0.0412 0.00%

8 0.0437 0.0438 0.23%

9 0.0454 0.0454 0.00%

10 0.0462 0.0463 0.22%

10 nodes, 200 ps rise time

Page 23: noise modelling

8/7/2019 noise modelling

http://slidepdf.com/reader/full/noise-modelling 23/45

EE 201A Modeling and Optimization for VLSI Layout Jeff Wong and Dan Vasquez

Accuracy Results

10 nodes, 100 ps rise time

ode ircuit Simulation roposed Metric % Error 1 0.0147 0.0168 7.73%

2 0.0277 0.0319 13.10%

3 0.0392 0.0454 13.65%

4 0.0492 0.0572 13.98%

5 0.0578 0.0673 14.11%6 0.0651 0.0757 14.00%

7 0.0709 0.0824 13.95%

8 0.0752 0.0875 14.05%

9 0.0782 0.0908 13.87%

10 0.0797 0.0925 13.83%

Page 24: noise modelling

8/7/2019 noise modelling

http://slidepdf.com/reader/full/noise-modelling 24/45

EE 201A Modeling and Optimization for VLSI Layout Jeff Wong and Dan Vasquez

Accuracy Results

Metric accuracy degrades with reductionin rise times

Metric estimation is more conservative

than circuit model¶s ± Fast rise times don¶t allow circuit to reach

ramp steady state noise

Loading of interconnect normally does notallow for very small rise times ± Metric accuracy should be acceptable for 

many applications

Page 25: noise modelling

8/7/2019 noise modelling

http://slidepdf.com/reader/full/noise-modelling 25/45

EE 201A Modeling and Optimization for VLSI Layout Jeff Wong and Dan Vasquez

Run-time Results

ir uitum er   um er of  Elements Arnoldi ModelRedu tion roposedMetri Matri

Met od

roposedMetri y

Inspe tion

1 500 .2s .00s .00s

2 5,000 5.86s .07s .01s

3 50,000 145s 3.44s .05s

4 500,000 - 360.55s .35s

Arnoldi- ased model redu tion used amatri solution to ompute ir uit

response ± Requires repeated fa torizations, eigenvalue

al ulations, and time e ponential evaluations

Page 26: noise modelling

8/7/2019 noise modelling

http://slidepdf.com/reader/full/noise-modelling 26/45

EE 201A Modeling and Optimization for VLSI Layout Jeff Wong and Dan Vasquez

Conclusions

The proposed metric determines anupper bound on coupled noise for RC and over-damped RLC

interconnects ± Metric becomes less accurate as rise

time decreases

The proposed metric is much more

run-time efficient than circuitmodeling methods

Page 27: noise modelling

8/7/2019 noise modelling

http://slidepdf.com/reader/full/noise-modelling 27/45

MEMS Research Laboratory Joe Zendejas and Jack W. Judy

Improved Crosstalk Modeling for Noise

Constrained Interconnect Optimization

Jason Cong, David Zhigang Pan &Prasanna V. Srinivas

Department of Computer Science, UCLAMagma Design Automation, Inc.

2 Results Way, Cupertino, CA 95014

Page 28: noise modelling

8/7/2019 noise modelling

http://slidepdf.com/reader/full/noise-modelling 28/45

EE 201A Modeling and Optimization for VLSI Layout Jeff Wong and Dan Vasquez

Motivation Deep sub-micron net designs have higher 

aspect ratio (h/w) ± Increased coupling capacitance between nets

Longer propagation delay

Increased logic errors --- Noise

Reduced noise margins

 ± Lower supply voltages

 ± Dynamic Logic

Crosstalk cannot be ignored

Page 29: noise modelling

8/7/2019 noise modelling

http://slidepdf.com/reader/full/noise-modelling 29/45

EE 201A Modeling and Optimization for VLSI Layout Jeff Wong and Dan Vasquez

Aggressor 

Victim

Aggressor / Victim Network

Assuming idle victim net

 ± Ls: Interconnect length before coupling

 ± Lc : Interconnect length of coupling

 ± Le: Interconnect length after coupling

Aggressor has clock slew t r 

Page 30: noise modelling

8/7/2019 noise modelling

http://slidepdf.com/reader/full/noise-modelling 30/45

EE 201A Modeling and Optimization for VLSI Layout Jeff Wong and Dan Vasquez

2- Model Victim net is modeled as 2-RC circuits

R d : Victim drive resistance

C  x  is assumed to be in middle of Lc 

Rise timevictim / aggressor 

coupling capacitance

Page 31: noise modelling

8/7/2019 noise modelling

http://slidepdf.com/reader/full/noise-modelling 31/45

EE 201A Modeling and Optimization for VLSI Layout Jeff Wong and Dan Vasquez

Aggressor 

Victim

2- Model Parameters

2

e

 L l 

C C C !

12

 sC C  ! 2

2

 s eC C 

!

Page 32: noise modelling

8/7/2019 noise modelling

http://slidepdf.com/reader/full/noise-modelling 32/45

EE 201A Modeling and Optimization for VLSI Layout Jeff Wong and Dan Vasquez

Analytical Solution

Page 33: noise modelling

8/7/2019 noise modelling

http://slidepdf.com/reader/full/noise-modelling 33/45

EE 201A Modeling and Optimization for VLSI Layout Jeff Wong and Dan Vasquez

Analytical Solution part 2 s-domain output voltage

Transform function H (s)

Page 34: noise modelling

8/7/2019 noise modelling

http://slidepdf.com/reader/full/noise-modelling 34/45

Page 35: noise modelling

8/7/2019 noise modelling

http://slidepdf.com/reader/full/noise-modelling 35/45

EE 201A Modeling and Optimization for VLSI Layout Jeff Wong and Dan Vasquez

Simplification of Closed Form Solution

Closed form solution complicated Non-intuitive

 ± Noise peak amplitude, noise width?

Dominant-pole simplification

Page 36: noise modelling

8/7/2019 noise modelling

http://slidepdf.com/reader/full/noise-modelling 36/45

EE 201A Modeling and Optimization for VLSI Layout Jeff Wong and Dan Vasquez

Dominant-Pole Simplification

RC delay from upstream resistance of coupling element

Elmore delay of victim net

Page 37: noise modelling

8/7/2019 noise modelling

http://slidepdf.com/reader/full/noise-modelling 37/45

EE 201A Modeling and Optimization for VLSI Layout Jeff Wong and Dan Vasquez

Intuition of Dominant Pole Simplification

v ou t 

rises until tr and

decays after 

vmax evaluated at tr 

Page 38: noise modelling

8/7/2019 noise modelling

http://slidepdf.com/reader/full/noise-modelling 38/45

EE 201A Modeling and Optimization for VLSI Layout Jeff Wong and Dan Vasquez

Extension to RC Trees

Similar to previous model with addition of 

lumped capacitances

Page 39: noise modelling

8/7/2019 noise modelling

http://slidepdf.com/reader/full/noise-modelling 39/45

EE 201A Modeling and Optimization for VLSI Layout Jeff Wong and Dan Vasquez

Results

Average errors of 4

95 of nets have errors less than 10

Page 40: noise modelling

8/7/2019 noise modelling

http://slidepdf.com/reader/full/noise-modelling 40/45

Page 41: noise modelling

8/7/2019 noise modelling

http://slidepdf.com/reader/full/noise-modelling 41/45

EE 201A Modeling and Optimization for VLSI Layout Jeff Wong and Dan Vasquez

Effect of Aggressor Location As aggressor is moved close to receiver,

peak noise is increased

Ls varies from 0 to 1mm

Lc  has length of 1mm

Le varies from 1mm to 0

Page 42: noise modelling

8/7/2019 noise modelling

http://slidepdf.com/reader/full/noise-modelling 42/45

EE 201A Modeling and Optimization for VLSI Layout Jeff Wong and Dan Vasquez

Optimization Rules

Rule 1:

 ± If R sC 

1< R 

eC 

L

Sizing up victim driver will reduce peaknoise

 ± If R sC 

1> R 

eC 

Land t 

r << t 

Driver sizing will not reduce peak noise

Rule 2:

 ±

Noise-sensitive victims should avoidnear-receiver coupling

Page 43: noise modelling

8/7/2019 noise modelling

http://slidepdf.com/reader/full/noise-modelling 43/45

EE 201A Modeling and Optimization for VLSI Layout Jeff Wong and Dan Vasquez

Optimization Rules part 2 Rule 3:

 ± Preferred position for shield insertion is near anoise sensitive receiver 

Rule 4:

 ± Wire spacing is an effective way to reduce

noise

Rule 5:

 ± Noise amplitude-width product has lower 

bound

 ± And upper bound

Page 44: noise modelling

8/7/2019 noise modelling

http://slidepdf.com/reader/full/noise-modelling 44/45

EE 201A Modeling and Optimization for VLSI Layout Jeff Wong and Dan Vasquez

Conclusions

2-model achieves results within6 error of HSPICE simulation

Dominant node simplification givesintuition to important parameters

Design rules established to reducenoise

Page 45: noise modelling

8/7/2019 noise modelling

http://slidepdf.com/reader/full/noise-modelling 45/45

EE 201A Modeling and Optimization for VLSI Layout Jeff Wong and Dan Vasquez

References

Anirudh Devgan, ³Efficient Coupled Noise

Estimation for On-chip Interconnects´, ICCAD,

1997.

J. Cong, Z. Pan and P. V. Srinivas, ³Improved

Crosstalk Modeling for Noise Constrained

Interconnect Optimization´, Proc. Asia South

Pacific Design Automation Conference

(ASPDAC), Jan. 30 - Feb. 2, 2001, Pacifico

 Yokohama, Japan.