Top Banner
Nitzan Akerman Trapped ions group (Roee Ozeri) Weizmann Institute of Science Optical atomic clock with trapped ions QTC Workshop 28/10/2020
13

Nitzan Akerman Trapped ions group (Roee Ozeri) Weizmann ...

May 23, 2022

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Nitzan Akerman Trapped ions group (Roee Ozeri) Weizmann ...

Nitzan Akerman

Trapped ions group (Roee Ozeri)

Weizmann Institute of Science

Optical atomic clock with trapped ions

QTC Workshop 28/10/2020

Page 2: Nitzan Akerman Trapped ions group (Roee Ozeri) Weizmann ...

Optical Ion Clock

𝑄 =𝜔0

∆𝜔

+

𝜔0: 1010 → 1015 𝐻𝑧

Principle of optical atomic clock :

Counter Oscillator Reference

The quality factor

Optical clock outperform microwave due to the much higher frequency

Height resolution due to gravitational red shift

1 m

10 cm

1 cm

Page 3: Nitzan Akerman Trapped ions group (Roee Ozeri) Weizmann ...

The Ion Clock Setup

Stable laser @ 1560 nm with ~1Hz linewidth

Ion reference

Optical frequency comb (modelock laser)

+

Page 4: Nitzan Akerman Trapped ions group (Roee Ozeri) Weizmann ...

Trapped Ions as Reference

Trap RF

• Are atoms and identical by their nature

• The charge allows trapping to be decouple from

the internal electronic state

• Deep trapping and strong confinement

• Can be well isolated from the environment

Advantages of trapped ions and clock reference

Disadvantages of trapped ions

• Micromotion needs to be controlled

• Trapping many ions is challenging due to the

strong Coulomb repulsion

Page 5: Nitzan Akerman Trapped ions group (Roee Ozeri) Weizmann ...

The Strontium Ion Setup

Lasers breadboard

Compact vacuum system

Page 6: Nitzan Akerman Trapped ions group (Roee Ozeri) Weizmann ...

5 2P1/2

5 2P3/2

5 2S1/2

4 2D3/2

4 2D5/2

422 nm

1092 nm

1033 nm

674 nm

t ≈ 8 ns

t ≈ 0.4 s

The Strontium Ion Setup

Lasers breadboardSr+ energy levels

Page 7: Nitzan Akerman Trapped ions group (Roee Ozeri) Weizmann ...

Comparison to GPS

Optical frequency comb) locked to stable laserGPS receiver

• Comparing the stable laser to GPS clock through the frequency comb

• At short time scale stability is limited by GPS

• At times > 1 hour the cavity (linear) drift become apparent

Page 8: Nitzan Akerman Trapped ions group (Roee Ozeri) Weizmann ...

The Ion Clock Setup

Ion reference

Optical frequency comb) locked to stable laser

+

GPS receiver• Comparing the stable laser to GPS clock through the frequency comb

• At short time scale stability is limited by GPS

• At times > 1 hour the cavity (linear) drift become apparent

• With calibration of the drift using the ion (3 measurements) the Allen div. keeps improving

Page 9: Nitzan Akerman Trapped ions group (Roee Ozeri) Weizmann ...

Clock interrogation schemes

Two ions Rabi spectroscopy (60ms)

Magnetic field gradient(~60 μG)• Cancelling the DC magnetic field with a single

“magnetic Echo” in a Ramsey sequence Two ions Ramsey spectroscopy (100ms)

• 88Sr+ ions have first order sensitivity to magnetic field.

• For single ion solved by averaging opposite Zeeman states

• For many ions homogeneity matters

• There is advantage in coherent averaging

𝛿f

𝑓= 5 × 10−15 ൗ1 𝜏 (estimation for single ion)

Page 10: Nitzan Akerman Trapped ions group (Roee Ozeri) Weizmann ...

Two entangled ions clock

Another solution is using two ions in entangled state:

• The 𝛿B drops out because of the opposite Zeeman states in each part of the superposition

• The signal is acquired twice faster (however also the dephasing)• Required single ion addressing capability

ȁ ൿ𝑆+1/2 ȁ ൿ𝑆−1/2 + 𝑒𝑖 2𝛿𝑙𝑎𝑠𝑒𝑟 𝑡ȁ ൿ𝐷+3/2 ȁ ൿ𝐷−3/2

+

Δ𝜈𝑆1/2,𝐷5/288,86 = 570,264,063.435(5)(8) (stat)(sys) [Hz]

T. Manovitz et al, Phys. Rev. Lett. 123, 203001 (2019).

88Sr+ 86Sr+

Page 11: Nitzan Akerman Trapped ions group (Roee Ozeri) Weizmann ...

ȁ ൿ𝑆+1/2 ȁ ൿ𝑆−1/2 ȁ ۧ0 ↔ ȁ ൿ𝐷+3/2 ȁ ൿ𝑆−1/2 ȁ ۧ1

ൿห𝐷88

ൿห𝑆86

Τ𝜋 2BSB

𝜋RSB

Τ𝜋 2

ൿห0𝜈 ൿห0𝜈

Τ𝜋 2

Initializing Entangling Interrogating Detecting

Two Isotope entangled clock

Time [us]

ȁ ൿ𝑆+1/2 ȁ ൿ𝑆−1/2 + 𝑒𝑖 2𝛿𝑙𝑎𝑠𝑒𝑟 𝑡ȁ ൿ𝐷+3/2 ȁ ൿ𝐷−3/2

Time [us]

ȁ ൿ𝐷+3/2 ȁ ൿ𝑆−1/2 ȁ ۧ1 ↔ ȁ ൿ𝐷+3/2 ȁ ൿ𝑆−1/2 ȁ ۧ0

Parity=P ȁ ۧ𝑆𝑆 ȁ + P ȁ𝐷 ۧ𝐷− P ȁ ۧ𝑆𝐷 − P ȁ ۧ𝐷𝑆

Page 12: Nitzan Akerman Trapped ions group (Roee Ozeri) Weizmann ...

Two Isotope entangled clock

ȁ ൿ𝑆+1/2 ȁ ൿ𝑆+1/2 + 𝑒𝑖 2𝛿𝑙𝑎𝑠𝑒𝑟+2𝛿B 𝑡ȁ ൿ𝐷+3/2 ȁ ൿ𝐷+3/2

ȁ ൿ𝑆+1/2 ȁ ൿ𝑆−1/2 + 𝑒𝑖 2𝛿𝑙𝑎𝑠𝑒𝑟 𝑡ȁ ൿ𝐷+3/2 ȁ ൿ𝐷−3/2

GHZ :

DFS :

• Here the 50Hz feedforward compensation was off in order to emphasize the difference

Page 13: Nitzan Akerman Trapped ions group (Roee Ozeri) Weizmann ...

Roee Ozeri (PI) Tom ManovitzYotam ShapiraMeirav PinkasOr KatzLee Peleg

Weizmann Institute Trapped-ions group

David SchwerdtHaim NakavSapir CohenAbraham Gross Vidyut Kaushal

Michal GoldenshteinBen Yamin