Top Banner
Capetown and Johhnesburg August 2014 O. BenAmi, D.Carmi. U. Kol, C. Nunez D. Schofield M. Warschavski
124

NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE: "Hologrqaphic entanglement of confining theories"

Jul 17, 2015

Download

Education

Rene Kotze
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE: "Hologrqaphic entanglement of confining theories"

Capetown  and  Johhnesburg          August  2014    

 O.  Ben-­‐Ami,  D.Carmi.  U.    Kol,  C.  Nunez  D.  Schofield  M.  Warschavski            

Page 2: NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE: "Hologrqaphic entanglement of confining theories"

Entanglement  entropy

! The  entanglement  entropy  is  a  measure    of  the  amount  of  entanglement  of  a  system,  it  measures  the  quantum  correlation  between  two  parts  of  a  system  

! The  entanglement  entropy  (EE)  of      A  is  given  by  

 ! Where                                                                                  is  the  reduced  density  matrix    traced  over  B  

 

Page 3: NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE: "Hologrqaphic entanglement of confining theories"

Entanglement  Entropy  in  QFT

! In  QFT  the  EE  measures  the  entanglement  of  A  a  region  of  space  and  it  complementary  region  B.  

 ! SA  is  UV  divergent  and  in  d  space  dim  can  be  expanded  

where  l  is  the  size  of  A,  a  is  a  UV  cutoff  and  S0  is  finite  

Page 4: NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE: "Hologrqaphic entanglement of confining theories"

Entanglement  Entropy  in  QFT

! The  leading  divergence  term  is  proportional  to  the  area    (  called  the  “  Area  law”)  

! Computing  in  QFT  the  EE  is  hard  but  can  be  done  for  simple  models  like    2d  CFTs    

! For  line  segment  

! For  line  segment    at  T  

Page 5: NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE: "Hologrqaphic entanglement of confining theories"

Entanglement  Entropy  in  QFT

! A  line  segment  part  of  a  circle  of  circomference  L  

! For  massive  field  on  a  semi-­‐infinite  length

Page 6: NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE: "Hologrqaphic entanglement of confining theories"

Holographic  Entenglement  entropy  (HEE)  

! Holography  relates  gravity  theory  in  AdSd+2  to  CFTd+1  on  the  boundary  of  the  AdS  bulk.  

! The  metric  of  the  AdS  space  in  Poincare  coordinates    

! The  boundary  CFT  resides  on  R^(1,d)  located  at  z=0    ! The  metric  diverges  at  z=0  so  we  take  a  cutoff  z=a  

Page 7: NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE: "Hologrqaphic entanglement of confining theories"

Holographic  Entenglement  entropy  (HEE)  

! Ryu  and  Takanayagi  conjectured  that                                                                                                minimal  surface    whose                                                                                                                                                                                          .                                                                                    boundary  coincides  with  the                              Newton  constant                  boundary  of  A    !                              d+2  dim.  Newton  constant

Page 8: NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE: "Hologrqaphic entanglement of confining theories"

Holographic  Entenglement  entropy  (HEE)  

! One  can  expand  the  HEE  

! In  agreement  with  the  area  law  and  the  general  result  in  QFT.  

! The  ci=0  for  i  even/odd  for  d  odd/even  ! The  result  assumes  smooth  boundary  (  no  cusps)  ! For  d  odd    the  logarithmic  coefficient  c0  is  proportional  to  the  central  charge  of  the  boundary  CFT  

Page 9: NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE: "Hologrqaphic entanglement of confining theories"

Line  segment  in  CFT2  –example  of  HEE

! Example  of  HEE-­‐  2d  CFT  ! Consider  a  line  segment  with  boundaries  

!  In  AdS3  with  the  metric  ! The  minimal  surface  is              the  Semi-­‐circle  

! So    the  minimal  area  is    

! Using      we  finally  find    

Page 10: NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE: "Hologrqaphic entanglement of confining theories"

CFT2  at  finite  temperature  –  example  of  HEE

! For  CFT2  at    finite  temperature  we  use  the  BTZ  metric  

! The  minimal  length  is    

! Which  coincides  with  the  CFT2  result      

Page 11: NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE: "Hologrqaphic entanglement of confining theories"

An  infinite  strip  in  d-­‐dimensions-­‐  an  example  of  HEE

! For  infinite  strip  in  d  dimensions  

 

! The  result  for  HEE  is  

 

!  Only  the  leading  divergent  and  a  finite  term.    

Page 12: NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE: "Hologrqaphic entanglement of confining theories"

Confining Wilson Loop �  In  SU(N)  gauge  theories  one  defines    the  following  gauge  

invariant    operator  

   

where  C  is    some  contour    

�  The  quark  –  antiquark  potential  can  be  extracted  from  a  strip  Wilson  line      

�  The  signal    for  confinement  is      E  ~  Tst  L

 

Page 13: NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE: "Hologrqaphic entanglement of confining theories"

Stringy Wilson loop �  The  natural  stringy    dual  of  the  Wilson  line  (  which  obeys  the  loop  equation)  is  

         where                                  is  the  renormalized    Nambu  Goto  action,  namely  the  renormalized  world  sheet  area  

Page 14: NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE: "Hologrqaphic entanglement of confining theories"

Review  –  Wilson  loop  of  confninig  backgrounds

! For    a  wide  class  of  backgrounds  we  can  parameterize    the  metric  that  depends  only  on  the  radial  coordinate  as  follows    

Page 15: NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE: "Hologrqaphic entanglement of confining theories"

Review  –  Wilson  loop  of  confninig  backgrounds

 ! Define    

! Then  the  renormalized  Wilson  loop  is  given  by  

bare  energy  of  WL                                                                        Subtraction                                                                                                                                        of  the  “quark  masses                                                                                                minimal  value  of  r    

Page 16: NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE: "Hologrqaphic entanglement of confining theories"

Review  –  Wilson  loop  of  confninig  backgrounds

! The  length  of  the  WL  as  a  function  of  ρ0  

! The  WL  admits  linear  (  confining)  behavior  if  either  of  the  two  conditions  is  obeyed  E.  Schreiber,Y.  Kinar  J.S  

 ! α(ρ)  has  a  minimum  at  ρΛ                                                                                                                        α(ρΛ)>0    ! g(ρ)  diverges  at  ρΛ    

Page 17: NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE: "Hologrqaphic entanglement of confining theories"

Review  –  Wilson  loop  of  confninig  backgrounds

! We  proved  that  L(ρ0) is    monotonically  decreasing    

! The  Energy  is  linear    at  long  distances  

Page 18: NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE: "Hologrqaphic entanglement of confining theories"

Outline

! Review-­‐Holographic  entanglement  Entropy  (HEE)  ! Review-­‐  Wilson  loops  of  confining  backgrounds  ! HEE  of  non-­‐conformal  backgrounds  ! Similarities  and  differences  between  HEE  and  WL  ! Phase  transition  in  HEE  of  confining  theories  ! A  necessary  condition  for  the  phase  transition  ! Examples  of  the  phase  transition  ! Relations  between  HEE  and  WL  for  systems  of  confinement  and  finite  temperature  

! Mutual  information:  multi-­‐strips  ! 1/N  correction  ! Summary  

Page 19: NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE: "Hologrqaphic entanglement of confining theories"

HEE  for  non-­‐conformal  backgrounds

! How  can  one  generalize  the  RT  HEE  prescription?    ! For  a  AdSd+2  we  minimized  a  d-­‐dim  surface  so  in  general  for  10d  background    Klebanov,  Kutasov,  Murugan  (KKM)  suggested  to  minimize  an  8  dim  surface  .  

! Applying  the  KKM  rule  on  AdSxS5    we  get  back  the  RT  HEE  formula.    

! The  minimization  is  of  a  surface  in  the  Einstein  frame.  Upon  transforming  to  the  string  frame  we  get

Page 20: NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE: "Hologrqaphic entanglement of confining theories"

HEE  of  non-­‐conformal  backgrounds

 ! Thus  the      HEE    for  non-­‐conformal  systems  is  given  by    

 

                 10-­‐d  Newton  constant                                  Induced  string  frame  metric    

! The  HEE  is  given  by  minimizing    this  action  over  the  surfaces  that  approach    γ-­‐  the  boundary  of  the  entangled  region,  on  the  boundary    of  the  bulk.  

Page 21: NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE: "Hologrqaphic entanglement of confining theories"

HEE  of  non-­‐conformal  backgrounds

! The  entangling  surface  was  taken  to  be  a  strip  of  width  l  

 !  The  metric  in  the  string  frame  is  taken      

Page 22: NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE: "Hologrqaphic entanglement of confining theories"

HEE  for  non-­‐conformal  backgrounds

Holographic  radial  coordinate  ! The  volume  of                                                                          coordinates          ! We  also  define

Page 23: NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE: "Hologrqaphic entanglement of confining theories"

HEE  for  non-­‐conformal  backgrounds

! H(ρ)  and  β(ρ)  are  the  key  players  ! H(ρ)  is  typically    monotonically  increasing  function  ! H(ρ),  due  to  the  volume,  shrinks  to  0  at  ρΛ ! β(ρ)  is    typically      monotonically  decreasing  function  ! Upon  substituting  HEE  is  given  by  

    ρ0    Minimal  value  of  ρ

The  length    is    

Page 24: NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE: "Hologrqaphic entanglement of confining theories"

HEE  for  non-­‐conformal  backgrounds

! For  a  disconnected  solution  the  HEE  does  not  depend  on  ρ0  and  it  is  

!  The  HEE  is  UV  divergent  but  the  difference  between  the  connected  and  disconnected  is  finite  

! If  S  is  positive  the  true  solution  is  the  disconnected,  and  if  it  is  negative  then  it  is  the  connected

Page 25: NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE: "Hologrqaphic entanglement of confining theories"

HEE  for  non-­‐conformal  backgrounds

!  L(ρ0)  is  non-­‐monotonic  for  confining  backgrounds

Page 26: NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE: "Hologrqaphic entanglement of confining theories"

HEE  for  non-­‐conformal  backgrounds

! HEE  as  a  function  of  L.  The  butterfly  configuration  

! connected  solution                                disconnected  one

Page 27: NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE: "Hologrqaphic entanglement of confining theories"

HEE  for  non-­‐conformal  backgrounds

! The  connected  solution  exists  only    for    0  <  L  <  Lmax.  !  In  this  range  there  are  two  possible  values  for  the  connected  solution.  

!  The  upper  branch  is  an  unstable  solution.    ! This  doublevaluedness  corresponds  to      L(ρ0).    ! As  a  result    there  is  a  first  order  phase  transition  at    L  =  Lc  between  the  connected  and  the  disconnected  solutions.  

!  For  this  reason  KKM  have  argued  that  a  signal  for  a  phase  transition    is  the  non-­‐monotonicity  of  the  function    L(ρ0).    

! Indeed,    every  peak  in    L(ρ0)  corresponds  to  a  possible  phase  transition  in  the  entanglement  entropy  S(L).  

Page 28: NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE: "Hologrqaphic entanglement of confining theories"

Similarities  and  differences  between  WL  and  HEE

! In  spite  of  the  fact  that  in  QFT  there  is  no  apparent  relation  between  WL  and  EE  their  functional  form  in  holography  looks  similar.  

! The  length  as  a  function  of  ρ0 for  both  cases  is    

! Where  M(ρ)  can  be  written  as    

Page 29: NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE: "Hologrqaphic entanglement of confining theories"

Similarities  and  differences  between  WL  and  HEE

! The  energy  of  the  WL  and  the  HEE    take  the  form  

! This  can  be  written  also  as    

Page 30: NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE: "Hologrqaphic entanglement of confining theories"

On  the  relation  between  WL  and  HEE

! There  is  a  striking  similarity  between  WL  and  HEE  of    theories  compactified  on  time  and  space  S^1  

Page 31: NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE: "Hologrqaphic entanglement of confining theories"

HEE  for  non-­‐conformal  backgrounds

!  what  are  the  differences  between  WL  and  HEE?  ! A  major  difference  between  these  two  observables    is    the  behavior  of  the  function  M(ρ)  close  to          

ρ= ρΛ  .    ! For  both  cases  M(ρ)  is  a  monotonically  increasing  function,  but  the  behavior  close  to  ρ=ρΛ    is  different.  

!  For  the  entanglement  entropy  M(ρ)  =  H(ρ)  shrinks  there  to  zero  ,  since  the  volume  shrinks  to  zero.  

!  On  the  other  hand    the    Wilson  loop  in  confining  backgrounds  M( ρΛ)  =  α^2(ρΛ)  >0  since  this  quantity  is  related  to  the  confining-­‐string  tension.    

! Therefore  M(ρ)  behaves  very  differently  for  the  two  observables,  when  calculated  in  a  generic  confining  background.    

Page 32: NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE: "Hologrqaphic entanglement of confining theories"

HEE  for  non-­‐conformal  backgrounds

! To  be  concrete,  let  us  focus  on  Dp  branes  compactified  on  a  circle.    

! These  backgrounds  are  dual  to  confining  field  theories  in  p  space-­‐time  dimension.    

! The  background  metric  and  dilaton    are    

! Which  implies  that  

Page 33: NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE: "Hologrqaphic entanglement of confining theories"

HEE  for  non-­‐conformal  backgrounds

! Rc  is  the  radius    of  the  compact  circle  

! The  surface  of  the  n    sphere  

! Therefore  

! Whereas    ! This  difference  is  responsible  for  the  butterfly  shape  of  S(L)  versus  the  linearity  of  E(L)  for  the  WL.  

Page 34: NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE: "Hologrqaphic entanglement of confining theories"

Sufficient  conditions  for  phase  transitions

! What  is  the  condition    so  that  a  background    admits  a  phase  transition?  

! This  translates  to    what  is  the  condition  for    L(ρ0)  to  have  a    maximum  and  hence  to  be  double-­‐valuedness?  

! Let  us  assume  that    around    ρ0 =ρΛ  

! For  r,t>0    the  integrand  of  L  diverges  at  ρ0 =ρΛ  and  we  can  approximate    

where    

Page 35: NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE: "Hologrqaphic entanglement of confining theories"

Sufficient  conditions  for  phase  transitions

! When  t<2      L(ρ0)  is  monotonically  increasing  which  means  that  β(ρ)  should  not  diverge  faster  than  

! Close  to  the  boundary  we  can  expand  

! The  asymptotic  behavior  of  L(ρ0)  

! For  j>2  the    L  à  0    when                                      hence  there  is  maximum  and  double-­‐valuedness.  

! For                                  there  will  not  be  any  phase  transition.

Page 36: NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE: "Hologrqaphic entanglement of confining theories"

Examples    of  the  criteria  for  phase  transition

! Let’s  examine  the  criteria  on  ! The  relevant  functions  are    

! Now  t=4  so  the  condition  for  p.t  is  not  obeyed  

!                                      the  concavity  is  obeyed.

Page 37: NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE: "Hologrqaphic entanglement of confining theories"

Dp  brane  compactified  on  a  circle

! For  the  Dp  branes  background  compactified  on    S^1  

! Close  to  the  horizon    

! So  that  t=1  and    L  à0  near  the  horizon  ! Close  to  the  boundary                                                                  so  only  for  yjtrrtr      there  is  a  phase  transition  but  not  for  p>4.  

Page 38: NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE: "Hologrqaphic entanglement of confining theories"

Dp  brane  compactified  on  a  circle

! For  p=3,4  

Page 39: NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE: "Hologrqaphic entanglement of confining theories"

Dp  brane  compactified  on  a  circle

! For  p=5,6    the  WL  confines    with  no    p.t  of  HEE.  Why?

Page 40: NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE: "Hologrqaphic entanglement of confining theories"

The  story  of  D5  and  D6  branes

!  We  have  realized  that  in  spite  of  the  fact  that  the  WL  of  the  compactified  D5  D6    branes  confines  it  seems  that  there  is  no  phase  transition  in  HEE.  

! This  is  caused  by  the    UV  non-­‐locality  of  the  QFT.    ! We  found  a      way  to  fix  this  situation,  by  introducing  a  hard  UV  cutoff  and  observing  that  new  configurations  appear  that  would  not  only  recover  the  phase  transition    but  also  solve  an  stability  problem  of  the  configurations  that  miss  the  phase  transition.

Page 41: NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE: "Hologrqaphic entanglement of confining theories"

The  story  of  D5  and  D6  branes

Page 42: NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE: "Hologrqaphic entanglement of confining theories"

Can  we  understand  the  phase  transition  in  QCD? ! It  is  argued  the  large  Nc  QCD  has  a  Hagedorn  density  of  states.  

! The  number  of  states  of  mass  M,  N(M)    behaves  as    

! The  corresponding  partition  function    

 ! Z  diverges  at  large  enough  temperature  ! The  system  below  the  Hagedorn  temperature  is  believed  to  be  with  Z  ~N^0  whereas  above  it  Z~N^2

Page 43: NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE: "Hologrqaphic entanglement of confining theories"

Can  we  understand  the  phase  transition  in  QCD?

! In  analogy  to  the  compactified  Euclidean  time  direction  KKM  argued  that  for  the    HEE  there  is  a  critical  value  of  L    the  entangeling  segment.  

! The  EE  of  non-­‐interacting    massive  glueballs  ! So  that  EE~N^0  for  L<Lc  and  EE~N^2  for  L>Lc    

Page 44: NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE: "Hologrqaphic entanglement of confining theories"

Does  the  phase  transition  exists    at  finite  N

! It  is  interesting  to  ask  what  the  effect  of  1/N  corrections      ! Does      the  phase  transition    occur  only  at    

! In  other  words,  will  the  jump  in  the  derivative  of  S  (L)    persist  beyond  leading  order  in  N.    !  In  order  to  answer  this  question    one  need  to  precisely  calculate  the  higher  order  corrections  to  the  connected  and  disconnected  surfaces  and  check  if  the  derivative  jumps  

!  This  is  beyond  our  current  ability.  ! Perhaps  a  easier    question  is  what  approximately  is  the  1/N  correction  to  the  disconnected  surface.    

 

Page 45: NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE: "Hologrqaphic entanglement of confining theories"

Does  the  phase  transition  exists    at  finite  N

 !  Maldacena  et  al  have  a  suggestion  for  computing  the  1/N  correction  to  the  HEE,  by  computing  the  EE  through  the  Ryu-­‐Takayathey  surface  .    

! As  an  example  the  disconnected  surface  in  the  Klebanov-­‐Strassler  model,  there  will  be  a  correction  in  the  form  of  a  log  divergence  proportional  to  the  number  of  goldstones  in  the  KS  model.  

! Now  in  our  case  we  consider  a  strip  entangling  region  therefore  the  log  term  should  be  absent.    

! The  "Bulk  entanglement"  should  depend  on  whether  the  lightest  bulk  field  is  massless  or  massive.    

! For    massless  the  correction  should  be                                              and  for  a  massive    

Page 46: NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE: "Hologrqaphic entanglement of confining theories"

Does  the  phase  transition  exists    at  finite  N

! For  Wilson  line  at  finite  temperature  the  phase  transition  is  smoothed  out.  In  the  holographic  picture  it  is  due  of  an  exchange  of  a  massive  mode  

 ! So  probably  both  the  phase  transition  for  the  WL  at  finite  temperature  and  the  HEE  of  confining  theories  will  not  survive  at  finite  N  

 

Page 47: NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE: "Hologrqaphic entanglement of confining theories"

HEE  of  multi  stips  

!    One  can  use  as  an  order  parameter  HEE  for  multiple  strips  geometry

Page 48: NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE: "Hologrqaphic entanglement of confining theories"

HEE  of  multi  stips  

! The  phase  diagram  for  Ads5  compactified  on    S^1

Page 49: NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE: "Hologrqaphic entanglement of confining theories"

Summary  and  open  questions

! We  investigated  the  HEE  of  confining  theories  ! The  similarities  and  differences  between  WL  and  the  HEE  were  discussed  

! Sufficient  conditions  for  the  phase  transition  were  stated.  

! We  addressed  the  puzzle  of  the  Maldacena  Nunez  background  and  Dp>4  branes.  

! The  phase  diagram  of  multiple  strips  was  derived  ! We  discussed  the  phase  transition  at  finite  N

Page 50: NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE: "Hologrqaphic entanglement of confining theories"

Introduction

! Solitons-­‐  classical  static  configurations  of  finite  energy    show  up  in  a  wide  range  of  physical  systems  

!  Solitons  are  known  for  instance    in  hydrodynamics  and  non  linear  optics  .  

!  In  field  theory  we  have    encountered    sine-­‐Gordon  solitons,  ‘t  Hooft  Polyakov  monopoles  ,  Skyrmions  and  Instantons    (  solitons  of  5d  YM  theory)    

! In  recent  years    solitons  take  the  form  of  Wilson-­‐lines,  Dbranes  etc.  

Page 51: NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE: "Hologrqaphic entanglement of confining theories"

Introduction

! Determining  soliton  solutions  typically    means  solving  non  linear  differntial  equations.  

 ! One  would  like  to  find    tools  to  handle    such  configurations  without  solving  for  them  explicitly.  

 ! Two  important  issues  are:  (i)  Existence  proofs  (ii)  Stability  of  the  solutions.    

Page 52: NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE: "Hologrqaphic entanglement of confining theories"

Derrick  theorem

! Consider    a  scalar  field  in  d+1  dimensions      with  

                                                                                                                           non  negative,                                                                                                                                                                                              ;                                                                                                                                                            vanishes    for   φ=0  ! The  energy  associated  with  a  static    configuration  

   ! Consider  a  scaling  deformation  (  not  a  symmetry)

Page 53: NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE: "Hologrqaphic entanglement of confining theories"

Derrick  theorem

! The  energy  of  the  rescaled  configuration    

!  The  minimum  of  the  energy    is  for  the  un-­‐rescaled  soliton  with  λ=1  

Page 54: NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE: "Hologrqaphic entanglement of confining theories"

Derrick  theorem

! We  now  change    the  integration  variable  

! The  re-­‐scaled  energy  is    

 

!  The  variation  of  the  energy  has  to  obey    

 ! For    d>2    each  term  has  to  vanish  separately    and  for  d=2  the  potential  has  to  vanish.    Both  cases    occur  only  for  the  vacuum.  

 !                          Solitons    can  exist  only  for    d=1

Page 55: NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE: "Hologrqaphic entanglement of confining theories"

Manton’s  integral    constraints  

! For  a  static  configuration    the  conservation  of  the  energy-­‐momentum  tensor    implies    a  spatial    conservation  of  the  stress  tensor  

!  Define  the  vector    

! Then        

Page 56: NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE: "Hologrqaphic entanglement of confining theories"

Manton’s  integral    constraints  

! Let’s  take  

! For  this  choice  we  get    

! In  particular  when  the  surface  term  vanishes  we  get  Manton  integral  constraint      

Page 57: NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE: "Hologrqaphic entanglement of confining theories"

Introduction-­‐  questions  

! The  questions    that  we  have  explored  are    

! Can    Derrick’s  theorem  and  Manton’s    integral  constraints  be  unified?  

 ! Can  one  generalize  these  constraints  to  other  types  of  deformations?  

 ! What  are  their    implications    on    Solitons,    Wilson  lines,  static  solutions  of  gravity  ,  D  branes    and    spatially  modulated  configurations.    

Page 58: NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE: "Hologrqaphic entanglement of confining theories"

Outline  

!  Part  I-­‐  General  formalism    ! A.  Geometrical  deformations  of  solitons    ! B.  Deformations  by  global    transformations        ! C.    Deformation,  and  stress  forces    of    periodic  solutions  

 ! D.    “  Elasticity    requirements”  (  or  minimizing  and  not  only  extreemizing)  

     

Page 59: NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE: "Hologrqaphic entanglement of confining theories"

Outline  

Part  II-­‐  Applications-­‐    !  (i)    Higher  derivative  actions  and  sigma  models    !  (ii)  Current    constraints  on    known    solitons  

! (iii)  Solitons  of  non  linear(DBI)Electromagnetism    

Page 60: NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE: "Hologrqaphic entanglement of confining theories"

Outline

! (v)  Constraints  on  D  brane    and  string  actions    ! (vii)  Probe  branes  in  brane  backgrounds      ! (vii)  D3  brane  with  electric  and  magnetic  fields    ! (viii)  Adding    Wess  –Zumino  terms    ! (ix)Flavor  branes  in  M-­‐  theory  MQCD    !  (x)  Application  to  the  Ooguri  Park    spatial  modulation  models  

   

Page 61: NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE: "Hologrqaphic entanglement of confining theories"

General  formalism

Part  I-­‐    

           General  formalism

Page 62: NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE: "Hologrqaphic entanglement of confining theories"

(i)  Geometrical  deformations    

! Consider    a  theory    of  several  scalar  fields    !  Take                              to  be  a    soliton        with  (  finite)  energy    

 !  We  now    deform  the  soliton    

!  We  expand  the  geometrical  deformation  

! We  take  it  to  be  linear  

Page 63: NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE: "Hologrqaphic entanglement of confining theories"

Geometrical  deformations    

!                      -­‐  rigid  translations  

!  antisymmetic                          -­‐rotations  

Page 64: NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE: "Hologrqaphic entanglement of confining theories"

Geometrical  deformations  

!  diagonal                        -­‐dilatation  (not  necessarily  isotropic)    

! Symmetric                        no  diagonal  components  -­‐  shear  

Page 65: NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE: "Hologrqaphic entanglement of confining theories"

Geometrical  deformation  

! The  energy  of  the  deformed  soliton    is  

!    The  Stress  tensor  is    

Page 66: NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE: "Hologrqaphic entanglement of confining theories"

Geometrical  deformation

! Thus  the  variation  of  the  energy  relates  to  the  stress  tensor  as      

   ! For  theories  with  scalars  and  no  gauge  fields    ! Hence  the  stress  and  energy  momentum  tensors  are  related  via  

Page 67: NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE: "Hologrqaphic entanglement of confining theories"

Geometrical  deformation

! Since                      are  arbitrary  we  get  Manton’s  integral  conditions  

 ! More  precisely  we  get  

! So  that  for  vanishing  surface  term  we  get  the  constraint  of  vanishing  integral  of  the  stress  tensor  

Page 68: NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE: "Hologrqaphic entanglement of confining theories"

Geometrical  deformation

! As  is  well  known  for  Maxwell  theory,  the  canonical  energy  momentum  tensor  is  not    gauge  invariant  and  one  has  to    add  to  it  an  improvement  term    

 ! Such  that                                                            which    guarantees  the  conservation  of  the  improved  tensor    

! For    these  cases  we  get  that  the  variation  of  the  energy    

Page 69: NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE: "Hologrqaphic entanglement of confining theories"

Geometrical  deformation

! For  the  modified  case  the  integral  constraint  reads  

! Again  when  the  surface  term  vanishes  we  get  that  the  integral  of  the  stress  tensor  vanishes

Page 70: NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE: "Hologrqaphic entanglement of confining theories"

BPS  configurations  and  the  vanishing  of  the  stress    tensor

! With  right  fall  off      we  have  

! What  about  the  vanishing  of  the  stress  tensor  itself?  

! For  1+1  dim.  solitions      the  virial  theorem    reads  

So  the  stress  tensor                                                                                                                                0

Page 71: NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE: "Hologrqaphic entanglement of confining theories"

BPS  configurations  and  the  vanishing  of  the  stress    tensor ! This  result  can  be  related  to  a    1+1  supersymmetic    model    

for  which    Supersymmetry  relates    the  stress  tensor    Tij    to  the  supercurrent      Via  the  susy  Ward  Identity              From  the  fact  that  the  BPS  solutions  are  invariant  under  half    of  the  supersymmetris                                                vanishing  of  Tij    [Moreno  Schaposnik]    

Page 72: NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE: "Hologrqaphic entanglement of confining theories"

(ii)  Deformations  by  global  symmetry

! Suppose    that    our    system    is  invariant  under  a    global  symmetry.    

! The  corresponding  current  conservation  for  static  configurations  reads  

! Deforming    the  soliton                                                                                                                                                      yields  a  variation  of  the  energy    

! For  constant            it  is  obviously  a  symmetry    but  again  we  take    the  transformation  parameter    

     

Page 73: NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE: "Hologrqaphic entanglement of confining theories"

Deformations  by  global  symmetry  

! Thus  we  get  the  integral  equation    

! For    vanishing  surface  term  the  integral  of  the  space  components  of  the  global  currents  vanishes    

Page 74: NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE: "Hologrqaphic entanglement of confining theories"

Deformations  by  global  symmetry

! In  order  to  have  a  finite    surface  integral  the  current  should    go  as    

 ! At  leading  order  for  large  radii    the  current    reads  

! So  there  must  be  a  massless  mode  ! This  happens  generically  when  the  symmetry  is  spontaneously  broken  and  the  mode  is  the  NG  mode

Page 75: NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE: "Hologrqaphic entanglement of confining theories"

(iii)Geometric  deformation  of  periodic  solutions

! Apart  from  solitons  there  are  also  static  solutions    that  break  translational  invariance    but  have  divergent  energy  (  but  finite  energy  density).  

! The    analysis  of  above  does  not  apply  but  one  can  do    a  local  analysis  on  some    restricted  region.  

! For  periodic  configurations    will  take  the  unit  cell  ! The  total  force  on  the  surface  surrounding  the  unit  cell  of  such  a  solid  should  be  zero.  

! The  force    on  a  face  of  the  cell  is    

Page 76: NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE: "Hologrqaphic entanglement of confining theories"

Geometric  deformation  of  periodic  solutions  

!  We  can  increase  the  size  of  a  unit  cell  and  at  the  same  time  deform  the  neighboring  cells  so  the  periodic  solution  remains  unchanged  farther  away.    

! The  forces  on  the  faces  of  the  unit  cell  no  longer  cancel:    

! The  net  force  on  the  surface  after  the  transformation  could  be  pointing    

   !  (i)  Out  of    the  unit  cell  -­‐  unstable  since  the  deformed  cell  will  now  continue  increasing  its  size.  

!    (ii)    Into    the    unit  cell  –  restoring  stability      

Page 77: NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE: "Hologrqaphic entanglement of confining theories"

Geometric  deformation  of  periodic  solutions

Page 78: NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE: "Hologrqaphic entanglement of confining theories"

Geometric  deformation  of  periodic  solutions

Page 79: NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE: "Hologrqaphic entanglement of confining theories"

(iv)  Elastic  properties  of  inhomogeneous  solutions

! We  need  to    minimize  and  not  only  extreemize  the  energy.    

 ! We  vary  the  energy    to  second  order.    ! We  use  an  analogy  with  elasticity  theory  and  map  the  minimization  to  a  positivity  condition  on  the  stiffness  tensor.  

Page 80: NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE: "Hologrqaphic entanglement of confining theories"

Elastic  properties  of  inhomogeneous  solutions

! In  general  in  thermodynamics  we  have    

           Stress  tensor                                                                                      Strain  

! For  ideal  isotropic  fluid                                              displacement  vector

Page 81: NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE: "Hologrqaphic entanglement of confining theories"

Elastic  properties  of  inhomogeneous  solutions

! Hook’s  law  for  small  deformations  

! The  energy  is  minimized    if  for  any  two  unit  vectors    a  and  b    the  stiffness  tensor  obeys  

Page 82: NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE: "Hologrqaphic entanglement of confining theories"

``Elastic  properties  of  inhomogeneous  solutions

 ! Consider  fluctuations  of  the  coordinates  

! The  variation    of  the  energy  of  a  scalar  field  theory    to  second  order  is    

 ! The  stiffness  tensor    is  

Page 83: NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE: "Hologrqaphic entanglement of confining theories"

Elastic  properties  of  inhomogeneous  solutions

! For    a    gauge  theory    the  stiffness  tensor  is  

! Where  

Page 84: NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE: "Hologrqaphic entanglement of confining theories"

Part  II-­‐  Aplications  

Page 85: NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE: "Hologrqaphic entanglement of confining theories"

1.  (  warm-­‐up)  Sigma  models  

!  One  can  easily  generalize  Derrick’s  theorem  to  a  case  of  a  sigma  model    

   ! Repeating  the  procedure    of  above  yields  

! When  the  signature  of  the  metric                              is  positive  then  the  conclusions  for  the  generalized  case  are  the  same  .  

! If  the  signature  is  not  positive    there  is  no  constraints  in  any  dimension.  

Page 86: NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE: "Hologrqaphic entanglement of confining theories"

2.  Higher  derivative    actions    

! Consider    the  higher  derivative  lagrangian  density  

! The  corresponding  equations  of  motion  

! The  conserved  energy  momentum  tensor    

Page 87: NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE: "Hologrqaphic entanglement of confining theories"

Higher  derivative    actions    

! The  Hamiltonian  of  the  static    system    

! Under    isotropic  re-­‐scaling  of  the    coordinates    

! Requiring  extreemality    for    

Page 88: NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE: "Hologrqaphic entanglement of confining theories"

Higher  derivative    actions    

! The  higher  derivative  terms  thus  ease  the  restriction  on  solitonic  solutions  for  pure  scalar    field  theories:  we  can  get  solitons  for  d  <  4.  

! That’s  the  mechanism  in  the  Skyrme  model  ! Generalizing  this  result  to  any  higher  order  derivative  Lagrangian  density,  where  the  derivative  terms  are  quadratic  in  the  fields  of  the  form  

! Now  the  constraint  in  principle  allows  solitons  for  any  dimension  d  <  2N.  

Page 89: NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE: "Hologrqaphic entanglement of confining theories"

3.    integral  of  the  current  constraint    

! Let’s  examine    this  constraints    on      familiar  solitons  for:    Topological  currents,  global  and  local  currents.  

! Topological  currents  are  conserved  without  the  use  of  equations  of  motion.    

! The  general  structure  of  these  currents  in  d  space  dimensions  is    

     is  a  tensor    of  degree  d  composite  of  the  underlying      fields  and  their    derivatives  ! If  the  current  is    composed    of    only  scalar  fields,    abelian  or  non-­‐abelian,    the  spatial  components  have  to  include  a  time  derivative    

!  So  we  conclude  that    

Page 90: NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE: "Hologrqaphic entanglement of confining theories"

The  current  constraint  in  the  ‘t  Hooft  Polyakov  monople

! The  system  is  based  on  SO(3)  gauge  fields  and    iso-­‐vector  scalars  described  by  

! The    SO(3)  current    is  

!  The  equations  of  motion

Page 91: NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE: "Hologrqaphic entanglement of confining theories"

The  current  constraint  in  the  ‘t  Hooft  Polyakov  monople

! The  relevant  ansatz  for  the  classical  configurations  

! Asymptotically  they  behave  as    

! Substituting  the  ansatz  to  the  current  

! It  is  obvious  that    ! The  current  constraint  is  obeyed

Page 92: NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE: "Hologrqaphic entanglement of confining theories"

The  constraint  on  the  axial  current  of  the  skyrme  model  

! The  two  flavor      Skyrme  model    is  invariant  under  both  the  SU(2)  vector  and  axial  flavor  global  transformations.    

! The  currents  read      ! plus  higher  derivative  corrections  that  follow  from  the  Skyrme  term.      

!  The  space  integral  of  the  non-­‐abelian  (axial)current  

 is      In  accordance  with  the  fact  that  there  is  an  SSB      

Page 93: NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE: "Hologrqaphic entanglement of confining theories"

4.  Soliton  of  non  linear  electromagnetism

! Let  us  analyze  the  constraints  on    EM  expressed  in  terms  of  a  DBI  action.  

! We  check  first    the  ordinary  Maxwell  theory  ! The  energy  is    

! The  scaling  of  E  and  B  are    ! The  scaled  energy    

! Derrick’s  condition    

! No  solitons  apart  from  d=3  for  self  duals    

Page 94: NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE: "Hologrqaphic entanglement of confining theories"

Soliton  of    DBI  non-­‐  linear  electromagnetism

! The  DBI    action  of  EM      in  d+1  =4  is    

! The  associated  energy  density    

! Derrick’s  constraint  

! Electric  and  magnetic  solitons  are  not  excluded  

Page 95: NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE: "Hologrqaphic entanglement of confining theories"

5.  Constraints  on  string  and  D-­‐brane  actions

! If  the  generalized  constraints    are    fulfilled  by  some  string  or  D  brane  configuration  it  may  indicate  about  possible    states  apart  from  the  trivial  ones.  

 ! The  constraints  are  based  on  comparing    configurations  with  the  same  boundary  conditions  

! For  finite  volume  ones,  the  variation  may  change  the  boundary  conditions.  

 ! Satisfying  the  constraints  is  not  a  proof  of  existence  ! The  constraints  my  exclude  classes  of  solitons  

Page 96: NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE: "Hologrqaphic entanglement of confining theories"

Constraints  on  string  and  D-­‐brane  actions

! The    action  of  the  low  energy  dynamics    of  D-­‐branes    

                     Dp  brane              dilaton                                                    pull  back                            tension                induced  metric                of  the  NS  form    ! D-­‐branes  can  also  carry  charge    that  couples  to  a  RR  flux.  This  corresponds  to  a  WZ  (CS)  action  

                                                                   pullback  of  the  RR  k-­‐form      

Page 97: NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE: "Hologrqaphic entanglement of confining theories"

Constraints  on  strings

! Similarly    the  NG  action  describes  the  fundamental  string    

! The  string  is  charged  under  the  NS  two  form    

! The  induced  metric  is    

                                                                                   the  embedding    coordinates  

Page 98: NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE: "Hologrqaphic entanglement of confining theories"

Fixing  diffeomorphism  

! The  brane  (  string)  action  is  invariant  under  diffeomorphism    hence  the  constraints  are  trivially  satisfied.  

! For  instance  for  the  NG  string  the  energy    

! To  get  non-­‐trivial  constraints  we  must  gauge  fixed    the  diffeomorphis  invariance

Page 99: NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE: "Hologrqaphic entanglement of confining theories"

Fixing  diffeomorphism  

! We  use  the  usual  static  gauge.  ! We  split  the  coordinates                                                                                                                                    -­‐    -­‐worldvolume                                                                                                                                                              -­‐-­‐transverse  We  impose  (i)  space-­‐time  translation  invariance  on  the  worlvolume  (ii)                                                   truly  static                                                                

Page 100: NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE: "Hologrqaphic entanglement of confining theories"

Constraints  on  D  brane  action  without  gauge  fields

! In  the  static  gauge  the  pull-­‐back  metric  reads  

! The  energy  is    

                                                                                                                                                                                                   .                        -­‐Dbrane                                                                          subtraction    for                                    .                        -­‐string  .                                                                                                                                                      E=0          

Page 101: NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE: "Hologrqaphic entanglement of confining theories"

Constraints  on  D  brane  action  without  gauge  fields

! Derrick’s  condition  is  now  

! Where  we  have  used  

! After  some  algebra  we  find  that  the  condition  is  

! This  can  be  obeyed  so  we  can  not  exclude  Dbrane  solitons    

Page 102: NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE: "Hologrqaphic entanglement of confining theories"

Constraints  on  D  brane  action  without  gauge  fields

! However  for                  depending  only  on  a  single  x      

 ! Since    for  non-­‐trivial                        the  integrand  is  positive    the  constraints  cannot  be  satisfied.  

! There  are  no  solitons    D-­‐branes  (  even  for  p=1)      that  depend  on    only  one  coordinate  

Page 103: NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE: "Hologrqaphic entanglement of confining theories"

Probe  brane  in  Dp  brane  background

! The  near  horizon  background    has    the  metric  

! The  dilaton  

! A  RR  form  

! The  DBI+  CS  actions  read

Page 104: NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE: "Hologrqaphic entanglement of confining theories"

Probe  brane  in  Dp  brane  background

! Derrick’s  condition  is  now  

! The  second  derivative  condition  is  

 ! There  are  no  soliton  solutions  for  any  p  that  obey  the  stronger  condition  of  vanishing  of  the  integrand.

Page 105: NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE: "Hologrqaphic entanglement of confining theories"

Generalized  conditions  for  Branes  with  gauge  fields

! When  electric  field  is  turned  on    the  energy  is  not  just  –LDBI          but  rather  the  Legendre  transform  

 

! It  is  convenient  to    define  M  such  that      

! The  energy  can  be  written  as    

Page 106: NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE: "Hologrqaphic entanglement of confining theories"

Deformation  constraints  on  D  branes  with  gauge  fields

! Rather  than  deriving  Derrick’s  condition  let’s  look  this  time  on  Manton’s  constraints  

! The  explicit  form  of  the  stress  tensor  reads  

Page 107: NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE: "Hologrqaphic entanglement of confining theories"

Adding  the  WZ  terms

! Again  like  the  DBI  action  we  have  first  to  gauge  fix  ! The  pullback  of  the  RR  fields  is    

! For  instance  for  D1  brane  the  WZ  action  reads    

! The  contribution  to  the  stress  tensor  is      

! In  the  absence  of  gauge  fields                            

! Hence  we  see  again  that  there  is  no  D1  soliton  solution

Page 108: NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE: "Hologrqaphic entanglement of confining theories"

The  D3  brane  case  

! For  the  D3  brane    case  the  WZ  term  is    

! The  contribution  of  the  WZ  term  to  the  stress  tensor

Page 109: NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE: "Hologrqaphic entanglement of confining theories"

Application  to  gravitational  backgrounds

! Upon  gauge  fixing  the  diffeomorphism  and  parameterizing  the  metric  the  dilaon  and  fluxes  we  get  an  action  of  a  bunch  of  scalar  fields  with  a  potential.  

! In  case  that  there  is  a  dependence  only  on  the  radial  direction  it  is  a  1+1  dimensional  action.    

! Generically  the  ``kintic  terms”    are  not  positive  definite.    

! It  turns  out  that  the  integrand  of  Derrick’s  condition  translates  to  the  ``null  energy  condition”.  

! Let’s  demonstrate  this      

Page 110: NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE: "Hologrqaphic entanglement of confining theories"

Application  to    gravitational  backgrounds

! Consider  the  DC  on  d  brane  solutions    of  gravity    ! The  bosonic  part  of  the  SUGRA  action  in  D  dimensions  

! We  take  the  metric  in  the  string  frame  

Page 111: NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE: "Hologrqaphic entanglement of confining theories"

Application  to    gravitational  backgrounds

! In  terms  of  the  metric  fields  and  the  dilaton  

!  The  ``null  energy”  condition  which  is  a  Gauss  law  associated  with  fixing    

! It    is  identical  to  the  integrand  of  Derrick’s  condition  

Page 112: NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE: "Hologrqaphic entanglement of confining theories"

Application  to  gravitational  backgrounds

! Consider  the  following  1+1  dim  model  with  N  degrees  of  freedom  

! The  extremum  condition  reads    

! The  integrand  is  just  the  energy  of    a  0+1  dim.    where  x  is  taken  to  be  the  time.  Thus  the  vanishing  of  the  integrand  is  identical  to  the  ``null  energy  condition”    

Page 113: NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE: "Hologrqaphic entanglement of confining theories"

Flavor  branes  in  MQCD

! The  type  IIA  brane  configuration    [Aharony,Kutasov,Lunin,Yankielowicz]      

! Can  be  uplifted  to  M  theory  background    

Page 114: NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE: "Hologrqaphic entanglement of confining theories"

Flavor  branes  in  MQCD

! The  shape  of  the  curved  five  brane    

! The  induced  metric    is  

! The  Lagrangian  density  

Page 115: NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE: "Hologrqaphic entanglement of confining theories"

Flavor  branes  in  MQCD

! The  Neother  charges  associated  with  the    shifts  of  x6  and   α  are    

! Applying  Derrick’s  condition    yields  

! The  integrand  is  identical  to  the  Noether  charge    E  thus  the  condition  translates  to  ``  null  energy  condition”

Page 116: NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE: "Hologrqaphic entanglement of confining theories"

Application  to  spatially  modulated  models

! Spatial  modulation  (S.M)  was  identified  in  YM+CS  theory  on  an  AdS5  black-­‐hole  

! The  background  metric  is  given  by    

! With  the  warp  factor  

Page 117: NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE: "Hologrqaphic entanglement of confining theories"

Application  to  spatially  modulated  models

! The  background  electric  field  is  given  by    

! The  spatially  modulated  solution  

! The  equations  of  motion

Page 118: NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE: "Hologrqaphic entanglement of confining theories"

Application  to  spatially  modulated  models

! Integrating  the  first  equation  we  end  up  with  

! This    equation  admits  solution  with  amplitude  

! The  relation  between            h0  and  k      

Page 119: NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE: "Hologrqaphic entanglement of confining theories"

Application  to  spatially  modulated  models

! The  energy  density  of  the  boundary  field  theory  is  

! It  is  minimized  at  

Page 120: NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE: "Hologrqaphic entanglement of confining theories"

The  stiffness  tensor

! The  energy  density  is  given  by  

! The  expression  for  the  stiffness  tensor  is  complicated  ! For  the  unit  vectors  

It  is  given  by          

Page 121: NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE: "Hologrqaphic entanglement of confining theories"

The  stiffness  tensor

                                                                                                                                                           positive    

                                                                                                                                                           negative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        Thus  there  are  regions  which  indeed  correspond  to  minima  but  other  (  blue  ones)  correspond  to  maxima  

Page 122: NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE: "Hologrqaphic entanglement of confining theories"

Stress  foreces

! We  check  now  for  the  stability  against  deformation  in  the  x2  direction  

! The  pressure  is  negative  for  all  k  and  has  a  maximum      for        

! In  the  region                                                    the  system  is  not  restored    ! The  minimum  of  the  free  energy  at                              is  in  the  instability  region    

Page 123: NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE: "Hologrqaphic entanglement of confining theories"
Page 124: NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE: "Hologrqaphic entanglement of confining theories"

Summary  and  open  questions

! We  unified  and  generalized  Derrick’s  and  Manton  constraints  on  solitons.    

! We  have  applied  the  condtions  to  sytems  of  soltions  with  global  currents    

! Sigma  model  and  higher  derivative  actions  ! DBI  electromagnetism  ! Dbranes    including  the  DBI  and  WZ  terms  ! The  method  can  be  applied  to  many  more  ``  modern  solitons”  

! In  particular  we  are  investigating  the  stability  of  the  spatially  modulated    brane  and  bulk  solutions.