Top Banner
On the extension of D (-8k 2 )-triple {1, 8k 2 , 8k 2 + 1} Nikola Adžaga Faculty of Civil Engineering, University of Zagreb ELAZ, Strobl 6th September, 2016 Nikola Adžaga On the extension of D(-8k 2 )-triple {1, 8k 2 , 8k 2 + 1}
26

NikolaAdžaga FacultyofCivilEngineering,UniversityofZagreb ... › datoteka › 833826.prezentacija_Adzaga.pdfNikola Adžaga On the extension of D( 8k2)-triple f1;8k2;8k2 + 1g. Eliminatingd

Feb 01, 2021

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • On the extension of D(−8k2)-triple{1, 8k2, 8k2 + 1}

    Nikola Adžaga

    Faculty of Civil Engineering, University of Zagreb

    ELAZ, Strobl 6th September, 2016

    Nikola Adžaga On the extension of D(−8k2)-triple {1, 8k2, 8k2 + 1}

  • Problem

    Let k ∈ N. Triple {1, 8k2, 8k2 + 1} has D(−8k2)-property:

    1·8k2−8k2 = 0, 1·(8k2+1)−8k2 = 1, 8k2·(8k2+1)−8k2 = 64k4.

    Let d ∈ N extend this D(−8k2)-triple:

    d − 8k2 = x2

    8k2d − 8k2 = (y ′)2 (d − 1 = 2y2)(8k2 + 1)d − 8k2 = z2

    We will show that this extension is possible if and only if 24k2 + 1is a square (d can only be 32k2 + 1).

    Nikola Adžaga On the extension of D(−8k2)-triple {1, 8k2, 8k2 + 1}

  • Problem

    Let k ∈ N. Triple {1, 8k2, 8k2 + 1} has D(−8k2)-property:

    1·8k2−8k2 = 0, 1·(8k2+1)−8k2 = 1, 8k2·(8k2+1)−8k2 = 64k4.

    Let d ∈ N extend this D(−8k2)-triple:

    d − 8k2 = x2

    8k2d − 8k2 = (y ′)2 (d − 1 = 2y2)(8k2 + 1)d − 8k2 = z2

    We will show that this extension is possible if and only if 24k2 + 1is a square (d can only be 32k2 + 1).

    Nikola Adžaga On the extension of D(−8k2)-triple {1, 8k2, 8k2 + 1}

  • Problem

    Let k ∈ N. Triple {1, 8k2, 8k2 + 1} has D(−8k2)-property:

    1·8k2−8k2 = 0, 1·(8k2+1)−8k2 = 1, 8k2·(8k2+1)−8k2 = 64k4.

    Let d ∈ N extend this D(−8k2)-triple:

    d − 8k2 = x2

    8k2d − 8k2 = (y ′)2 (d − 1 = 2y2)(8k2 + 1)d − 8k2 = z2

    We will show that this extension is possible if and only if 24k2 + 1is a square (d can only be 32k2 + 1).

    Nikola Adžaga On the extension of D(−8k2)-triple {1, 8k2, 8k2 + 1}

  • Eliminating d

    x2 − 2y2 = −8k2 + 1z2 − (16k2 + 2)y2 = 1.

    Using continued fractions (√16k2 + 2 = [4k ; 4k, 8k]), we obtain

    the last equation’s fundamental solution 16k2 + 1+ 4k√16k2 + 2.

    zn+1 = (16k2 + 1)zn + 4k(16k2 + 2)yn, z0 = 16k2 + 1, z−1 = 1

    yn+1 = (16k2 + 1)yn + 4kzn, y0 = 4k , y−1 = 0,

    Nikola Adžaga On the extension of D(−8k2)-triple {1, 8k2, 8k2 + 1}

  • Eliminating d

    x2 − 2y2 = −8k2 + 1z2 − (16k2 + 2)y2 = 1.

    Using continued fractions (√16k2 + 2 = [4k ; 4k, 8k]), we obtain

    the last equation’s fundamental solution 16k2 + 1+ 4k√16k2 + 2.

    zn+1 = (16k2 + 1)zn + 4k(16k2 + 2)yn, z0 = 16k2 + 1, z−1 = 1

    yn+1 = (16k2 + 1)yn + 4kzn, y0 = 4k , y−1 = 0,

    Nikola Adžaga On the extension of D(−8k2)-triple {1, 8k2, 8k2 + 1}

  • Eliminating d

    x2 − 2y2 = −8k2 + 1z2 − (16k2 + 2)y2 = 1.

    Using continued fractions (√16k2 + 2 = [4k ; 4k, 8k]), we obtain

    the last equation’s fundamental solution 16k2 + 1+ 4k√16k2 + 2.

    zn+1 = (16k2 + 1)zn + 4k(16k2 + 2)yn, z0 = 16k2 + 1, z−1 = 1

    yn+1 = (16k2 + 1)yn + 4kzn, y0 = 4k , y−1 = 0,

    Nikola Adžaga On the extension of D(−8k2)-triple {1, 8k2, 8k2 + 1}

  • System of recurrences

    We get all solutions (yn, zn) ∈ N20:

    and recurrence relations

    zn+2 = 2(16k2 + 1)zn+1 − znyn+2 = 2(16k2 + 1)yn+1 − yn

    with same initial conditions.

    yn = c1(16k2 + 1+ 4k√

    16k2 + 2)n + c2(16k2 + 1− 4k√

    16k2 + 2)n

    Nikola Adžaga On the extension of D(−8k2)-triple {1, 8k2, 8k2 + 1}

  • System of recurrences

    We get all solutions (yn, zn) ∈ N20:

    and recurrence relations

    zn+2 = 2(16k2 + 1)zn+1 − znyn+2 = 2(16k2 + 1)yn+1 − yn

    with same initial conditions.

    yn = c1(16k2 + 1+ 4k√

    16k2 + 2)n + c2(16k2 + 1− 4k√

    16k2 + 2)n

    Nikola Adžaga On the extension of D(−8k2)-triple {1, 8k2, 8k2 + 1}

  • Sequence Xn

    x2 − 2y2 = −8k2 + 1⇒ x2 should be 2y2n − 8k2 + 1 for some n ∈ N0.

    Xn := 2y2n − 8k2 + 1.

    When is Xn = �?

    Nikola Adžaga On the extension of D(−8k2)-triple {1, 8k2, 8k2 + 1}

  • Sequence Xn

    x2 − 2y2 = −8k2 + 1⇒ x2 should be 2y2n − 8k2 + 1 for some n ∈ N0.

    Xn := 2y2n − 8k2 + 1.

    When is Xn = �?

    Nikola Adžaga On the extension of D(−8k2)-triple {1, 8k2, 8k2 + 1}

  • Odd indices

    X2n+1 = 2y22n+1 − 8k2 + 1 is never a square.

    y2n+1 = 2ynzn

    Nikola Adžaga On the extension of D(−8k2)-triple {1, 8k2, 8k2 + 1}

  • Odd indices

    X2n+1 = 2y22n+1 − 8k2 + 1= 2(2ynzn)2 − 8k2 + 1= 8y2n z

    2n − 8k2 + 1 (z2n = (16k2 + 2)y2n + 1)

    = 8y2n (1+ (16k2 + 2)y2n )− 8k2 + 1

    = 8y2n + 16(8k2 + 1)y4n − 8k2 + 1

    = (4y2n + 1)(32y2nk

    2 + 4y2n − 8k2 + 1).

    Nikola Adžaga On the extension of D(−8k2)-triple {1, 8k2, 8k2 + 1}

  • Relatively prime factors – Principle of descent

    Assume

    p | 4y2n + 1 and p | 32y2nk2 + 4y2n − 8k2 + 1.

    We prove

    p | 4y2n−1 + 1 and p | 32y2n−1k2 + 4y2n−1 − 8k2 + 1.

    p | 32y2nk2 + 4y2n − 8k2 + 1− (4y2n + 1) = 8k2(4y2n − 1).

    p is odd ⇒ p | k2(4y2n − 1). p can not divide the second factor:4y2n + 1− (4y2n − 1) = 2.

    Hence, p | k2, so p | k .

    Nikola Adžaga On the extension of D(−8k2)-triple {1, 8k2, 8k2 + 1}

  • Relatively prime factors – Principle of descent

    Assume

    p | 4y2n + 1 and p | 32y2nk2 + 4y2n − 8k2 + 1.

    We prove

    p | 4y2n−1 + 1 and p | 32y2n−1k2 + 4y2n−1 − 8k2 + 1.

    p | 32y2nk2 + 4y2n − 8k2 + 1− (4y2n + 1) = 8k2(4y2n − 1).

    p is odd ⇒ p | k2(4y2n − 1). p can not divide the second factor:4y2n + 1− (4y2n − 1) = 2.

    Hence, p | k2, so p | k .

    Nikola Adžaga On the extension of D(−8k2)-triple {1, 8k2, 8k2 + 1}

  • Relatively prime factors – Principle of descent

    Assume

    p | 4y2n + 1 and p | 32y2nk2 + 4y2n − 8k2 + 1.

    We prove

    p | 4y2n−1 + 1 and p | 32y2n−1k2 + 4y2n−1 − 8k2 + 1.

    p | 32y2nk2 + 4y2n − 8k2 + 1− (4y2n + 1) = 8k2(4y2n − 1).

    p is odd ⇒ p | k2(4y2n − 1). p can not divide the second factor:4y2n + 1− (4y2n − 1) = 2.

    Hence, p | k2, so p | k .

    Nikola Adžaga On the extension of D(−8k2)-triple {1, 8k2, 8k2 + 1}

  • Relatively prime factors – Principle of descent

    Assume

    p | 4y2n + 1 and p | 32y2nk2 + 4y2n − 8k2 + 1.

    We prove

    p | 4y2n−1 + 1 and p | 32y2n−1k2 + 4y2n−1 − 8k2 + 1.

    p | 32y2nk2 + 4y2n − 8k2 + 1− (4y2n + 1) = 8k2(4y2n − 1).

    p is odd ⇒ p | k2(4y2n − 1). p can not divide the second factor:4y2n + 1− (4y2n − 1) = 2.

    Hence, p | k2, so p | k .

    Nikola Adžaga On the extension of D(−8k2)-triple {1, 8k2, 8k2 + 1}

  • Relatively prime factors – Principle of descent

    Assume

    p | 4y2n + 1 and p | 32y2nk2 + 4y2n − 8k2 + 1.

    We prove

    p | 4y2n−1 + 1 and p | 32y2n−1k2 + 4y2n−1 − 8k2 + 1.

    p | 32y2nk2 + 4y2n − 8k2 + 1− (4y2n + 1) = 8k2(4y2n − 1).

    p is odd ⇒ p | k2(4y2n − 1). p can not divide the second factor:4y2n + 1− (4y2n − 1) = 2.

    Hence, p | k2, so p | k .Nikola Adžaga On the extension of D(−8k2)-triple {1, 8k2, 8k2 + 1}

  • Relatively prime factors – Principle of descent

    yn = (16k2 + 1)yn−1 + 4kzn−1⇒ yn − yn−1 = 16k2yn−1 + 4kzn−1,

    ⇒ yn ≡ yn−1 (mod p). Therefore p divides 4y2n−1 + 1.

    Since 32y2n−1k2 + 4y2n−1 − 8k2 + 1 = 8k2(4y2n−1 − 1) + 4y2n−1 + 1,

    p divides 32y2n−1k2 + 4y2n−1 − 8k2 + 1 too.

    Nikola Adžaga On the extension of D(−8k2)-triple {1, 8k2, 8k2 + 1}

  • Relatively prime factors – Principle of descent

    yn = (16k2 + 1)yn−1 + 4kzn−1⇒ yn − yn−1 = 16k2yn−1 + 4kzn−1,⇒ yn ≡ yn−1 (mod p).

    Therefore p divides 4y2n−1 + 1.

    Since 32y2n−1k2 + 4y2n−1 − 8k2 + 1 = 8k2(4y2n−1 − 1) + 4y2n−1 + 1,

    p divides 32y2n−1k2 + 4y2n−1 − 8k2 + 1 too.

    Nikola Adžaga On the extension of D(−8k2)-triple {1, 8k2, 8k2 + 1}

  • Relatively prime factors – Principle of descent

    yn = (16k2 + 1)yn−1 + 4kzn−1⇒ yn − yn−1 = 16k2yn−1 + 4kzn−1,⇒ yn ≡ yn−1 (mod p). Therefore p divides 4y2n−1 + 1.

    Since 32y2n−1k2 + 4y2n−1 − 8k2 + 1 = 8k2(4y2n−1 − 1) + 4y2n−1 + 1,

    p divides 32y2n−1k2 + 4y2n−1 − 8k2 + 1 too.

    Nikola Adžaga On the extension of D(−8k2)-triple {1, 8k2, 8k2 + 1}

  • Relatively prime factors – Principle of descent

    yn = (16k2 + 1)yn−1 + 4kzn−1⇒ yn − yn−1 = 16k2yn−1 + 4kzn−1,⇒ yn ≡ yn−1 (mod p). Therefore p divides 4y2n−1 + 1.

    Since 32y2n−1k2 + 4y2n−1 − 8k2 + 1 = 8k2(4y2n−1 − 1) + 4y2n−1 + 1,

    p divides 32y2n−1k2 + 4y2n−1 − 8k2 + 1 too.

    Nikola Adžaga On the extension of D(−8k2)-triple {1, 8k2, 8k2 + 1}

  • Relatively prime factors – Principle of descent

    Further ”descent“ implies thatp | 4y20 + 1 = 64k2 + 1 (and 32y20 k2 + 4y20 − 8k2 + 1).

    But p divides k so it would divide 1 as well. Contradiction.

    We conclude that 4y2n + 1 and 32y2nk

    2 + 4y2n − 8k2 + 1 don’t haveprime factors in common.

    Nikola Adžaga On the extension of D(−8k2)-triple {1, 8k2, 8k2 + 1}

  • Relatively prime factors – Principle of descent

    Further ”descent“ implies thatp | 4y20 + 1 = 64k2 + 1 (and 32y20 k2 + 4y20 − 8k2 + 1).

    But p divides k so it would divide 1 as well. Contradiction.

    We conclude that 4y2n + 1 and 32y2nk

    2 + 4y2n − 8k2 + 1 don’t haveprime factors in common.

    Nikola Adžaga On the extension of D(−8k2)-triple {1, 8k2, 8k2 + 1}

  • Relatively prime factors – Principle of descent

    Further ”descent“ implies thatp | 4y20 + 1 = 64k2 + 1 (and 32y20 k2 + 4y20 − 8k2 + 1).

    But p divides k so it would divide 1 as well. Contradiction.

    We conclude that 4y2n + 1 and 32y2nk

    2 + 4y2n − 8k2 + 1 don’t haveprime factors in common.

    Nikola Adžaga On the extension of D(−8k2)-triple {1, 8k2, 8k2 + 1}

  • Remaining case

    Even indices are resolved similarly, except for 0.

    When n = 0, i.e. X0 =z0 − 8k2

    8k2 + 1· (z0 + 8k2) = 24k2 + 1 is a

    square.

    D(−8k2)-triple {1, 8k2, 8k2 + 1} has at most one extension.Extension exists when 24k2 + 1 is a square.In that case d = 32k2 + 1.

    Nikola Adžaga On the extension of D(−8k2)-triple {1, 8k2, 8k2 + 1}