Top Banner
Niels Bohr Institute Copenhagen University Quantum memory and teleportation with atomic ensembles Eugene Polzik
40

Niels Bohr Institute Copenhagen University Quantum memory and teleportation with atomic ensembles Eugene Polzik.

Dec 19, 2015

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Niels Bohr Institute Copenhagen University Quantum memory and teleportation with atomic ensembles Eugene Polzik.

Niels Bohr InstituteCopenhagen University

Quantum memory and teleportation with atomic ensembles

Eugene Polzik

Page 2: Niels Bohr Institute Copenhagen University Quantum memory and teleportation with atomic ensembles Eugene Polzik.

•Interface matter-light as quantum channel

We concentrate on: deterministic high fidelity* state

transferFidelity of quantum transfer

ininoutinin dPF - State overlap averaged over the set of input states

*) Fidelity higher than any classical measure-recreate protocol can achieve

Page 3: Niels Bohr Institute Copenhagen University Quantum memory and teleportation with atomic ensembles Eugene Polzik.

Light – matter quantum interface

Probabilistic entanglement distribution (DLCZ and the like)

Deterministic transfer of

quantum statesbetween

light and matter

Photon counting – based protocolstypical efficiency 10-50%

Homodyning – basedprotocols (99% detectors)

Hybrid approaches(Schrödinger cats and the like)

K. Hammerer, A. Sørensen, E.P.Reviews of Modern Physics, 2010 arXiv:0807.3358

Page 4: Niels Bohr Institute Copenhagen University Quantum memory and teleportation with atomic ensembles Eugene Polzik.

Quantum interface – basic interactions

† † †ˆ ˆˆ ˆ . .Par BSH a b ab h c

X-type = double Λ interaction

a

b

b

a

† †ˆˆ . .H a b h c

Light-Atoms Entanglement

Innsbruck, Copenhagen, GIT,Caltech, Harvard, Heidelberg

b

a

†ˆˆ . .H ab h c

Light-to-Atoms mapping (memory)

Aarhus, Harvard, Caltech, GIT

Rochester, Copenhagen, Caltech, Garching, Arisona…

ˆ ˆ2 ,L A Par BSP P if

Page 5: Niels Bohr Institute Copenhagen University Quantum memory and teleportation with atomic ensembles Eugene Polzik.

Quantum memory beyond classical benchmark

Atoms

Fidelity of quantum storage

ininoutinin dPF - State overlap averaged over the set of input states

Page 6: Niels Bohr Institute Copenhagen University Quantum memory and teleportation with atomic ensembles Eugene Polzik.

Classical benchmark fidelity for state transfer for different classes of states:

Coherent states (2005)

N-dimentional Qubits (1982-2003)

NEW! Displaced squeezed states (2008)

Fidelity exceeds the classical benchmark

memory preserves entanglement

Page 7: Niels Bohr Institute Copenhagen University Quantum memory and teleportation with atomic ensembles Eugene Polzik.

Classical benchmark fidelity for state transfer is known for the classes of states:

Best classical fidelity forcoherent states is 50%

1. Coherent states

3. Displaced squeezed states:M.Owari, M.Plenio, E.P., A.Serafini, M.M.Wolf New J. of Physics (2008); Adesso, Chiribella (2008)

X

P

2. QubitsBest classical fidelity 2/3

Experimental demonstration:Ion to ion teleportation NIST’04; Innsbruck’04 F=78%

Experimentaldemonstrations of F>FCl:Light to light teleportation Caltech’98 F=58%Light to matter teleportationCopenhagen’06 F=58%

Page 8: Niels Bohr Institute Copenhagen University Quantum memory and teleportation with atomic ensembles Eugene Polzik.

x

Quantum field: EPR entangled Polarizing

cube

-450 450

PolarizingBeamsplitter 450/-450

Stokes operators and canonical variables

ˆ i t i ta a e a e

1; 1Var X X Var P P

12 2

3 2

11 2

ˆ ˆ

ˆ ˆ

ˆ

L

iL

S nX

S nP

S n

S2 measurement

Page 9: Niels Bohr Institute Copenhagen University Quantum memory and teleportation with atomic ensembles Eugene Polzik.

Two-mode squeezed = EPR entangled mode

OPO2SHG

Page 10: Niels Bohr Institute Copenhagen University Quantum memory and teleportation with atomic ensembles Eugene Polzik.

Atom-compatible EPR state

Atomic memory compatiblesqueezed light sourceBo Metholt Nielsen, JonasNeergaard

- 6 dB

X

P

two mode squeezed = EPR entangled light

60.8 0,0 0.48 1,1 0.29 2,2 0.18 3,3 ...

dB

Page 11: Niels Bohr Institute Copenhagen University Quantum memory and teleportation with atomic ensembles Eugene Polzik.

ˆ ˆ,X P i

Spin polarized ensemble as T=00 Harmonic oscillator

† †12 2

ˆˆˆ ˆˆ ˆ ˆ, ( ) , ( ) yz i

A A A A

x x

JJX P i X b b P b b

J J

Jy~P

Jz~X

Jx

xyz iJJJ ˆ,ˆ

1

N

ii

J j

F=4

F=3

6P3/2

6S1/2

Cesium

mF=3 mF=4

X

P

Harmonic oscillatorin the ground stateat room temperature

Page 12: Niels Bohr Institute Copenhagen University Quantum memory and teleportation with atomic ensembles Eugene Polzik.

1012 Room Temperature atoms Cesium

2/36P

2/16S

432

99.8%initialization toground state

Harmonic oscillatorin a ground state

320kHz

1GHz

Page 13: Niels Bohr Institute Copenhagen University Quantum memory and teleportation with atomic ensembles Eugene Polzik.

x Quantum field

Polarizingcube

-450 450

PolarizingBeamsplitter 450/-450

Quantum nondemolition interaction: 1. Polarization rotation of light

a

Polarizationof light

22 2 1

1

ˆˆ ˆ ˆ ˆˆ

inout in

z z

SS S S J J

S A

ˆ ˆ ˆ

ˆ ˆ ˆ

L A

out inL L A

H P P

X X P

Page 14: Niels Bohr Institute Copenhagen University Quantum memory and teleportation with atomic ensembles Eugene Polzik.

xStrong fie

ld A(t)

Quantum field - a

Polarizingcube

Atoms

21

21

aiA ˆ2

1 aiA ˆ2

1

y

Quantum nondemolition interaction: 2. Dynamic Stark shift of atoms 2

1 21

ie

Atomicspin

rotation

3 3

ˆˆ ˆˆ ˆ ˆ

inyout in

y y xx

JJ J J S S

J A

ˆ ˆ ˆout inA A LX X P

Z

Z-quantization

Page 15: Niels Bohr Institute Copenhagen University Quantum memory and teleportation with atomic ensembles Eugene Polzik.

Atom

s IN

Stronger coupling:atom-photon state swap plus squeezing

1

1

out in out inA L A L

out in out inL A L A

X P P X

X P P X

W. Wasilewski et al, Optics Express 2009

Photons IN

Atoms

OUT

PhotonsOUT

† † †ˆ ˆˆ ˆ . .H a b ab h c 1 2

2ˆ ˆ ˆ ˆ( )L A L Ak P P X X

Page 16: Niels Bohr Institute Copenhagen University Quantum memory and teleportation with atomic ensembles Eugene Polzik.

Quantum feedback onto atoms

L

B

cosRF RF LB b t

BRF

RFb t Its just a ~π/√N pulse

Goal: rotate atomic spin ~ to measured photonic operator value

Page 17: Niels Bohr Institute Copenhagen University Quantum memory and teleportation with atomic ensembles Eugene Polzik.

2 Detectors1

K. Jensen, W. Wasilewski, H. Krauter, T. Fernholz, B. M. Nielsen, M. Owari, M. B. Plenio, A. Serafini, M. M. Wolf, and E. S. Polzik. Nature Physics 7 (1), pp.13-16 (2011)

Page 18: Niels Bohr Institute Copenhagen University Quantum memory and teleportation with atomic ensembles Eugene Polzik.

Displaced two-mode squeezed (EPR) states

iPXaaPaaX i ˆ,ˆ)ˆˆ(ˆ),ˆˆ(ˆ22

1 X

P

2 2 1/ 2X P

Coherent

X

P

EPR entangled = two-mode squeezed

1; 1Var X X Var P P

a

aX

P

a

aDisplaced two-mode squeezed

Page 19: Niels Bohr Institute Copenhagen University Quantum memory and teleportation with atomic ensembles Eugene Polzik.
Page 20: Niels Bohr Institute Copenhagen University Quantum memory and teleportation with atomic ensembles Eugene Polzik.

Memory in atomic Zeeman coherences

Cesium2/36P

2/16S

43

+ +1

2 23

8 2

3

1 30 2 4 ...

2 2 8 2dB

Example: 3 dB (factor of 2) spin squeezed state

1012 Cs atoms at RTin a ”magic” cell

Page 21: Niels Bohr Institute Copenhagen University Quantum memory and teleportation with atomic ensembles Eugene Polzik.

MF = 4

MF = 3

MF = -3

MF = -4

MF = 5,4,3

~ 1000 MHz

320 kHz

Storing ± Ω modes in superpositions of atomic Zeeman coherences

- 320 kHz

60.8 0,0 0.48 1,1 0.29 2,2 0.18 3,3 ...

dB

Page 22: Niels Bohr Institute Copenhagen University Quantum memory and teleportation with atomic ensembles Eugene Polzik.

1 2 1 2 3

0

1 2 1 2

1 2

1 2

ˆ ˆ ˆ ˆ 2 cos

( )

ˆ ˆ 0

Tout out in in inz z z z x

out out in in in inA A A A L L

y y

A A

J J J J J S t dt

X X X X P P

J J

P P Const

1

2 2 1 220 0

1 2

ˆ ˆ ˆ ˆsin sin ( )

( )

T TS Tout in

y y

out out in in in inL L L L A A

S t dt S t dt J J

X X X X P P

a a

Cell 1 Cell 2

Two halves of entangled mode of light are stored in two atomic memories

Page 23: Niels Bohr Institute Copenhagen University Quantum memory and teleportation with atomic ensembles Eugene Polzik.

Squeezed states – classical benchmark fidelity:M.Owari et al New J. Phys. 2008

X

P

1F

ξ-1 – squeezed variance

ξ-1

Best classical fidelity vs degree ofsqueezing for arbitrary displacedstates

ξ-1

Page 24: Niels Bohr Institute Copenhagen University Quantum memory and teleportation with atomic ensembles Eugene Polzik.

Optical pumpingand squeezingof atomic state

Inputpulse

Readoutpulse

Rf feedback Π-pulse

Squeezedlight source

Strong field

Page 25: Niels Bohr Institute Copenhagen University Quantum memory and teleportation with atomic ensembles Eugene Polzik.

X

PAlphabet of input states, 6 dB squeezed and displaced

3.8 7.60

Vacuum state variances = 0.5

Imperfections:Transmission from the source to memory 0.8Transmission through the memory input window 0.9Detection efficiency 0.79

Memory added noise: 0.47(6) in XA , 0.38(11) in PA Ideally should be: 0.36 in XA and 0 in PA

Page 26: Niels Bohr Institute Copenhagen University Quantum memory and teleportation with atomic ensembles Eugene Polzik.

CV entangled states stored with F > Fclassical

X

P

X

P

X

P

Page 27: Niels Bohr Institute Copenhagen University Quantum memory and teleportation with atomic ensembles Eugene Polzik.

Thomas Fernholz

Hanna Krauter

Kasper Jensen

Lars Madsen

WojtekWasilewski

Page 28: Niels Bohr Institute Copenhagen University Quantum memory and teleportation with atomic ensembles Eugene Polzik.

1012 spins in each ensemble

y z

x

y z

xSpins which are “more parallel” than that

are entangled

Entanglement of two macroscopic

objects.

21

~ N

Nature, 413, 400 (2001)

1 2 1 2ˆ ˆ ˆ ˆ/ 2 / 2 1z z x y y xVar J J J Var J J J

2)()( 2121 PPVarXXVar

Einstein-Podolsky-Rosen (EPR) entanglement

Page 29: Niels Bohr Institute Copenhagen University Quantum memory and teleportation with atomic ensembles Eugene Polzik.

Driving

field

Entanglement generated by dissipation and steady state

entanglement of two macroscopic ensembles

1012 atoms at RT

H. Krauter, C. Muschik, K. Jensen, W. Wasilewski, J. Pedersen, I. Cirac, E. S. Polzik, PRL, August 17, 2011arXiv:1006.4344

1012 atoms at RT

Page 30: Niels Bohr Institute Copenhagen University Quantum memory and teleportation with atomic ensembles Eugene Polzik.

Driving

field

† †1 2 2 1ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ( . .)H d a b a b a b a b h c

Collective dissipation: forward scattering

MF = 4

MF = 3

MF = 5,4,3~ 1000 MHz

320 kHz MF = -3MF = -41b 2b

Page 31: Niels Bohr Institute Copenhagen University Quantum memory and teleportation with atomic ensembles Eugene Polzik.

† †1 2 2 1ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ . .H a b a b a b a b h c

Standard form of Lindblad equation for dissipationLindblad equation for dissipative dynamics of atoms

† †1 2 2 1ˆ ˆ ˆ ˆA b b B b b

MF = 4

MF = 3

MF = 5,4,3~ 1000 MHz

320 kHz MF = -3MF = -41b 2b

Trace overnon-observed

fields

Page 32: Niels Bohr Institute Copenhagen University Quantum memory and teleportation with atomic ensembles Eugene Polzik.

Pushing entanglement towards steady state

Entangling drive

t

Spin noiseprobe

1b

Optical pumping

50 msec!

Optical pumping

Page 33: Niels Bohr Institute Copenhagen University Quantum memory and teleportation with atomic ensembles Eugene Polzik.

timePump, repump,drive and continuous measurement

Steady state entanglement generated by dissipation and continuous measurement

We use the continuousmeasurement (blue time function) togenerate continuousentangled statePure

dissipation

Macroscopic spin

Variance of the yellowmeasurement conditionedon the result of theblue measurement

Steady stateentanglementkept for hours

Page 34: Niels Bohr Institute Copenhagen University Quantum memory and teleportation with atomic ensembles Eugene Polzik.

Entanglement maintained for 1 hour

Steady state entanglement generated by dissipation and continuous measurement

Page 35: Niels Bohr Institute Copenhagen University Quantum memory and teleportation with atomic ensembles Eugene Polzik.

Quantum teleportation between distant atomic memories

1

2

H.Krauter, J. M. Petersen, T. Fernholz, D.Salart C.MuschikI.Cirac

B

Bell measurement

Page 36: Niels Bohr Institute Copenhagen University Quantum memory and teleportation with atomic ensembles Eugene Polzik.

320 kHz MF = -3MF = -4

2b

MF = -3

H=a-†b†+

Atoms 1 – photonsentanglement

generation

H=a+b†+…

Atoms 2 – photonsbeamsplitter

Bell measurement

Classicalcommunication

Page 37: Niels Bohr Institute Copenhagen University Quantum memory and teleportation with atomic ensembles Eugene Polzik.

Quantum benchmark for storage and transmission of coherent states. K. Hammerer, M.M. Wolf, E.S. Polzik, J.I. Cirac, Phys. Rev. Lett. 94,150503 (2005).

Classical feedback gain

Variance of the teleported atomic state

Process tomographywith coherent states

Deterministicunconditional and broadband teleportation

Rate of teleportation 100HzSuccess probability 100%

Classicalbound

Page 38: Niels Bohr Institute Copenhagen University Quantum memory and teleportation with atomic ensembles Eugene Polzik.

Photonic state

F=4

6S1/2

mF=3 mF=4

Growing material cats

N>>>1

│0.3> -│3.0>

PRL 2010

Page 39: Niels Bohr Institute Copenhagen University Quantum memory and teleportation with atomic ensembles Eugene Polzik.

Outlook – scalable quantum network

Page 40: Niels Bohr Institute Copenhagen University Quantum memory and teleportation with atomic ensembles Eugene Polzik.