Top Banner
On operator amenability of Fourier-Stieltjes algebras Nico Spronk, U. of Waterloo Banach algebras 2019 U. of Manitoba July 17, 2019
22

Nico Spronk, U. of Waterloobanach2019/pdf/Spronk.pdf · 2019-07-21 · On operator amenability of Fourier-Stieltjes algebras Nico Spronk, U. of Waterloo Banach algebras 2019 U. of

Mar 19, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Nico Spronk, U. of Waterloobanach2019/pdf/Spronk.pdf · 2019-07-21 · On operator amenability of Fourier-Stieltjes algebras Nico Spronk, U. of Waterloo Banach algebras 2019 U. of

On operator amenability ofFourier-Stieltjes algebras

Nico Spronk, U. of Waterloo

Banach algebras 2019U. of Manitoba

July 17, 2019

Page 2: Nico Spronk, U. of Waterloobanach2019/pdf/Spronk.pdf · 2019-07-21 · On operator amenability of Fourier-Stieltjes algebras Nico Spronk, U. of Waterloo Banach algebras 2019 U. of

Fourier algebra: non-commutative Pontryagin duality

G – locally compact group with left Haar measure

HvN alg. L∞(G ) C0(G )? _oo C∗r (G ) �� // VN(G )

predual L1(G )

λ

55kkkkkkkkkkkkkkkkkkA(G )

λ

SSSSSSSSSSSSSSSS

iiSSS

group “dual group”

λ : G → U(L2(G )), λ(s)h(t) = h(s−1t)integrated form: λ : L1(G )→ B(L2(G )), λ(f )h =

∫G f (s)λ(s)h ds

VN(G ) = λ(G )′′, coproduct extends λ(s) 7→ λ(s)⊗ λ(s)A(G ) = {s 7→ 〈λ(s)h, g〉 : h, g ∈ L2(G )} – Fourier algebra

λ : A(G )→ C0(G ) – natural injection, algebra homomorphism

Page 3: Nico Spronk, U. of Waterloobanach2019/pdf/Spronk.pdf · 2019-07-21 · On operator amenability of Fourier-Stieltjes algebras Nico Spronk, U. of Waterloo Banach algebras 2019 U. of

Fourier-Stieltjes algebra: duality with universal rep’n

dual M(G )

$

))TTTTTTT

TTTTTTTT

TTTB(G )

$

jjjjjjjj

jjjjjjjj

j

ttjjj

HC* alg. C0(G ) �� // Cb(G ) MC∗(G ) C∗(G )? _oo

$ =⊕

π cyclic π : G → U(H$) – universal representation

integrated form: $ : M(G )→ B(H$), $(µ)ξ =∫

G $(s)ξ dµ(s)

C∗(G ) = $(L1(G ))‖·‖ ∈ B(H$).

coproduct extends:∫

G f (s)$(s) ds 7→∫

G f (s)$(s)⊗$(s) ds :C∗(G )→ M(C∗(G )⊗min C∗(G ))

B(G ) = {s 7→ 〈π(s)ξ, η〉 : π cts. unitary rep’n, ξ, η ∈ Hπ}= {s 7→ 〈$(s)ξ, η〉 : ξ, η ∈ H$} – Fourier-Stieltjes algebra

$ : B(G )→ Cb(G ) – natural injection, algebra homomorphism

Page 4: Nico Spronk, U. of Waterloobanach2019/pdf/Spronk.pdf · 2019-07-21 · On operator amenability of Fourier-Stieltjes algebras Nico Spronk, U. of Waterloo Banach algebras 2019 U. of

Summary

A(G ) = “L1(G )”, B(G ) = “M(G )”

Ideals:L1(G ) ∼= {ν ∈ M(G ) : ν << Haar}CM(G ), by left invariance;A(G )C B(G ), by Fell’s absorption principle: λ⊗ π ∼= λ(dimπ).

Positivity: Jordan decomp.: M(G ) = spanM+(G );Polarization & GNS: B(G ) = spanP(G ) (positive definite func’s).

G abelian: B(G ) = M(G ) (Bochner); A(G ) = L1(G ) (Plancherel).

Philosophy:

Properties of L1(G ) ! properties of A(G );

properties of M(G ) ! properties of B(G ).

Page 5: Nico Spronk, U. of Waterloobanach2019/pdf/Spronk.pdf · 2019-07-21 · On operator amenability of Fourier-Stieltjes algebras Nico Spronk, U. of Waterloo Banach algebras 2019 U. of

A property: operator amenability

Definition [Johnson ‘73, Ruan ‘95]

A Banach algebra, with compatible operator space structure (e.g.predual of HvN alg., or any operator algebra). A isoperator amenable if there is a bounded net

(dα) ⊂ A⊗A (op. proj. tens. prod.)

s.t.(a⊗ 1)dα − dα(1⊗ a)→ 0 and Π(dα) bdd. approx. id.

where Π(a⊗ b) = ab.

Note: L1(G )⊗L1(G ) ∼= L1(G × G ) [Grothendieck ‘50s]A(G )⊗A(G ) ∼= A(G × G ) [Effros-Ruan ‘90s]

If A ⊆ B(H), A⊗A → A⊗h A, Π factors accordingly.

Amenability: find bounded net (dα) ⊂ A⊗γ A (proj. t.p.) instead.

Page 6: Nico Spronk, U. of Waterloobanach2019/pdf/Spronk.pdf · 2019-07-21 · On operator amenability of Fourier-Stieltjes algebras Nico Spronk, U. of Waterloo Banach algebras 2019 U. of

Operator amenability = “averagability”

W is A-bimodule, so is W∗: bϕa(w) = ϕ(awb).

Proposition, origins in [Helemskiı ‘80s]

Assume: A operator amenable; V ⊆ W c.b. A-bimodules, s.t.∃ c.b. linear projection P :W → V (V c.c. in W).Then ∃ c.b. E : V∗ →W∗, (Eψ)|V = ψ, E (aψ) = aE (ψ)

Idea: dα ≈∑nα

k=1 aα,k ⊗ bα,k . P∗α(ϕ) :=∑nα

k=1 aα,kP∗(bα,kϕ).

E w* cluster point of (P∗α) in CB(V∗,W∗) ∼= (V∗⊗W)∗. �Moral: P∗ was averaged to an A-module map.

Corollary, e.g. [Curtis-Loy ‘89]

I is a c.c. ideal in op. amenable A ⇒ I has b.a.i. (& op. amen.)

Idea: E ∗ : A∗∗ → I∗∗, E ∗(left unit) is a left unit ⇒ b.a.i. �

E.g.: A(G ) is c.c. in B(G ), via central proj’n in W∗(G ) ∼= B(G )∗.

Page 7: Nico Spronk, U. of Waterloobanach2019/pdf/Spronk.pdf · 2019-07-21 · On operator amenability of Fourier-Stieltjes algebras Nico Spronk, U. of Waterloo Banach algebras 2019 U. of

On operator amenability of operator algebras

Note. [Johnson ‘73] (op.) amenability ⇔ certain derivations inner.

Theorem [Connes ‘78, Haagerup ‘83] ([Ruan ‘95])

C*-algebra: (op.) amenable ⇔ nuclear.

Theorem [Marcoux-Popov ‘16]

(op.) amenable commutative op. alg. ⇒ similar to C*-alg.

Corollary ([Scheinberg ‘77])

(op.) amenable uniform alg. is C(X )

Theorem [Choi-Farah-Ozawa ‘14]

∃ (op.) amenable op. algebra not isomorphic to C*-algebra.

Page 8: Nico Spronk, U. of Waterloobanach2019/pdf/Spronk.pdf · 2019-07-21 · On operator amenability of Fourier-Stieltjes algebras Nico Spronk, U. of Waterloo Banach algebras 2019 U. of

Back to group and Fourier algebras

Philosophy: Properties of L1(G ) ! properties of A(G ).

Theorem

TFAE:(i) G is an amenable group;(ii) [Johnson ‘73] L1(G ) is an (op.) amenable Banach algebra;(iii) [Ruan ‘95] A(G ) is an op. amenable Banach algebra.

L1(G ) = L∞(G )∗ ⇒ “amenable” = “op. amenable”.

Operator spaces are essential to the above characterization:

Theorem [Forrest-Runde ‘04, Lau-Loy-Willis ‘96]

A(G ) amenable ⇔ G virtually abelian.

Page 9: Nico Spronk, U. of Waterloobanach2019/pdf/Spronk.pdf · 2019-07-21 · On operator amenability of Fourier-Stieltjes algebras Nico Spronk, U. of Waterloo Banach algebras 2019 U. of

(Operator) weak amenability

Definition. A (op.) weakly amenable if every (c.) bdd. derivationD : A → A∗ is inner: D(a) = aϕ− ϕa.

[Bade-Curtis-Dales ‘87] A commutative: A (op.) weakly amen.⇔ 6 ∃ non-zero (c.) bdd. derivations to symmetric (c.c.) modules.

Theorem

(i) [Johnson ‘91] L1(G ) always (op.) weakly amenable.(ii) [Spronk ‘02, Samei ‘05] A(G ) always op. weakly amenble.

Theorem [Losert ‘19, Forrest-Runde ‘04]

A(G ) weakly amenable ⇔ Ge is abelian.

Lie case (⇒): [Choi-Ghandehari ‘15, Lee-Ludwig-Samei-S. ‘16].

Page 10: Nico Spronk, U. of Waterloobanach2019/pdf/Spronk.pdf · 2019-07-21 · On operator amenability of Fourier-Stieltjes algebras Nico Spronk, U. of Waterloo Banach algebras 2019 U. of

Onto measure and Fourier-Stieltjes algebras

Philosophy: Properties of M(G ) ! properties of B(G ).

Theorem [Dales-Ghahramani-Helemskiı ‘02]

(i) M(G ) (op.) weakly amenable ⇔ G discrete.(ii) M(G ) (op.) amenable ⇔ G discrete and amenable.

M(G ) = C0(G )∗ ⇒ “amenable” = “op. amenable”.

Corollary

B(G ) amenable ⇔ G compact and virtually abelian.

Idea: B(G ) amen. ⇒ A(G ) amen. ⇒ G has cofinite abelian HM(H) ∼= B(H) = B(G )|H amenable ⇒ H compact. �

Naıve conjecture

B(G ) op. (weakly) amenable ⇔ G compact.

Page 11: Nico Spronk, U. of Waterloobanach2019/pdf/Spronk.pdf · 2019-07-21 · On operator amenability of Fourier-Stieltjes algebras Nico Spronk, U. of Waterloo Banach algebras 2019 U. of

Naıve conjecture is wrong

Theorem [Runde-S. ‘04]

B(Qp oO×p ) is operator amenable and weakly amenable.

Questions

(1) When is B(G ) operator amenable?(2) When is B(G ) (operator) weakly amenable?(3) Can we answer (1) for any specific classes? Connected groups?

Rest of talk: focus on operator amenability of B(G ).

Page 12: Nico Spronk, U. of Waterloobanach2019/pdf/Spronk.pdf · 2019-07-21 · On operator amenability of Fourier-Stieltjes algebras Nico Spronk, U. of Waterloo Banach algebras 2019 U. of

New idea: unitarizable topologies and projections

Tu(G ) = {τ ⊆ τG : (G , τ) top’l group and τ = σ(G ,Pτ )}where Pτ = {τ -cts. pos. def. func’s}.

E.g. (i) τG = σ(G ,P ∩A(G ))(ii) τap = σ(G ,Pfin), Pfin = {〈π(·)ξ, ξ〉 : π f.d., ξ ∈ Hπ}.

Often not Hausdorff, e.g. G = SLn(R),Rn o SO(n),Qp oO×p .

$τ =⊕

u∈Pτ πu (G.N.S.), τ = σ(G , {$τ})G$τ = $τ (G )

w .o.– semitopological semigroup

Gτ = U(H$τ ) ∩ G$τ – complete w.r.t. 2-sided uniformity

τ1 ⊆ τ2: $τ1 : (G , τ2)→ Gτ1 is uniformly continuous, henceuniquely extends to continuous ητ2τ1 : Gτ2 → Gτ1 with dense range.

Page 13: Nico Spronk, U. of Waterloobanach2019/pdf/Spronk.pdf · 2019-07-21 · On operator amenability of Fourier-Stieltjes algebras Nico Spronk, U. of Waterloo Banach algebras 2019 U. of

Lattice operations and central projections

τ1, τ2 ∈ Tu(G ). τ1 ∨ τ2 = σ(G , {$τ1 ⊕$τ2})τ1 ∩ τ2 = σ(G ,Pτ1 ∩ Pτ2) = σ(G ,Pτ1∩τ2)– complete lattice

$ = $τG, G$ = $(G )

w .o.

ZE(G$) = {p ∈ G$ : p2 = p, p$(s) = $(s)p ∀s ∈ G}.

p1, p2 ∈ ZE(G$). p1p2 ∈ ZE(G$), so p1 ≤ p2 if p1p2 = p1.p1 ∨ p2 =

∏{p ∈ ZE(G$) : p1 ≤ p, p2 ≤ p}.

– complete lattice

Page 14: Nico Spronk, U. of Waterloobanach2019/pdf/Spronk.pdf · 2019-07-21 · On operator amenability of Fourier-Stieltjes algebras Nico Spronk, U. of Waterloo Banach algebras 2019 U. of

A Galois connection

Theorem [S. ‘18]

(i) ∃ mapsP : Tu(G )→ ZE(G$), P(τ1) ≤ P(τ2) if τ1 ⊆ τ2T : ZE(G$)→ Tu(G ), T (p1) ⊆ T (p2) if p1 ≤ p2

P ◦ T = idZE(G$)

τ ⊆c T ◦ P(τ) : ηT◦P(τ)τ open, ker ηT◦P(τ)

τ compact.

(ii) Tu(G ) = T ◦ P(Tu(G )) complete sublattice [Tarski’s F.P.T.](iii) If τ ∈ Tu(G ) then

Bτ := P(τ) · B(G ) = {u ∈ B(G ) : τ -continuous}Iτ := (I − P(τ)) · B(G )C B(G )

so B(G ) = Bτ ⊕`1 Iτ (♥)

[Bouziad-Lamanczyk-Mentzen ‘01] Tu(Z) = {τap, τd} ∪ U|U| ≥ c (may be 2c), Zτ not l.c. for τ ∈ U

Page 15: Nico Spronk, U. of Waterloobanach2019/pdf/Spronk.pdf · 2019-07-21 · On operator amenability of Fourier-Stieltjes algebras Nico Spronk, U. of Waterloo Banach algebras 2019 U. of

Aside: decomposition of representations

Unitary rep’n π : G → U(H), let π′′ : W∗(G )→ π(G )′′ ⊆ B(H).

Theorem [S. ‘18]

If τ ∈ Tu(G ) then get π-invariant subspaces

Hτπ = π′′(P(τ))H = {ξ ∈ H : π(·)ξ, τ−cts.}

Hτ,⊥π = (I − π′′(P(τ)))H = {ξ ∈ H : 0 ∈ π(W )ξw, ∀ eG ∈W ∈ τ}

With τ = τap get:

Corollary [Jacobs ‘54, Dye ‘65, Bergelson-Rosenblatt ‘88]

Hretπ = {ξ ∈ H : ξ ∈ π(G )η

w, ∀ η ∈ π(G )ξ

w} − “return”

Hwmπ = {ξ ∈ H : 0 ∈ π(G )ξ

w} − “weakly mixing”

= {ξ ∈ H : 0 ∈ π(W )ξw, ∀ eG ∈W ∈ τap}

Page 16: Nico Spronk, U. of Waterloobanach2019/pdf/Spronk.pdf · 2019-07-21 · On operator amenability of Fourier-Stieltjes algebras Nico Spronk, U. of Waterloo Banach algebras 2019 U. of

First application to operator amenability

Theorem

B(G ) op. amenable ⇒ |Tu(G )| = |ZE(G$)| <∞.

Idea. If L ∈ Tu(G ) \ {τG} is a ∩-semilattice.Use (♥) to decompose

B(G ) = `1-⊕χ∈L

Aχ, graded: Aχ1Aχ2 ⊆ Aχ1χ2

where L = { semicharacters from L into {0, 1}}.Get complete quotient homomorphism Q : B(G )→ `1(L).If |Tu(G )| =∞, taking L↗ Tu(G ) \ {τG} shows non-op.amenability [Ghandehari-Hatami-S. ‘09, Duncan-Namioka ‘78]. �

E.g. G = Qp oO×p ,Rn o SO(n): Tu(G ) = {τap, τG}.

Page 17: Nico Spronk, U. of Waterloobanach2019/pdf/Spronk.pdf · 2019-07-21 · On operator amenability of Fourier-Stieltjes algebras Nico Spronk, U. of Waterloo Banach algebras 2019 U. of

Case of connected groups

[Ruppert ‘84] G connected ⇒ ZE(G$) = E(G$)

Theorem [Mayer ‘97]

G connected:

|Tu(G )| = |E(G$)| <∞ ⇒ G totally minimal (∗)⇒ G/M = N o R

where – M certain co-Lie compact normal subgroup,– N nilpotent connected,– R connected linear reductive, and– R y N, only fixed point is e.

(∗) ∀ closed N C G , G/N has unique Hausdorff τ ⊆ τG/N .

Page 18: Nico Spronk, U. of Waterloobanach2019/pdf/Spronk.pdf · 2019-07-21 · On operator amenability of Fourier-Stieltjes algebras Nico Spronk, U. of Waterloo Banach algebras 2019 U. of

Second application to operator amenability

Theorem

G connected: B(G ) operator amenable ⇔ G is compact.

Idea. B(G ) amenable ⇒ A(G ) has b.a.i.⇒ G amenable [Leptin ‘68].

Since, also, G/M = N o R amenable, R = K compact.

Assume G = N o K . (Removes many technicalities.)

Let V ⊆ N be in last non-trivial part of descending central series,be K -invariant and of minimal dimension ≥ 1.Notice V ⊆ Z (N), so V C G . V ∼= Rk as K y V w. no f.p.

Page 19: Nico Spronk, U. of Waterloobanach2019/pdf/Spronk.pdf · 2019-07-21 · On operator amenability of Fourier-Stieltjes algebras Nico Spronk, U. of Waterloo Banach algebras 2019 U. of

Idea ... continued

[Cowling-Rodway ‘79] B(G )|V = BK (V ) op. amenable, whereBK (V ) = {u ∈ B(V ) | k 7→ u(k•) = u · k : K → B(V ) cts.}.

⇒ BK0 (V ) = BK (V ) ∩ C0(V ), c.c. ideal ⇒ has b.a.i.

⇒ B0(V )K = {u ∈ B0(V ) | u · k = u ∀k ∈ K}averaged from BK

0 (V ) via an expectation map ⇒ admits b.a.i.

B0(V )K ∼= M0(V )K – via F.S. transform

[Ragozin ‘73] [Mc (V )K ]∗ dimV ⊆ L1(V ), so Mc(V )K = M0(V )K

but L1(V )K ( Mc (V )K . �

Page 20: Nico Spronk, U. of Waterloobanach2019/pdf/Spronk.pdf · 2019-07-21 · On operator amenability of Fourier-Stieltjes algebras Nico Spronk, U. of Waterloo Banach algebras 2019 U. of

Some odds and ends

Corollary

G almost connected: B(G ) operator amenable ⇔ G is compact.

[Liukkonen-Mislove ‘75] B(G )|Ge = B(Ge).

Remark. Question of op. amenability of B(G ) reduced to amenablegroups having:– compact connected components of identity, and– no non-compact central, nor open, abelian subgroups.

Question. G discrete: B(G ) op. amen. ⇒ |G | <∞?

Question. Op. weak amenability of B(G )? For connected G?

Page 21: Nico Spronk, U. of Waterloobanach2019/pdf/Spronk.pdf · 2019-07-21 · On operator amenability of Fourier-Stieltjes algebras Nico Spronk, U. of Waterloo Banach algebras 2019 U. of

Preprints on arXiv

S., Weakly almost periodic topologies, idempotents and ideals,arXiv:1805.09892

S., On operator amenability of Fourier-Stieltjes algebras,arXiv:1806.08421

Page 22: Nico Spronk, U. of Waterloobanach2019/pdf/Spronk.pdf · 2019-07-21 · On operator amenability of Fourier-Stieltjes algebras Nico Spronk, U. of Waterloo Banach algebras 2019 U. of

Thank-you!