Top Banner
Neutron star properties from nuclear reactions Y. Leifels GSI Helmholtzzentrum für Schwerionenforschung GmbH Darmstadt Rußbach School on Nuclear Astrophysics, 12-18 March 2017
51

Neutron star properties from nuclear reactions...Neutron star properties from nuclear reactions Y. Leifels GSI Helmholtzzentrum für Schwerionenforschung GmbH Darmstadt Rußbach School

Jan 25, 2021

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • Neutron star properties from nuclearreactions

    Y. LeifelsGSI Helmholtzzentrum für Schwerionenforschung GmbHDarmstadt

    Rußbach School on Nuclear Astrophysics,

    12-18 March 2017

  • Outline

    Introduction Neutron stars and the equation of state of neutron matter

    Heavy ion reactions and the equation of state of symmetric nuclear matter

    The Link constraining the symmetry energy by laboratory experiments

    Conclusion Outlook

    Yvonne Leifels - Rußbach 2017

  • Phase diagram of QCD matter

    Yvonne Leifels - Rußbach 2017

    Liquid gas coexistence

    early universe at zero density and high temperature neutron star at small temperature and high density first order phase transition at high density

  • From nuclei to nuclear matter:Nuclear matter equation of state

    Yvonne Leifels - Rußbach 2017

    E

    AZN

    pair3/1

    2

    c

    2

    sym3/2

    surfvol EAZa

    A)ZN(aAaAaE

    Finite nuclei:

    Infinite nuclear matter:

    Symmetric matter δ=0

    Neutron matter δ=1

    0CT E),0T,(E),T,(E),T,(E thermal compressional

    density dependentlocal potential:)(U

    dUTAE )(1)0,(/

    Esym

    ρ (MeV/fm3)

  • The equation of state of neutron and symmetric matter

    Yvonne Leifels - Rußbach 2017

    Esym

    Neutron matter

    Fuchs and Wolter, EPJA 30 (2006)

    Symmetric matter

    The nuclear matter equation of state (EOS) describes the relation between density, pressure, temperature, energy, and isospin asymmetry δ = (ρn–ρp)/ρ

    2sym )(E)0,(A

    E),(AE

    Theoretical tools ab initio methods: use NN

    interaction → solve many body problem

    effective theories: parametrizing coupling constants → solve self-consistent mean field equations

    Esym

    Neutron matter

    Fuchs and Wolter, EPJA 30 (2006)

    Symmetric matter

    δ = 1

    δ = 0Nuclear structure

    Radioactive beams

    HICs at low energies

  • Equation of state of nuclear matter

    Yvonne Leifels - Rußbach 2017

    understanding heavy ion reactions: T= 5 MeV – 180 MeV..., ρ = 10-3 – 10...ρ0 mass: 6.540 · 10-24 kg size: 1.4 · 10-14 m life time: 3 -100 · 10-24 s

  • Equation of state of nuclear matter

    understanding compact objects in astrophysics global properties of neutron stars: T = 0, ρ = 10-3 – 10ρ0 mass: 3 · 1030 kg radius: 1 · 104 m life time: essentially infinity

    Yvonne Leifels - Rußbach 2017C

    redi

    t: D

    anie

    l Pric

    e (U

    /Exe

    ter)

    and

    S

    teph

    an R

    ossw

    og(In

    t. U

    /Bre

    men

    )

  • NEUTRON STARS

    Yvonne Leifels - Rußbach 2017

  • Yvonne Leifels - Rußbach 2017

    Neutron stars

    produced in core collapse supernovae

    compact, massive objects: radius ≈ 10 km, mass 1-2 Mʘ

    extreme densities, several times normal nuclear matter density ρ>>ρ0 = 2.5·1014g/cm3

    in the middle of the CrabNebular: a fast rotatingneutron star

    bulk matter in mechanical, thermal and beta equilibrium

  • Observing neutron stars (compilation from Özel and Freire)

    Yvonne Leifels - Rußbach 2017

    nearly 2000 pulsars known of which 140 are binaries

    average mass 1.44 Mʘ heaviest neutron stars

    PSR J1614-2230 Mass: (1.97 0.04) M P. Demorest et al. 2010 Shapiro delay

    PSR J0348+0432 Mass: (2.01 0.04) M J. Antoniadis et al. 2013 White dwarf spectroscopy

  • Neutron star mass – radius relation

    Yvonne Leifels - Rußbach 2017

    P.B. Demorest et. al, doi:10.1038/nature09466J. M. Lattimer, M. Prakash, Astro.. J. 550, 426–442 (2001)

    nucleons nucleons + exotic strangeness

    solving the Tolman-Oppenheimer-Volkoff equation (describing neutron star in hydrostatic equilibrium) for specific equation of state

    Schwarzschild limit (GR): R> 2GM = RS causality limit for EOS: R > 3GM mass limit from PSR J1614-2230 (red band): M=(1.97 0.04) M

  • X-Ray burster

    Yvonne Leifels - Rußbach 2017

    Credit: Rob Hyns

    binary systems of neutron starwith small mass star

    normal companion feedingaccretion disk

    close to the neutron star crustmaterial is heated and emittingX-Rays

    outbursts of X-Rays due tounstable nuclear burning ofaccreted matter on NS surface

    analysis of red-shifted X-Ray spectra to determine the radiusof the NS

  • Mass radius – constraints from X-Ray bursters and binaries

    Yvonne Leifels - Rußbach 2017

    F. Ozel et al.http://arxiv.org/abs/1505.05155v1

    J1614-2230 Demorest et al. 2010

    J0348+0432Antoniadis et al. 2013

    X-ray emission from binary accreting neutron stars normal companion feeding

    accretion disk close to the neutron star

    crust material is heatedand emitting X-Rays

    neutron star radii R = 9 – 12 km

    Future projects in X-ray astronomy:

    Athena (ESA 2028)

  • EQUATION OF STATE OF NEUTRON MATTER

    Yvonne Leifels - Rußbach 2017

  • Equation of state of neutron matter

    Yvonne Leifels - Rußbach 2017

    K. Hebeler et al.,APJ 773 (2013)

    NS = 1.97 Mʘ

    NS = 2.4 Mʘ

  • Neutron star structure (F. Weber)

    Yvonne Leifels - Rußbach 2017

    low densities: lattice of neutrons (outer crust) higher densities: neutron fluid (inner crust, neutron matter) high densities: production of short-lived final states involving high-energetic

    n’s in initial state very high densities: even pure quark matter predicted

  • HEAVY ION REACTIONS

    Yvonne Leifels - Rußbach 2017

  • HICs: Characteristics

    Yvonne Leifels - Rußbach 2017

    below or close to Fermi Energy ~ 30 MeV/umean field dominating

    >~100 MeV/unuclear collisions getting dominant

    phase transition to quark gluon plasma

    quark matter

    280 MeV/u pion productionresonance matter

  • HICs: Characteristics

    Yvonne Leifels - Rußbach 2017

    reaching high densities, several ρ0

    thermal pressure and creation of particles

    fast, transient state, several fm/c

    non-equilibrium, dynamical system

    different N/Z ratio access to properties by

    models

    compressionparticle creation

    AuAu

    thermal γ

    p,n,d,t,α...Φ,Ξ,Ω

    π,K,η

    ρ→e±

    expansionfreeze-out

    resonance decays

    Au+Au, 1 GeV/u

    FOPI@GSI

  • FOPI detector at GSI

    Yvonne Leifels - Rußbach 2017

    FOPI@GSI

  • HICs: Models

    Yvonne Leifels - Rußbach 2017

    Statistical/thermalmodels

    employing equilibrium concepts

    Fluid dynamics analytical or quasi-analytical solutionsEOS is input quantity

    idealized continuum description assuming local equilibrium

    Microscopic transport two different approachesmean-field/NN potential as input quantity

    elastic and inelastic cross sectionsin-Medium effects

    off-shell particle propagation

  • Transport model predictions

    Yvonne Leifels - Rußbach 2017

    P. D

    anie

    lew

    icz

    et a

    l.S

    cien

    ce 2

    98, 1

    592

    (200

    2)

  • HICs: Maximum densities reached

    Yvonne Leifels - Rußbach 2017

    higher incident energy → higher density

    Bao-An Li, PRL 88, 192701 (2002)

  • EQUATION OF STATE OF NUCLEAR MATTER

    Yvonne Leifels - Rußbach 2017

  • Equation of state of symmetric nuclear matter

    Yvonne Leifels - Rußbach 2017

    infinite symmetric nuclear matter N=Z ground state properties: ρ0 = 0.16 N/fm3 and E(ρ0) = -16 MeV

    expansion in density:

    compression modulus: = 231± 5 MeV from GMR

    ...)(18

    E)0,(E 2020

    0

    2

    22 )0,(/9

    TAE

    κ = 380 MeV

    κ= 200 MeV

  • Consequences of different EOS

    Yvonne Leifels - Rußbach 2017

    a “soft” equation of state yields more compression than a hard one a “hard” equation of state results in more pressure observables which are sensitive to either density or pressure

    Density

    PressureIQMD: C. Hartnack et al.

  • udd

    udu

    uds

    su

    ddu

    np

    n

    K+

    Λ

    Kaon production is sensitive to density

    Yvonne Leifels - Rußbach 2017

    Kaon production at low incident energies (

  • Kaon production is a density meter

    Yvonne Leifels - Rußbach 2017

    Sturm et al,PRL (2001)

    nuclear matter is compressed up to 2-3 ρ0 comparisons of experimental data with different model

    predictions (!) favor a soft equation of state

    from KAOS@GSI

  • Collective flows – The manometer

    Yvonne Leifels - Rußbach 2017

    Elliptic flow v2

    Side flow v1

    R

    vvddN )2cos(2)cos(21~ 21

    0°0° 0° 180°0°-180° 0°

    Discovery at BevalacH.A. Gustafsson, et al., Phys. Rev. Lett. 52 (1984) 1590.R.E. Renfordt, et al., Phys. Rev. Lett. 53 (1984) 763.

    z

    z

    pEpEln

    21Yrapidity:

    side flow

    elliptic flow

  • Determination of the impact parameter vector b

    Yvonne Leifels - Rußbach 2017

    Modulus: number of particles ejected

    correlated to impact parameter

    Direction: momentum vectors of emitted

    particles point - on the average -into the reaction plane

  • Side and elliptic flow in mid-central Au+Au collisions

    Yvonne Leifels - Rußbach 2017

    Au+Au 1A GeV 3.5

  • Collective flows act as manometers

    Yvonne Leifels - Rußbach 2017

    P. D

    anie

    lew

    icz

    et a

    l.S

    cien

    ce 2

    98, 1

    592

    (200

    2)

    side flow

    elliptic flow

    additional constraints needed on momentum dependence of NN potential and in-medium cross sections

    newer data on elliptic flow in agreement with a soft EOS (SM)→ most available data and Kaon production is reasonably described by this model (input parameters constrained with experimental data)

    Reisdorf et al,NPA 876 (2012)

  • Equation of state of symmetric matter

    Yvonne Leifels - Rußbach 2017

    Kaon production is sensitive to density Collective flow of particles sensitive to pressure experimental data at intermediate energies suggest that the EOS for

    symmetric nuclear matter at 2-3 ρ0 is soft: κ = 200-230 MeV

    B. Lynch, Prog. Part. Nucl. Phys. 62, (2009) 427

  • SYMMETRY ENERGY

    Yvonne Leifels - Rußbach 2017

  • The equation of state of neutron and symmetric matter

    Yvonne Leifels - Rußbach 2017

    Esym

    Neutron matter

    Fuchs and Wolter, EPJA 30 (2006)

    Symmetric matter

    The nuclear matter equation of state (EOS) describes the relation between density, pressure, temperature, energy, and isospin asymmetry δ = (ρn–ρp)/ρ

    2sym )(E)0,(A

    E),(AE

    pair3/1

    2

    c

    2

    sym

    3/2surfvol

    EAZa

    A)ZN(a

    AaAaE

    Finite nuclei:

    Bethe-Weizsäcker mass formula

    δ = 1

    δ = 0

  • Nuclear symmetry energy

    Yvonne Leifels - Rußbach 2017

    Fuchs and Wolter,EPJA 30 (2006)

    Soft

    Super soft

    Hard

    0d

    )(dE3L sym0

    Slope parameter

    Largely unconstrained at high densities → related to uncertainty of three-body and tensor forces at high density

    ....18

    K3LE)(E

    2

    0

    0sym

    0

    00,symsym

  • J. LattimerAnnu. Rev. Nucl. Part.Sci 2012, 62:485

    J. Lattimer, M. Prakash, Phys. Rep. 621 (2016) 127

    L (

    MeV

    )

    S0 (MeV)

    Experimental constraints to the Symmetry energy

    Yvonne Leifels - Rußbach 2017

    Sensitive observables that are or will bemore extensively explored : masses: Isobaric Analog States (IAS) isospin diffusion between nuclei of

    different N/Z in peripheral HIC Sn+Sn

    neutron skins: scattering with electrons, anti-

    protons excitation of nuclei: Pygmy

    resonances, dipolpolarizability... neutron and proton transverse and

    elliptical flow fragmentation of hot nucleiNuclear physics and astrophysics constraints white area experimentally allowed

    overlap region

  • Experimental constraints to the Symmetry Energy

    Yvonne Leifels - Rußbach 2017

    Observables below !!! and at saturation density

    neutron stars at high densities

    ?

    cluster/HIC Sn+Sn/ IAS: Horrowitz et al. JPhG 41 (2014)Brown: arXiv:1308.3664Zhang: PLB 726 (2013)

  • Symmetry energy at high densities

    Yvonne Leifels - Rußbach 2017

    hard

    softBao-An Li, PRL 88, 192701 (2002)δ

    = (ρ

    n–ρ p

    )/ρ.

    Symmetry energy influences n/p content of the dense zone less/more neutron rich if symmetry energy is hard/soft needs observables which are testing ρn and ρp Methods compare systems with different isospin content 132Sn+124Sn ↔ 112Sn+112Sn study isospin partners n/p, t/3He, π-/π+, K+/K0

  • Elliptic flow of neutrons and protons

    Yvonne Leifels - Rußbach 2017

    Elliptic flow v2 of n/p UrQMD (Q. Li et al.) predicts:

    neutron flow much larger

    neutron, proton flow equal

    Towards model invariance:tested stability with different models:

    observation is robust various microscopic models tested independent on input parameters

    M.D. Cozma et al., arXiv:1305.5417P. Russotto et al., PLB 267 (2010) Y. Wang et al.,PRC 89, 044603 (2014)

    “hard” Esym(ρ)

    “soft” Esym(ρ) -v2

    -v2

    UrQMD: Qingfeng Li et al.Data. W. Reisdorf et al.

  • ASY – EOS Experiment

    n/charged particles

    impact parameter reaction planereaction planebackground

    charged particles

    background measurements for neutrons (shadow bars)

    400A MeV Au+Au, 96Zr+Zr, 96Ru+Ru at GSI

    TOF-Wall: 96 plasticbars

    CHIMERA: 352CsJ(Tl), 16 siliconpad detectors

    μ-Ball: 50 CsJ(Tl)

    Yvonne Leifels - Rußbach 2017

  • Elliptic flow ratio of neutrons and charged particle

    Yvonne Leifels - Rußbach 2017

    parametrization for SE used in the UrQMD model: Esym = Esympot+Esymkin = 22MeV·(ρ/ρ0)

    γ+12MeV·(ρ/ρ0)2/3

    systematic errors corrected: γ = 0.72 ± 0.19 slope parameter: L = 72 ± 13 MeV, Esym(ρ0) = 34 MeV slope parameter: L = 63 ± 11 MeV, Esym(ρ0) = 31 MeV

    P. R

    usso

    tto e

    t al.,

    PR

    C (2

    017)

  • Characteristic density regime

    Yvonne Leifels - Rußbach 2017

    deducing density at which the difference between neutron and charged particle (p, H, all charged particles) flow is originating by using transport models

    slope of Esym(ρ) constrained in this density regime!

  • Resulting symmetry energy

    Yvonne Leifels - Rußbach 2017

    equation of state of symmetric nuclear matter symmetry energy

    can be constrained by the systematic study of comparison of the flow of neutrons and charged particles

    P. Russotto et al., PLB 267 (2010) P. Russotto et al., PRC (2017)

    A. LeFevre et al., NPA (2016)

  • symmetry energy influences n/p ratio → nn, np, pp collisions

    hard SE

    inconsistent with results from neutron and proton flow

    models are inconclusivesoft ↔ hard ↔ no dependence on SE

    medium pion optical potential, self energies,

    different for π- and π+ production via ∆ resonances, potential s- vs p-wave production

    hard SE

    It is not always that simple: Pion production

    Yvonne Leifels - Rußbach 2017

    hard

    soft

    Au+Au, b < 2.5 fm

    Data: W. Reisdorf et al., NPA 781 (2007)Calculations: Z. Xiao et al, PRL 102, (2009)

    )(Y)(Y

    pn

    ,

    ,0

  • The trick: changing the isospin of the colliding system

    Yvonne Leifels - Rußbach 2017

    compare π- production in 132Sn+124Sn and 108Sn+112Sn different in-medium properties for pions not relevant no Coulomb effects experiment just done at Riken from the SPIRIT collaboration

    B. Z

    hang

    et a

    l., P

    RC

    (201

    7)

  • Measuring pion production with radioactive beams

    SAMURAI TPC

    RAONSPIRIT TPCin SAMURAI Magnet

    Charged particles and neutronsin HICs upto 400 AMeV Rectangular TPC With 12000 pads in x-z direction Active target option Inside a magnet (→ charged pions) Neutron detector

    Yvonne Leifels - Rußbach 2017

  • CONCLUSION AND OUTLOOK

    Yvonne Leifels - Rußbach 2017

  • Conclusion

    Yvonne Leifels - Rußbach 2017

    Kaon and charged particle flow give consistent constraints on the symmetric part of the EOS soft κ = 200-230 MeV models „benchmarked“

    extend to higher energies planned models predict observables of heavy ion

    collisions give constraints to the nuclear symmetry energy at high densities

    at the moment only very few measurements have been done n/p/charged particle flow in Au+Au

    done Pion production just measured

    robust observables model invariant ratios double ratios

    Close collaboration between experiments and theory important Esym(ρ0) (MeV)

    L (

    MeV

    )

    J. Lattimer, M. Prakash, Phys. Rep. 621 (2016) 127

  • OUTLOOK

    Yvonne Leifels - Rußbach 2017

  • FAIR in 2025

    Yvonne Leifels - Rußbach 2017

    THANK YOU FOR YOUR ATTENTION