Top Banner
neutrino Particle Astrophysics (3) John Carr ntre de Physique des Particules de Marseille (IN2P3 CERN Summer Student Lectures, 24 July 2002 Cosmic Ray Observations Gamma Rays Astronomy Neutrino Astronomy High Energy Astronomy
41

neutrino

Jan 22, 2016

Download

Documents

edana

Particle Astrophysics (3). John Carr Centre de Physique des Particules de Marseille (IN2P3/CNRS). CERN Summer Student Lectures, 24 July 2002. High Energy Astronomy. Cosmic Ray Observations Gamma Rays Astronomy Neutrino Astronomy. - PowerPoint PPT Presentation
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: neutrino

neutrino

Particle Astrophysics (3) John Carr Centre de Physique des Particules de Marseille (IN2P3/CNRS)

CERN Summer Student Lectures, 24 July 2002

Cosmic Ray ObservationsGamma Rays AstronomyNeutrino Astronomy

High Energy Astronomy

Page 2: neutrino

GeV: atmosphere

Gravity waves

Axions

Electromagneticradiation -> 100 TeV

Cosmic rayparticles -> 1020 eV

Neutrinos(MeV: sun, SNGeV: atmospherePeV: CR accelerators)

Dark matter

(W. Hoffmann)

Page 3: neutrino

Thermal Radiation from Stars

103 105 107 109 1011 1013 1015

frequency(MHz)

Flux watts/m2

106

102

10-2

10-6

10-12

i.r. u.v. X ray gamma rays->

T=10000KT=6000K

Normal Stars surface temperature ~3000 to 30000K thermal radiation: radio ultra -violet non-thermal radiation: X-rays, gamma rays ( higher in energy more extreme is the source)

radio

Page 4: neutrino

The Crab in Multi-Wavelengths Photons

Infrared Optical X-rayRadio

Page 5: neutrino

Galactic Co-ordinate System

+180°180°

+90°

90°

Page 6: neutrino

?

Multi-Wavelength Photons

Infra-rouge

Ondes radio

Lumière visible

Rayons X

Rayons gamma

Neutrinos

Satellite COBE

Radio télescope de Bonn

Télescope du Mont Palomar

Satellite INTEGRAL

Satellite CGRO

Télescope à neutrinos ANTARES

Radio

Gamma Ray

Infrared

X-ray

Visible light

Page 7: neutrino

Hot plasma (surface of stars)

Bremsstrahlung / Synchrotron Radiation

Inverse Compton Scattering

ee

magnetic field

Annihilation of matter/antimatter

e-

e+

e

e

High energy showers p

interstellar matter

interstellar matter

+

0

Production Mechanisms of Photons

Page 8: neutrino

Non-Photonic Astronomy

Antares (Toulon) Gravitational WavesVirgo (Pisa)

High Energy Cosmic Rays

Auger (Argentina)Neutrinos

Page 9: neutrino

Simulations indicate can get~ 50% of energy of supernova explosion

Cosmic Rays by ~1000 yrs

Acceleration of High Energy Particles p accelerated in shock waves:non-relativistic supernova remnantsrelativistic quasars/microquasars

p/A + p/ e

e

p interact with interstellar matter and produce showers :

Page 10: neutrino

Types of Cosmic Ray Detectors

Satellites

Array of particle detectors on ground

Whipple >1 TeV

Compton Gamma Ray Obs.

EGRET

BATSE 0.1-10GeV

KASCADEp,N 0.3-100PeV

KASCADEp,N 0.3-100PeVGround based telescopes

looking at light produced in atmosphere

Arrays of particle detectors

ground level

top of atmosphere

Page 11: neutrino

Ground, Air Shower Arrays

CASA - KASCADE - AGASA - AUGER

Space observed Shower

EUSO

Satellite, ballons AMS

Whipple-CAT-HEGRA-CELESTE H.E.S.S.-MAGIC-VERITAS

satellite

telescopes

telescopes

CCGO, GLAST

AMANDA, ANTARES

Charged Cosmic Ray Energy Spectrum

‘knee’

‘ankle’

Why thesefeatures ?

Page 12: neutrino

Features of Cosmic Ray SpectrumE

2 dN

/dE

[c m

-2 s

-1 s

r-1 e

V]

E [ eV/nucleus]

E2.7

E3.2

E2.8ankle

dN/dE E propagatio

n

source

= 2.0 to 2.2,..

= 0.3 to 0.6

‘Conventional Wisdom’: Galactic SNR

Extragalactic E > 3 1018 eV exotic E > 7 1019 eV

Source acceleration:

Source cut-off eV

GZK cut-off on CMB E 7 1019 eV

Diffusion models

Galactic lossesE < 3 1018 eVE > 4 1014 eV

Ingredients of models:

isotropicMass composition ?

BG E <1018 Z

Rkpcknee

Page 13: neutrino

Cosmic Rays Spectrum: Knee and Ankle

Flux E2.7 Flux E3

Page 14: neutrino

Explanations of knee (E~3.1015 eV)

• Galactic de-confinement• Single dominant source• Single SNR acceleration multiple SNR acceleration

• Absorption on massive neutrinos in galaxy

• New interaction effects in atmosphere

Various interactions invoked to give threshold at E = 3 1015 eV. eg. p + e n + e, with M(e) = 0.1 eV p + + ,, with M() = 100 eV

Particle Physics type explanations

Astronomy type explanations

Page 15: neutrino

Mass composition from shower depth

Page 16: neutrino

1015 1016 1017

1.5

2.5

0.5

3.5

<ln A>

Energy eV

CASA-BLANCA

Flux E2.5 Mean ln(A)

Mass composition at kneeAverage shower depth and ratio N / Ne sensitive to primary mass (NB. Mass composition extracted is very sensitive to Monte Carlo simulation)

KASCADEKASCADE

KASCADE series of knees at different energies: p,He,..,C,..,Fe. E(Knee) Z knee due to source confinement cut-off ?

Page 17: neutrino

‘GZK cutoff ’ HE cosmic rays

HE gamma rays

Mrk 501 120Mpc

Mrk 421 120Mpc

Sources uniform in universe

100 Mpc

10 Mpc

e+ e

p N

Interaction with background ( infrared and 2.7K CMBR)

Page 18: neutrino

• ‘Bottom-Up’ : acceleration - pulsars in galaxy, - radio lobes of AGN (proximity a problem due to GZK, also should see source)

• ‘Top-Down’ : decay of massive particles - GUT X particles with mass > 1020 eV and long lifetimes - Topological defects - Neutrinos as messenger particle

• New Physics

Explanations of Ankle/ E > 1020 eV events

Particle Physics type explanations

Astronomy type explanations

Page 19: neutrino

M. Masetti

Cosmic rays cannot be used to image the Universe...

PeV proton

Page 20: neutrino

But we try anyway….

308/242.5 in 20

E> 4 1019 eV

SunSNR

Galactic source ?

galactic plane

GC

anti GC See events from same place in < 2.5 3 doublets and 1 triplet

Are these sources?

Or random chance coincidences? Probability < 1% that is chance

8 1017 <E< 8 1018 eV

Page 21: neutrino

Water Cherenkov

Tanks

(1600 each 10m2)

Fluorescence Telescopes (6 telescopes each 30 at 4 sites)

2 sites each 3000km2, E > 5.1018eV

Southern site, Mendoza Province, Argentina

3.5m mirrors

AUGER experiment

Page 22: neutrino

AMS Experiment

Space Shuttle June 1998

Detailed measurements on Cosmic Ray composition: anti-matter ?

limit on anti-helium/helium ratio < 106

International Space Station 2004

Page 23: neutrino

Gamma Ray AstronomyLow Energy Gamma Astronomy from satellites

GLAST XMM Integral

CELESTE

CATSTACEE

CELESTE

High Energy Gamma Astronomy from ground

Page 24: neutrino

Gamma-Ray Burst StoryGamma Ray Burst were first detected by the Vela satellites that were developed in the sixties to monitor nuclear test ban treaties.

1st GRB

Page 25: neutrino

Burst duration

Gamma Ray Bursts

Redshifts measured for about 20 extragalactic distances

1-2 per day observed by BATSE

Some evidencefor GRB onsites of previoussupernova

Isotropic sky distribution

Two types ?

Page 26: neutrino

Imaging Gamma Ray Telescopes

Page 27: neutrino

Future projects in high-energy gamma-ray astronomy

MAGIC

CANGAROO

VERITAS

H.E.S.S.

Page 28: neutrino

Markarian 421: a Blazar

Page 29: neutrino

Flares from Markarian 421

X-Ray

TeV

Correlation of flares at different wavelengths

Timescale of flares indicatesolar system dimensions of source

Page 30: neutrino

Sgr A*

VLA 2cm VLBI 6 mm

Radio

Infrared1”

= 0

,04 p

c

Black Hole horizon ?

Black Hole mass

Black Hole at Galactic Centre

Page 31: neutrino

(EGRET sources)

SUGAR “<0.5% fluctuation”

Cosmic Ray Source 7 from Galactic Centre

AGASA “4.5” effect

Cosmic Rays

RXJ 1713.7-3946

TeV Gamma rays

GeV Gamma raysGalactic centre

Galactic Centre in Multi-Messengers

Cosmic Rays E ~ 1018 eV

Page 32: neutrino

Neutrino Telescope Projects

NESTOR : Pylos, Greece

ANTARES La-Seyne-sur-Mer, France ( NEMO Catania, Italy ) BAIKAL: Lake Baikal, Siberia

DUMAND, Hawaii (cancelled 1995)

AMANDA, South Pole, Antarctica

Page 33: neutrino

Neutrinos weakly interacting in matter

103

106

109

1 103 106

E (TeV)

Equivalent Earth diameter

Neu

trin

o in

tera

ctio

n le

ngth

(km

wa t

e r e

quiv

ale n

t)

Low cross-section good : Astronomic sources and universe transparent to neutrinos Earth transparent up to 100 TeV bad : Need massive detector

Interaction length of neutrinos vs energy

Page 34: neutrino

Why in deep sea / glacier ?

Need enormous mass detector : ~ 30 M tonnes ,Calorimeter in iron > 5000 Meuro for iron alone,H2O matter free, detector system ~ 20 Meuro

Need to have > 1000 m depthto absorb light and cosmics rays

Tank in a cavern eg SuperKamiokande 30 K tonnesMega projects discuss 1 M tonne for few 100 Meuro

Page 35: neutrino

South Pole: glacial ice

1993 First strings AMANDA A1998 AMANDA B10 ~ 300 Optical Modules

2000 ~ 700 Optical Modules

ICECUBE 8000 Optical Modules

AMANDA

> 50GeV

AMANDA

Page 36: neutrino

AMANDA: Drill Holes in ice with Hot Water

Page 37: neutrino

AMANDA Search for Neutrino Point Sources

vertically up horizontally

~ 300 events

Events consistent with neutrinos produced in atmosphere,No evidence yet for astrophyisical sources of neutrinos

Page 38: neutrino

Future in telescopes: ANTARES1996 Started 1996 - 2000 Site exploration and demonstrator line2001 - 2004 Construction of 10 line detector, area ~0.1km2 on Toulon site future 1 km3 in Mediterranean

Angular resolution <0.4° for E>10 TeV

Page 39: neutrino

2500m2500m

300m300mactiveactive

Electro-opticElectro-opticsubmarine cablesubmarine cable ~40km~40km

Junction boxJunction box

Readout cablesReadout cables

Shore stationShore station

anchoranchor

floatfloat

Electronics containersElectronics containers

~60m~60mCompass,Compass,tilt metertilt meter

hydrophonehydrophone

Optical moduleOptical module

Acoustic beaconAcoustic beacon

ANTARES 0.1km2 Detector

~100m

13 strings12 m between storeys

Page 40: neutrino

Demonstrator LineNov 1999- Jun 2000

42°59 N, 5°17 E Depth 1200 m

ANTARES 0.1km2 Site42°50 N, 6°10 E Depth 2400 m

Existing CableMarseille-Corsica

Marseille

ToulonLa Seyne sur Mer

New Cable (2001)La Seyne-ANTARES

ANTARES Deployment Sites

~ 40 deployments and recoveries of test lines for site exploration0.1 km2 detector with 900 Optical Modules, deployment 2002- 2004

ThetysThetys

Page 41: neutrino

ReferencesBooks:Particle Astrophysics, H.V. Klapdor-Kleingrothaus and K. ZuberThe Big Bang, J.SilkThe Physics of Stars, A.C. Phillips

Preprints:Introduction to Cosmology, David H. Lyth, astro-ph/9312022Cosmological Parameters, Michael S. Turner, astro-ph/9904051Non-Baryonic Dark Matter, Lars Bergstrom, hep-ph/0002126

Transparencies of School/Workshop:Neutrino Particle Astrophysics , http://leshouches.in2p3.fr

For more details contact me at: [email protected]

Discussion Session, Council Chamber, 11:15