Top Banner
McGraw-Hill  ©The McGraw-Hill Companies, Inc., 2004 Ph ys i cal L ayer  PART II
77

networks ch_03.ppt

Apr 14, 2018

Download

Documents

Mansoor Khalil
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: networks ch_03.ppt

7/27/2019 networks ch_03.ppt

http://slidepdf.com/reader/full/networks-ch03ppt 1/77

McGraw-Hill  ©The McGraw-Hill Companies, Inc., 2004 

Physical Layer 

PART II

Page 2: networks ch_03.ppt

7/27/2019 networks ch_03.ppt

http://slidepdf.com/reader/full/networks-ch03ppt 2/77

McGraw-Hill  ©The McGraw-Hill Companies, Inc., 2004 

Position of the physical layer

Page 3: networks ch_03.ppt

7/27/2019 networks ch_03.ppt

http://slidepdf.com/reader/full/networks-ch03ppt 3/77

Services

Page 4: networks ch_03.ppt

7/27/2019 networks ch_03.ppt

http://slidepdf.com/reader/full/networks-ch03ppt 4/77

McGraw-Hill  ©The McGraw-Hill Companies, Inc., 2004 

Chapters

Chapter 3  Signals 

Chapter 4  Digital Transmission 

Chapter 5  Analog Transmission 

Chapter 6  Multiplexing 

Chapter 7  Transmission M edia 

Chapter 8  Circuit Switching and Telephone Network 

Chapter 9  H igh Speed Digital Access 

Page 5: networks ch_03.ppt

7/27/2019 networks ch_03.ppt

http://slidepdf.com/reader/full/networks-ch03ppt 5/77

McGraw-Hill  ©The McGraw-Hill Companies, Inc., 2004 

Chapter 3 

Signals 

Page 6: networks ch_03.ppt

7/27/2019 networks ch_03.ppt

http://slidepdf.com/reader/full/networks-ch03ppt 6/77

McGraw-Hill  ©The McGraw-Hill Companies, Inc., 2004 

To be transmi tted, data must be 

transformed to electromagnetic signals.

 Note:

Page 7: networks ch_03.ppt

7/27/2019 networks ch_03.ppt

http://slidepdf.com/reader/full/networks-ch03ppt 7/77McGraw-Hill  ©The McGraw-Hill Companies, Inc., 2004 

3.1 Analog and Digital

Analog and Digital Data 

Analog and Digital Signals 

Periodic and Aperiodic Signals 

Page 8: networks ch_03.ppt

7/27/2019 networks ch_03.ppt

http://slidepdf.com/reader/full/networks-ch03ppt 8/77McGraw-Hill  ©The McGraw-Hill Companies, Inc., 2004 

Signals can be analog or digital.

Analog signals can have an inf inite number of values in a range; digital 

signals can have only a limited 

number of values.

 Note:

Page 9: networks ch_03.ppt

7/27/2019 networks ch_03.ppt

http://slidepdf.com/reader/full/networks-ch03ppt 9/77McGraw-Hill  ©The McGraw-Hill Companies, Inc., 2004 

Figure 3.1  Comparison of analog and digital signals

Page 10: networks ch_03.ppt

7/27/2019 networks ch_03.ppt

http://slidepdf.com/reader/full/networks-ch03ppt 10/77McGraw-Hill  ©The McGraw-Hill Companies, Inc., 2004 

I n data communication, we commonly 

use periodic analog signals and aper iodic digital signals.

 Note:

Page 11: networks ch_03.ppt

7/27/2019 networks ch_03.ppt

http://slidepdf.com/reader/full/networks-ch03ppt 11/77McGraw-Hill  ©The McGraw-Hill Companies, Inc., 2004 

3.2 Analog Signals

Sine Wave 

Phase 

Examples of Sine Waves 

Time and Frequency Domains 

Composite Signals Bandwidth 

Page 12: networks ch_03.ppt

7/27/2019 networks ch_03.ppt

http://slidepdf.com/reader/full/networks-ch03ppt 12/77McGraw-Hill  ©The McGraw-Hill Companies, Inc., 2004 

Figure 3.2  A sine wave 

Page 13: networks ch_03.ppt

7/27/2019 networks ch_03.ppt

http://slidepdf.com/reader/full/networks-ch03ppt 13/77McGraw-Hill  ©The McGraw-Hill Companies, Inc., 2004 

Figure 3.3  Amplitude 

Page 14: networks ch_03.ppt

7/27/2019 networks ch_03.ppt

http://slidepdf.com/reader/full/networks-ch03ppt 14/77McGraw-Hill  ©The McGraw-Hill Companies, Inc., 2004 

Frequency and period are inverses of 

each other.

 Note:

Page 15: networks ch_03.ppt

7/27/2019 networks ch_03.ppt

http://slidepdf.com/reader/full/networks-ch03ppt 15/77McGraw-Hill  ©The McGraw-Hill Companies, Inc., 2004 

Figure 3.4  Period and frequency 

Page 16: networks ch_03.ppt

7/27/2019 networks ch_03.ppt

http://slidepdf.com/reader/full/networks-ch03ppt 16/77McGraw-Hill  ©The McGraw-Hill Companies, Inc., 2004 

Table 3.1 Uni ts of per iods and frequencies 

Unit Equivalent Unit Equivalent

Seconds (s) 1 s hertz (Hz) 1 Hz

Milliseconds (ms) 10 – 3 s kilohertz (KHz) 103 Hz

Microseconds (ms) 10 – 6 s megahertz (MHz) 106 Hz

Nanoseconds (ns) 10 – 9 s gigahertz (GHz) 109 Hz

Picoseconds (ps) 10 – 12 s terahertz (THz) 1012 Hz

Page 17: networks ch_03.ppt

7/27/2019 networks ch_03.ppt

http://slidepdf.com/reader/full/networks-ch03ppt 17/77McGraw-Hill  ©The McGraw-Hill Companies, Inc., 2004 

Example 1 

Express a period of 100 ms in microseconds, and express

the corresponding frequency in kilohertz.

Solution 

From Table 3.1 we find the equivalent of 1 ms.We makethe following substitutions:

100 ms = 100 10-3 s = 100 10-3  106 ms = 105 ms 

 Now we use the inverse relationship to find thefrequency, changing hertz to kilohertz

100 ms = 100 10-3 s = 10-1 s

 f = 1/10-1 Hz = 10 10-3 KHz = 10-2 KHz 

Page 18: networks ch_03.ppt

7/27/2019 networks ch_03.ppt

http://slidepdf.com/reader/full/networks-ch03ppt 18/77McGraw-Hill  ©The McGraw-Hill Companies, Inc., 2004 

Frequency is the rate of change with 

respect to time. Change in a short span of time means high f requency. Change 

over a long span of time means low 

frequency.

 Note:

Page 19: networks ch_03.ppt

7/27/2019 networks ch_03.ppt

http://slidepdf.com/reader/full/networks-ch03ppt 19/77McGraw-Hill  ©The McGraw-Hill Companies, Inc., 2004 

I f a signal does not change at all, its 

frequency is zero. I f a signal changes instantaneously, its frequency is 

infinite.

 Note:

Page 20: networks ch_03.ppt

7/27/2019 networks ch_03.ppt

http://slidepdf.com/reader/full/networks-ch03ppt 20/77McGraw-Hill  ©The McGraw-Hill Companies, Inc., 2004 

Phase describes the position of the 

waveform relative to time zero.

 Note:

Page 21: networks ch_03.ppt

7/27/2019 networks ch_03.ppt

http://slidepdf.com/reader/full/networks-ch03ppt 21/77McGraw-Hill  ©The McGraw-Hill Companies, Inc., 2004 

Figure 3.5  Relationships between diff erent phases 

Page 22: networks ch_03.ppt

7/27/2019 networks ch_03.ppt

http://slidepdf.com/reader/full/networks-ch03ppt 22/77

McGraw-Hill  ©The McGraw-Hill Companies, Inc., 2004 

Example 2 

A sine wave is offset one-sixth of a cycle with respect

to time zero. What is its phase in degrees and radians?

Solution

We know that one complete cycle is 360 degrees.

Therefore, 1/6 cycle is

(1/6) 360 = 60 degrees = 60 x 2p /360 rad = 1.046 rad 

Page 23: networks ch_03.ppt

7/27/2019 networks ch_03.ppt

http://slidepdf.com/reader/full/networks-ch03ppt 23/77

McGraw-Hill  ©The McGraw-Hill Companies, Inc., 2004 

Figure 3.6  Sine wave examples 

Page 24: networks ch_03.ppt

7/27/2019 networks ch_03.ppt

http://slidepdf.com/reader/full/networks-ch03ppt 24/77

McGraw-Hill  ©The McGraw-Hill Companies, Inc., 2004 

Figure 3.6  Sine wave examples (continued) 

Page 25: networks ch_03.ppt

7/27/2019 networks ch_03.ppt

http://slidepdf.com/reader/full/networks-ch03ppt 25/77

McGraw-Hill  ©The McGraw-Hill Companies, Inc., 2004 

Figure 3.6  Sine wave examples (continued) 

Page 26: networks ch_03.ppt

7/27/2019 networks ch_03.ppt

http://slidepdf.com/reader/full/networks-ch03ppt 26/77

McGraw-Hill  ©The McGraw-Hill Companies, Inc., 2004 

An analog signal is best represented in 

the frequency domain.

 Note:

Fi 3 7 f

Page 27: networks ch_03.ppt

7/27/2019 networks ch_03.ppt

http://slidepdf.com/reader/full/networks-ch03ppt 27/77

McGraw-Hill  ©The McGraw-Hill Companies, Inc., 2004 

Figure 3.7  Time and f requency domains 

Fi 3 7 Ti d f d i ( ti d)

Page 28: networks ch_03.ppt

7/27/2019 networks ch_03.ppt

http://slidepdf.com/reader/full/networks-ch03ppt 28/77

McGraw-Hill  ©The McGraw-Hill Companies, Inc., 2004 

Figure 3.7  Time and frequency domains (continued) 

Fi 3 7 Ti d f d i ( ti d)

Page 29: networks ch_03.ppt

7/27/2019 networks ch_03.ppt

http://slidepdf.com/reader/full/networks-ch03ppt 29/77

McGraw-Hill  ©The McGraw-Hill Companies, Inc., 2004 

Figure 3.7  Time and frequency domains (continued) 

Page 30: networks ch_03.ppt

7/27/2019 networks ch_03.ppt

http://slidepdf.com/reader/full/networks-ch03ppt 30/77

McGraw-Hill  ©The McGraw-Hill Companies, Inc., 2004 

A single-f requency sine wave is not 

useful in data communications; we need to change one or more of its 

character istics to make it useful. 

 Note:

Page 31: networks ch_03.ppt

7/27/2019 networks ch_03.ppt

http://slidepdf.com/reader/full/networks-ch03ppt 31/77

McGraw-Hill  ©The McGraw-Hill Companies, Inc., 2004 

When we change one or more 

character istics of a single-f requency signal, it becomes a composite signal 

made of many frequencies.

 Note:

Page 32: networks ch_03.ppt

7/27/2019 networks ch_03.ppt

http://slidepdf.com/reader/full/networks-ch03ppt 32/77

McGraw-Hill  ©The McGraw-Hill Companies, Inc., 2004 

According to Four ier analysis, any 

composite signal can be represented as a combination of simple sine waves 

with different f requencies, phases, and 

amplitudes.

 Note:

Figure 3 8 Square wave

Page 33: networks ch_03.ppt

7/27/2019 networks ch_03.ppt

http://slidepdf.com/reader/full/networks-ch03ppt 33/77

McGraw-Hill  ©The McGraw-Hill Companies, Inc., 2004 

Figure 3.8  Square wave 

Figure 3 9 Three harmonics

Page 34: networks ch_03.ppt

7/27/2019 networks ch_03.ppt

http://slidepdf.com/reader/full/networks-ch03ppt 34/77

McGraw-Hill  ©The McGraw-Hill Companies, Inc., 2004 

Figure 3.9  Three harmonics 

Figure 3 10 Adding f irst three harmonics

Page 35: networks ch_03.ppt

7/27/2019 networks ch_03.ppt

http://slidepdf.com/reader/full/networks-ch03ppt 35/77

McGraw-Hill  ©The McGraw-Hill Companies, Inc., 2004 

Figure 3.10  Adding f irst three harmonics 

Figure 3 11 Frequency spectrum comparison

Page 36: networks ch_03.ppt

7/27/2019 networks ch_03.ppt

http://slidepdf.com/reader/full/networks-ch03ppt 36/77

McGraw-Hill  ©The McGraw-Hill Companies, Inc., 2004 

Figure 3.11  Frequency spectrum comparison 

Figure 3 12 Signal corr uption

Page 37: networks ch_03.ppt

7/27/2019 networks ch_03.ppt

http://slidepdf.com/reader/full/networks-ch03ppt 37/77

McGraw-Hill  ©The McGraw-Hill Companies, Inc., 2004 

Figure 3.12  Signal corr uption 

Page 38: networks ch_03.ppt

7/27/2019 networks ch_03.ppt

http://slidepdf.com/reader/full/networks-ch03ppt 38/77

McGraw-Hill  ©The McGraw-Hill Companies, Inc., 2004 

The bandwidth is a property of a 

medium: I t is the difference between the highest and the lowest frequencies 

that the medium can 

satisfactor i ly pass. 

 Note:

Page 39: networks ch_03.ppt

7/27/2019 networks ch_03.ppt

http://slidepdf.com/reader/full/networks-ch03ppt 39/77

McGraw-Hill  ©The McGraw-Hill Companies, Inc., 2004 

I n this book, we use the term 

bandwidth to refer to the property of a medium or the width of a single 

spectrum. 

 Note:

Figure 3 13 Bandwidth

Page 40: networks ch_03.ppt

7/27/2019 networks ch_03.ppt

http://slidepdf.com/reader/full/networks-ch03ppt 40/77

McGraw-Hill  ©The McGraw-Hill Companies, Inc., 2004 

Figure 3.13  Bandwidth 

Page 41: networks ch_03.ppt

7/27/2019 networks ch_03.ppt

http://slidepdf.com/reader/full/networks-ch03ppt 41/77

McGraw-Hill  ©The McGraw-Hill Companies, Inc., 2004 

Example 3 

If a periodic signal is decomposed into five sine waves

with frequencies of 100, 300, 500, 700, and 900 Hz,what is the bandwidth? Draw the spectrum, assuming all

components have a maximum amplitude of 10 V.

Solution

 B = f h -  f l  = 900 - 100 = 800 Hz

The spectrum has only five spikes, at 100, 300, 500, 700,and 900 (see Figure 13.4 ) 

Figure 3.14 Example 3

Page 42: networks ch_03.ppt

7/27/2019 networks ch_03.ppt

http://slidepdf.com/reader/full/networks-ch03ppt 42/77

McGraw-Hill  ©The McGraw-Hill Companies, Inc., 2004 

Figure 3.14  Example 3 

Page 43: networks ch_03.ppt

7/27/2019 networks ch_03.ppt

http://slidepdf.com/reader/full/networks-ch03ppt 43/77

McGraw-Hill  ©The McGraw-Hill Companies, Inc., 2004 

Example 4 

A signal has a bandwidth of 20 Hz. The highest frequency

is 60 Hz. What is the lowest frequency? Draw thespectrum if the signal contains all integral frequencies of 

the same amplitude.

Solution

B = f h - f l

20 = 60 - f l

f l = 60 - 20 = 40 Hz

Figure 3.15 Example 4

Page 44: networks ch_03.ppt

7/27/2019 networks ch_03.ppt

http://slidepdf.com/reader/full/networks-ch03ppt 44/77

McGraw-Hill  ©The McGraw-Hill Companies, Inc., 2004 

Figure 3.15  Example 4 

Page 45: networks ch_03.ppt

7/27/2019 networks ch_03.ppt

http://slidepdf.com/reader/full/networks-ch03ppt 45/77

McGraw-Hill  ©The McGraw-Hill Companies, Inc., 2004 

Example 5 

A signal has a spectrum with frequencies between 1000

and 2000 Hz (bandwidth of 1000 Hz). A medium can passfrequencies from 3000 to 4000 Hz (a bandwidth of 1000

Hz). Can this signal faithfully pass through this medium?

Solution

The answer is definitely no. Although the signal can havethe same bandwidth (1000 Hz), the range does not

overlap. The medium can only pass the frequencies

 between 3000 and 4000 Hz; the signal is totally lost.

Page 46: networks ch_03.ppt

7/27/2019 networks ch_03.ppt

http://slidepdf.com/reader/full/networks-ch03ppt 46/77

McGraw-Hill  ©The McGraw-Hill Companies, Inc., 2004 

3.3 Digital Signals

Bit I nterval and Bit Rate 

As a Composite Analog Signal 

Through Wide-Bandwidth Medium 

Through Band-L imited Medium 

Versus Analog Bandwidth 

H igher Bit Rate 

Figure 3.16  A digital signal 

Page 47: networks ch_03.ppt

7/27/2019 networks ch_03.ppt

http://slidepdf.com/reader/full/networks-ch03ppt 47/77

McGraw-Hill  ©The McGraw-Hill Companies, Inc., 2004 

g g g

Page 48: networks ch_03.ppt

7/27/2019 networks ch_03.ppt

http://slidepdf.com/reader/full/networks-ch03ppt 48/77

McGraw-Hill  ©The McGraw-Hill Companies, Inc., 2004 

Example 6 

A digital signal has a bit rate of 2000 bps. What is the

duration of each bit (bit interval)

Solution

The bit interval is the inverse of the bit rate.

Bit interval = 1/ 2000 s = 0.000500 s

= 0.000500 x 10

6

 ms = 500 ms

Figure 3.17  Bi t rate and bit interval 

Page 49: networks ch_03.ppt

7/27/2019 networks ch_03.ppt

http://slidepdf.com/reader/full/networks-ch03ppt 49/77

McGraw-Hill  ©The McGraw-Hill Companies, Inc., 2004 

g

Figure 3.18  Digital versus analog 

Page 50: networks ch_03.ppt

7/27/2019 networks ch_03.ppt

http://slidepdf.com/reader/full/networks-ch03ppt 50/77

McGraw-Hill  ©The McGraw-Hill Companies, Inc., 2004 

Page 51: networks ch_03.ppt

7/27/2019 networks ch_03.ppt

http://slidepdf.com/reader/full/networks-ch03ppt 51/77

McGraw-Hill  ©The McGraw-Hill Companies, Inc., 2004 

A digital signal is a composite signal 

with an inf ini te bandwidth.

 Note:

Page 52: networks ch_03.ppt

7/27/2019 networks ch_03.ppt

http://slidepdf.com/reader/full/networks-ch03ppt 52/77

McGraw-Hill  ©The McGraw-Hill Companies, Inc., 2004 

Table 3.12 Bandwidth Requirement 

Bit

Rate

Harmonic

1

Harmonics

1, 3

Harmonics

1, 3, 5

Harmonics

1, 3, 5, 7

1 Kbps 500 Hz 2 KHz 4.5 KHz 8 KHz

10 Kbps 5 KHz 20 KHz 45 KHz 80 KHz

100 Kbps 50 KHz 200 KHz 450 KHz 800 KHz

Page 53: networks ch_03.ppt

7/27/2019 networks ch_03.ppt

http://slidepdf.com/reader/full/networks-ch03ppt 53/77

McGraw-Hill  ©The McGraw-Hill Companies, Inc., 2004 

The bit rate and the bandwidth are 

proportional to each other.

 Note:

Page 54: networks ch_03.ppt

7/27/2019 networks ch_03.ppt

http://slidepdf.com/reader/full/networks-ch03ppt 54/77

McGraw-Hill  ©The McGraw-Hill Companies, Inc., 2004 

3.4 Analog versus Digital

Low-pass versus Band-pass 

Digital Transmission 

Analog Transmission 

Figure 3.19  Low-pass and band-pass 

Page 55: networks ch_03.ppt

7/27/2019 networks ch_03.ppt

http://slidepdf.com/reader/full/networks-ch03ppt 55/77

McGraw-Hill  ©The McGraw-Hill Companies, Inc., 2004 

Page 56: networks ch_03.ppt

7/27/2019 networks ch_03.ppt

http://slidepdf.com/reader/full/networks-ch03ppt 56/77

McGraw-Hill  ©The McGraw-Hill Companies, Inc., 2004 

The analog bandwidth of a medium is 

expressed in hertz; the digital 

bandwidth, in bits per second.

 Note:

Page 57: networks ch_03.ppt

7/27/2019 networks ch_03.ppt

http://slidepdf.com/reader/full/networks-ch03ppt 57/77

McGraw-Hill  ©The McGraw-Hill Companies, Inc., 2004 

Digital transmission needs a 

low-pass channel.

 Note:

Page 58: networks ch_03.ppt

7/27/2019 networks ch_03.ppt

http://slidepdf.com/reader/full/networks-ch03ppt 58/77

McGraw-Hill  ©The McGraw-Hill Companies, Inc., 2004 

Analog transmission can use a band- 

pass channel.

 Note:

3 5 D R Li i

Page 59: networks ch_03.ppt

7/27/2019 networks ch_03.ppt

http://slidepdf.com/reader/full/networks-ch03ppt 59/77

McGraw-Hill  ©The McGraw-Hill Companies, Inc., 2004 

3.5 Data Rate Limit

Noiseless Channel: Nyquist Bit Rate 

Noisy Channel: Shannon Capacity 

Using Both L imits 

E ample 7

Page 60: networks ch_03.ppt

7/27/2019 networks ch_03.ppt

http://slidepdf.com/reader/full/networks-ch03ppt 60/77

McGraw-Hill  ©The McGraw-Hill Companies, Inc., 2004 

Example 7 

Consider a noiseless channel with a bandwidth of 3000

Hz transmitting a signal with two signal levels. Themaximum bit rate can be calculated as

Bit Rate = 2 3000 log2 2 = 6000 bps

Example 8

Page 61: networks ch_03.ppt

7/27/2019 networks ch_03.ppt

http://slidepdf.com/reader/full/networks-ch03ppt 61/77

McGraw-Hill  ©The McGraw-Hill Companies, Inc., 2004 

Example 8 

Consider the same noiseless channel, transmitting a signal

with four signal levels (for each level, we send two bits).The maximum bit rate can be calculated as:

Bit Rate = 2 x 3000 x log2 4 = 12,000 bps

Example 9

Page 62: networks ch_03.ppt

7/27/2019 networks ch_03.ppt

http://slidepdf.com/reader/full/networks-ch03ppt 62/77

McGraw-Hill  ©The McGraw-Hill Companies, Inc., 2004 

Example 9 

Consider an extremely noisy channel in which the value

of the signal-to-noise ratio is almost zero. In other words,the noise is so strong that the signal is faint. For this

channel the capacity is calculated as

C = B log2 (1 + SNR) = B log2 (1 + 0)

= B log2 (1) = B 0 = 0

Example 10

Page 63: networks ch_03.ppt

7/27/2019 networks ch_03.ppt

http://slidepdf.com/reader/full/networks-ch03ppt 63/77

McGraw-Hill  ©The McGraw-Hill Companies, Inc., 2004 

Example 10 

We can calculate the theoretical highest bit rate of a

regular telephone line. A telephone line normally has a bandwidth of 3000 Hz (300 Hz to 3300 Hz). The signal-

to-noise ratio is usually 3162. For this channel the

capacity is calculated as

C = B log2 (1 + SNR) = 3000 log2 (1 + 3162)

= 3000 log2 (3163)

C = 3000 11.62 = 34,860 bps 

Example 11

Page 64: networks ch_03.ppt

7/27/2019 networks ch_03.ppt

http://slidepdf.com/reader/full/networks-ch03ppt 64/77

McGraw-Hill  ©The McGraw-Hill Companies, Inc., 2004 

Example 11 

We have a channel with a 1 MHz bandwidth. The SNR 

for this channel is 63; what is the appropriate bit rate andsignal level?

Solution

C = B log2 (1 + SNR) = 106 log2 (1 + 63) = 106 log2 (64) = 6 Mbps

Then we use the Nyquist formula to find thenumber of signal levels.

4 Mbps = 2 1 MHz log2 L L = 4 

First, we use the Shannon formula to find our upper 

limit.

3 6 T i i I i t

Page 65: networks ch_03.ppt

7/27/2019 networks ch_03.ppt

http://slidepdf.com/reader/full/networks-ch03ppt 65/77

McGraw-Hill  ©The McGraw-Hill Companies, Inc., 2004 

3.6 Transmission Impairment

Attenuation 

Distortion 

Noise 

Figure 3.20  Impairment types 

Page 66: networks ch_03.ppt

7/27/2019 networks ch_03.ppt

http://slidepdf.com/reader/full/networks-ch03ppt 66/77

McGraw-Hill  ©The McGraw-Hill Companies, Inc., 2004 

Figure 3.21  Attenuation 

Page 67: networks ch_03.ppt

7/27/2019 networks ch_03.ppt

http://slidepdf.com/reader/full/networks-ch03ppt 67/77

McGraw-Hill  ©The McGraw-Hill Companies, Inc., 2004 

Example 12

Page 68: networks ch_03.ppt

7/27/2019 networks ch_03.ppt

http://slidepdf.com/reader/full/networks-ch03ppt 68/77

McGraw-Hill  ©The McGraw-Hill Companies, Inc., 2004 

Example 12 

Imagine a signal travels through a transmission medium

and its power is reduced to half. This means that P2 = 1/2P1. In this case, the attenuation (loss of power) can be

calculated as

Solution

10 log10 (P2/P1) = 10 log10 (0.5P1/P1) = 10 log10 (0.5)

= 10( – 0.3) =  – 3 dB

Example 13

Page 69: networks ch_03.ppt

7/27/2019 networks ch_03.ppt

http://slidepdf.com/reader/full/networks-ch03ppt 69/77

McGraw-Hill  ©The McGraw-Hill Companies, Inc., 2004 

Example 13 

Imagine a signal travels through an amplifier and its

 power is increased ten times. This means that P2 = 10 ¥P1. In this case, the amplification (gain of power) can be

calculated as

10 log10 (P2/P1) = 10 log10 (10P1/P1)

= 10 log10 (10) = 10 (1) = 10 dB

Example 14

Page 70: networks ch_03.ppt

7/27/2019 networks ch_03.ppt

http://slidepdf.com/reader/full/networks-ch03ppt 70/77

McGraw-Hill  ©The McGraw-Hill Companies, Inc., 2004 

Example 14 

One reason that engineers use the decibel to measure the

changes in the strength of a signal is that decibel numberscan be added (or subtracted) when we are talking about

several points instead of just two (cascading). In Figure

3.22 a signal travels a long distance from point 1 to point

4. The signal is attenuated by the time it reaches point 2.Between points 2 and 3, the signal is amplified. Again,

 between points 3 and 4, the signal is attenuated. We can

find the resultant decibel for the signal just by adding the

decibel measurements between each set of points.

Figure 3.22  Example 14 

Page 71: networks ch_03.ppt

7/27/2019 networks ch_03.ppt

http://slidepdf.com/reader/full/networks-ch03ppt 71/77

McGraw-Hill  ©The McGraw-Hill Companies, Inc., 2004 

dB = – 

3 + 7 – 

3 = +1

Figure 3.23  Distortion 

Page 72: networks ch_03.ppt

7/27/2019 networks ch_03.ppt

http://slidepdf.com/reader/full/networks-ch03ppt 72/77

McGraw-Hill  ©The McGraw-Hill Companies, Inc., 2004 

Figure 3.24  Noise 

Page 73: networks ch_03.ppt

7/27/2019 networks ch_03.ppt

http://slidepdf.com/reader/full/networks-ch03ppt 73/77

McGraw-Hill  ©The McGraw-Hill Companies, Inc., 2004 

3 7 More About Signals

Page 74: networks ch_03.ppt

7/27/2019 networks ch_03.ppt

http://slidepdf.com/reader/full/networks-ch03ppt 74/77

McGraw-Hill  ©The McGraw-Hill Companies, Inc., 2004 

3.7 More About Signals

Throughput 

Propagation Speed 

Propagation Time 

Wavelength 

Figure 3.25  Throughput 

Page 75: networks ch_03.ppt

7/27/2019 networks ch_03.ppt

http://slidepdf.com/reader/full/networks-ch03ppt 75/77

McGraw-Hill  ©The McGraw-Hill Companies, Inc., 2004 

Figure 3.26  Propagation time 

Page 76: networks ch_03.ppt

7/27/2019 networks ch_03.ppt

http://slidepdf.com/reader/full/networks-ch03ppt 76/77

McGraw-Hill  ©The McGraw-Hill Companies, Inc., 2004 

Figure 3.27  Wavelength 

Page 77: networks ch_03.ppt

7/27/2019 networks ch_03.ppt

http://slidepdf.com/reader/full/networks-ch03ppt 77/77