Top Banner
On Network Coding Based Multirate Video Streamin g in Directed Networks Chenguang Xu and Yinlong Xu University of Science and Technology of China
26
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Network_coding_media..

On Network Coding Based Multirate Video Streaming in Dire

cted Networks

Chenguang Xu and Yinlong XuUniversity of Science and Technology of China

Page 2: Network_coding_media..

Outline

• Multirate Video streaming• About Network coding• Related works

– Without network coding– With network coding

• My work• Future work

Page 3: Network_coding_media..

Multirate Video Streaming • Property of Internet

– Heterogeneity of Receivers• Approaches:

– The replicated stream approach– Cumulative Layer approach, Such as MPEG

x (Layered Coding)– Non-cumulative Layer approach, Such as

MDC

Page 4: Network_coding_media..

An example of Layer Coding

Page 5: Network_coding_media..

What is Network Coding?

Transmission with network codingPacket level encoding at intermediate

nodesDecoding at receivers

The common method of network coding Linear Coding

E.g. 2a+3b

Page 6: Network_coding_media..

An example -Network Coding

T1 F1

T3

F3

F2

T2

S?

a

aa

b b

b

a+b

Page 7: Network_coding_media..

The advantages of Network Coding in Multicasting cont

Advantages: Throughput, Delay, Disadvantages: Packets Overhead(3%) Encoding/Decoding Time It

depends…

Page 8: Network_coding_media..

Related works-Streaming Without Network Coding

Layered multicast streaming without network coding Rate allocation for each layer

Fairness Issues Adaptive layer receiving

Page 9: Network_coding_media..

Related works-Streaming With Network Coding

Layered streaming with network coding “On multirate multicast streaming using network coding” A

llerton05 Encode the packets of different layers Objective: Maximize the total rates of receivers

Weakness: May cause ineffective transmission. Receiving higher layers while missing some lower layers .

Page 10: Network_coding_media..

My work-The Unachievabilityof Network Coding for Streaming

layer1

layer1

?k1*a+k2*b+k3*c+k4*d

{a, b, c, d}

m1*a+m2*b+m3*c+m4*d

Layer1 {a, c}Layer2 {b, d}2 time units as a generation

Conventional Content Distribution Streaming

k1*a+k2*b+k3*c+k4*d

m1*a+m2*b+m3*c+m4*d

1 2 3 4

1 2 3 4

* * * *

* * * *

k a k b k c k d

m a m b m c m d

For T1 and T2

Page 11: Network_coding_media..

Problem Descriptions

The Model1) Directed Networks G(V,E,c)2) a set of layers {Layer 1, Layer 2,…Layer k} ,

with a fixed rate rm for layer m3) R is the receivers’ set

Objective : Maximizing the total layers received

Page 12: Network_coding_media..

Basic Assumptions

• Each encoding generation occupying Δ consecutive time units.

• The buffer is large enough and the link state is stable.

• Acyclic network• Fixed rate for each layer

Page 13: Network_coding_media..

The Coding Scheme- LSNC

• Layered Separated Network Coding

• The Advantages of LSNC The advantage of network coding

Layer Separated for different priorities of layers Needn’t to pad the shorter packets with 0s

Page 14: Network_coding_media..

The Coding Scheme- LSNC cont

The remaining problems:1. How to determine the layer for each

receiver?2. How to allocate bandwidth for each layer?3. How to achieve the rate of each layer?

By existed network coding algorithm

Page 15: Network_coding_media..

Optimal Layer Separated Network Coding

OLSNC: Jointly Solve 1 and 2.( )

1 1

1 2 2 3, ( ) 1 ( )

( , ) ( , )

{ |( , )

, , (1)

0 1 ,1 ( ) (2)

0

i

i i

j i

OL vm

iji j

i i i i iOL v iOL v i

ij i i

l t l tij ji

j v v

Maximize

Subject to

for v R

or for v R j OL v

x x

0

{ |( , ) } }

( , )

{ |( , ) }

( , )0

{ |( , ) }

, 0, , 1 ( ) (3)

* , 1 ( ) (4)

,

i j

j i

j

j v v E E

t t

l iji il l i i

j v v E

l tj tl l t

j v v E

for i t i v R l OL v

x r for v R l OL v

x r for v R

( , )

1 ( ) (5)

( , ) , ,1 ( )

( , ) (6)

ij

t

l l tij i j t t

lij i j

l

l OL v

Y x for v v E v R l OL v

Y C v v

Page 16: Network_coding_media..

OLSNC-An exampleS is the source. T1 and T2 are receivers.The stream is consisted of 3 layers-L1, L2, L3, with rate of 1, 1, 1 respectively.

By OLSNC, T1 can get 2 layers, and T2 can get 3 layers.

{L1} {L1} {L2} {L2}

{L3}

Page 17: Network_coding_media..

OLSNC-An exampleWithout Network Coding:

Optimal Multicast Tree: T1 : 1 layerT2 : 2 layers

Optimal Multicast Sub-graph: T1 : 2 layersT2 : 2 layers

Page 18: Network_coding_media..

Discussion on OLSNC

• Optimal result for LSNC • High Computing Complexity E.g. 15 receivers, 5 layers, worst

cast execution time is over 1 hour

• A time efficient algorithm is needed

Page 19: Network_coding_media..

Sub-optimal Layer Separated Network Coding

Main Idea: 1) Allocate the bandwidth for each layer from low to high, with the objective of maximizing the aggregated maxflows

of receivers for rest higher layers. 2) Achieve the multicast rate for each layer with the bandwi

dth allocated by existed network coding algorithm.

Page 20: Network_coding_media..

*

1

( , ) ( , )

{ |( , ) } { |( , ) }

0

, , , 0 (1)

t

i j j i

lt

v T

l t l tij ji

j v v E j v v E

i t

j

Max f

Subject to

x x

for v T v T t i i

x

0

( , )

{ |( , ) }

( , )0

{ |( , ) }

( , )

( 1, ) ( 1, )

{ |( { |( , ) }

(2)

(3)

, ( , )

0

j t

j

ij

i j i

l tt l t

j v v E

l tj l t

j v v E

l l tij t i j

l t l tij ji

j v j v v E

r for v T

x r for v T

Y x for v T v v E

x x

0

, ) }

* *

( 1, ) 1 *

{ |( , ) }

( 1, ) 1 *0

{ |( , ) }

1 ( 1, ) *

, , , 0 (4)

(5)

(6)

, ( ,

j

j t

j

ij

v E

i t

l t ljt t t

j v v E

l t lj t t

j v v E

l l tij t i

for v T v T t i i

x f for v T

x f for v T

Z x for v T v v

1

)

( , ) ( , ) (7)ij ij

j

l li j i j

E

Y Z C v v for v v E

Page 21: Network_coding_media..

Performance Evaluation

Simulation Environments V= {v0, v1,…v10}, R={v1, v2,…v10} Two topologies: E1={(vi,vj)| i < j }, E2=((vi,vj)| 0 < j−i ≤ 2 } Two layer rate allocation schemes: Flat and Exponential

Scheme Performance metrics:

, ( )

, ( )

( )

( )i i

i i

iv R OL v k

ki

v R OL v k

AC v

LRROL v

( )

( )i

i

iv R

iv R

AC v

LRROL v

AC(Vi) is the actual number of layers received by viOL(vi) is the maximum number of layers permitted by maxflow

Page 22: Network_coding_media..

0

0. 2

0. 4

0. 6

0. 8

1

LRR1 LRR3 LRR5

ROME OLSNC SLSNC

0

0. 2

0. 4

0. 6

0. 8

1

LRR1 LRR3 LRR5

ROME OLSNC SLSNC

Simulation Results

E1, Flat Scheme E1, Exponential Scheme

Page 23: Network_coding_media..

Simulation Results

0

0. 2

0. 4

0. 6

0. 8

1

LRR1 LRR3 LRR5

ROME OLSNC SLSNC

0

0. 2

0. 4

0. 6

0. 8

1

LRR1 LRR3 LRR5

ROME OLSNC SLSNC

E2, Flat Scheme E2, Exponential Scheme

The advantage is more obvious in E1, with Exponential Scheme.

Page 24: Network_coding_media..

Simulation Results cont

E=E1

Flat Rate

E=E1,

Exponential

E=E2,

Flat Rate

E=E2,

Exponential

ROME 0.9361 0.9560 0.7276 0.9573

OLSNC 1.0000 1.0000 0.9987 0.9982

SLSNC 1.0000 1.0000 0.9941 0.9923

The comparison of LRR

Page 25: Network_coding_media..

Future Works

• In undirected networks

• Distributed Network Coding Scheme • Fairness problem

• Layered P2P Streaming Using Network Coding

Page 26: Network_coding_media..

Thank You