Top Banner
Network structure of the human musculoskeletal system shapes neural interactions on multiple timescales Jennifer N. Kerkman a , Andreas Daffertshofer a , Leonardo L. Gollo b , Michael Breakspear b,c , Tjeerd W. Boonstra b,d,1 a Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences & Institute for Brain and Behavior Amsterdam, Amsterdam, the Netherlands b QIMR Berghofer Medical Research Institute, Brisbane, Australia c Metro North Mental Health Service, Brisbane, QLD, Australia d Black Dog Institute, University of New South Wales, Sydney, Australia 1 Corresponding author Tjeerd Boonstra, Black Dog Institute, Hospital Rd, Sydney NSW 2031, Australia. Email: [email protected] not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprint (which was this version posted January 8, 2018. ; https://doi.org/10.1101/181818 doi: bioRxiv preprint
23

Network structure of the human musculoskeletal system ... · 08.01.2018  · The human body is a complex system consisting of many subsystems and regulatory pathways. The musculoskeletal

Oct 18, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Network structure of the human musculoskeletal system ... · 08.01.2018  · The human body is a complex system consisting of many subsystems and regulatory pathways. The musculoskeletal

Networkstructureofthehumanmusculoskeletalsystem

shapesneuralinteractionsonmultipletimescales

JenniferN.Kerkmana,AndreasDaffertshofera,LeonardoL.Gollob,Michael

Breakspearb,c,TjeerdW.Boonstrab,d,1

aDepartmentofHumanMovementSciences,FacultyofBehaviouralandMovement

Sciences,VrijeUniversiteitAmsterdam,AmsterdamMovementSciences&InstituteforBrainandBehaviorAmsterdam,Amsterdam,theNetherlands

bQIMRBerghoferMedicalResearchInstitute,Brisbane,AustraliacMetroNorthMentalHealthService,Brisbane,QLD,Australia

dBlackDogInstitute,UniversityofNewSouthWales,Sydney,Australia

1Correspondingauthor

TjeerdBoonstra,BlackDogInstitute,HospitalRd,SydneyNSW2031,Australia.

Email:[email protected]

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprint (which wasthis version posted January 8, 2018. ; https://doi.org/10.1101/181818doi: bioRxiv preprint

Page 2: Network structure of the human musculoskeletal system ... · 08.01.2018  · The human body is a complex system consisting of many subsystems and regulatory pathways. The musculoskeletal

2

Abstract

Humanmotorcontrolrequiresthecoordinationofmuscleactivityunderthe

anatomicalconstraintsimposedbythemusculoskeletalsystem.Interactions

withinthecentralnervoussystemarefundamentaltomotorcoordination,butthe

principlesgoverningfunctionalintegrationremainpoorlyunderstood.Weused

networkanalysistoinvestigatetherelationshipbetweenanatomicaland

functionalconnectivityamongst36muscles.Anatomicalnetworksweredefinedby

thephysicalconnectionsbetweenmusclesandfunctionalnetworkswerebasedon

intermuscularcoherenceassessedduringposturaltasks.Wefoundamodular

structureoffunctionalnetworksthatwasstronglyshapedbytheanatomical

constraintsofthemusculoskeletalsystem.Musclenetworksexhibitedamultilayer

architecturewithfunctionalinteractionsatdistincttimescales.Changesinpostural

taskswereassociatedwithafrequency-dependentreconfigurationofthecoupling

betweenfunctionalmodules.Combined,thesefindingssuggestthesespectral

modesmaysignifyacoordinativestructureforflexiblyorganisingmuscleactivity

duringposturalcontrol.Morebroadly,ourmulti-levelnetworkapproachtothe

motorsystemoffersauniquewindowintothecoordinatedneuralcircuitrythat

generatessynergisticinputtomusclesindifferentbehaviours.

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprint (which wasthis version posted January 8, 2018. ; https://doi.org/10.1101/181818doi: bioRxiv preprint

Page 3: Network structure of the human musculoskeletal system ... · 08.01.2018  · The human body is a complex system consisting of many subsystems and regulatory pathways. The musculoskeletal

3

Introduction

Thehumanbodyisacomplexsystemconsistingofmanysubsystemsand

regulatorypathways.Themusculoskeletalsystemgivesthebodystructureand

createstheabilitytomove.Itismadeupofmorethan200skeletalbones,

connectivetissueandover600skeletalmuscles[1].Musclesareattachedtobones

throughtendinoustissueandcangeneratemovementaroundajointwhenthey

contract.Thecentralnervoussystemcontrolsthesemovementsthroughthespinal

motorneurons,whichserveasthefinalcommonpathwaytothemuscles[2].

Whiletheanatomicalandphysiologicalcomponentsofthemusculoskeletalsystem

arewellcharacterized[3,4],theorganisationalprinciplesofneuralcontrolremain

poorlyunderstood.Hereweelucidatetheinterplaybetweentheanatomical

structureofthemusculoskeletalsystemandthefunctionalorganisationof

distributedneuralcircuitryfromwhichmotorbehavioursemerge.

Thetraditionalideathatthecortexcontrolsmusclesinaone-to-onefashionhas

beenchallengedbyseverallinesofevidence[5,6].Forexample,itiswidely

recognizedthatthemanydegrees-of-freedom(DOFs)ofthemusculoskeletal

systemprohibitasimpleone-to-onecorrespondencebetweenamotortaskanda

particularmotorsolution;rathermusclesarecoupledandcontrolledin

conjunction[7].Acouplingbetweenmuscles–whethermechanicalorneural–

reducesthenumberofeffectiveDOFsandhencethenumberofpotential

movementpatterns.Thiscouplingtherebyreducesthecomplexityofmotor

control[8,9].

Thereiscontinuingdebateaboutthenatureofthecouplingbetweenmuscles.The

mechanicalcouplinginthemusculoskeletalsystemconstrainsthemovement

patternsthatcanbegenerated[10,11].Forexample,thebiomechanicsofthelimb

constrainrelativechangesinmusculotendonlengthtoalowdimensional

subspace,resultingincorrelatedafferentinputstospinalmotorneurons[12].The

couplingbetweenmusclescouldalsoresultfromredundanciesintheneural

circuitrythatdrivesspinalmotorneurons[13].Electrophysiologicalstudiesreveal

thatacombinationofonlyafewcoherentmuscleactivationpatterns–ormuscle

synergies–cangenerateawidevarietyofnaturalmovements[14,15].Someof

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprint (which wasthis version posted January 8, 2018. ; https://doi.org/10.1101/181818doi: bioRxiv preprint

Page 4: Network structure of the human musculoskeletal system ... · 08.01.2018  · The human body is a complex system consisting of many subsystems and regulatory pathways. The musculoskeletal

4

thesepatternsarealreadypresentfrombirthanddonotchangeduring

development,whereasotherpatternsarelearned[16].Thissupportsthenotion

thattheneuromuscularsystemhasamodularorganisationthatsimplifiesthe

controlproblem[17,18].Spinalcircuitryconsistingofanetworkofpremotor

interneuronsandmotorneuronsmaygeneratebasicmovementpatternsby

mediatingthesynergisticdrivetomultiplemuscles[19,20].Stimulationof

interneuronalregionsinthespinalcordshowsthatthesemicrocircuitsare

organisedintodiscretemodules,eachgeneratingaspecificpatternofmuscular

forces[21,22].Thesespinalnetworksmayencodecoordinatedmotoroutput

programs[23],whichcanbeusedtotranslatedescendingcommandsformulti-

jointmovementsintotheappropriatecoordinatedmusclesynergiesthatunderpin

thosemovements[4].

Networktheorycanprovideanalternativeperspectiveonthemodular

organisationofthemusculoskeletalsystem.Oneofthemostrelevantfeaturesof

complexnetworksarecommunityormodularstructures,whichrefertodensely

connectedgroupsofnodeswithonlysparserconnectionsbetweenthesegroups

[24,25].Theinvestigationofcommunitystructureshasbeenwidelyusedin

differentdomainssuchasmetabolic[26]andbrainnetworks[27].Ithasrecently

beenappliedtoinvestigatethestructureandfunctionofthemusculoskeletal

system:Theanatomicalnetworkcanbeconstructedbymappingtheoriginand

insertionofmuscles[28,29].Previously,wehaveshownhowfunctionalmuscle

networkscanbeconstructedbyassessingintermuscularcoherencefromsurface

electromyography(EMG)recordedfromdifferentmuscles[30].Thesefunctional

networksrevealfunctionalconnectivitybetweengroupsofmusclesatmultiple

frequencybands.CoherencebetweenEMGsindicatescorrelatedorcommoninputs

tospinalmotorneuronsthataregeneratedbysharedstructuralconnectionsor

synchronisationwithinthemotorsystem[13,31-33].Functionalconnectivity

patternshenceallowtoassessstructuralpathwaysinthemotorsystemusingnon-

invasiverecordings[34].

Hereweinvestigatetheorganisationalprinciplesgoverninghumanmotorcontrol

bycomparingthecommunitystructureofanatomicalandfunctionalnetworks.We

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprint (which wasthis version posted January 8, 2018. ; https://doi.org/10.1101/181818doi: bioRxiv preprint

Page 5: Network structure of the human musculoskeletal system ... · 08.01.2018  · The human body is a complex system consisting of many subsystems and regulatory pathways. The musculoskeletal

5

usemultiplexmodularityanalysis[35]toassessthecommunitystructureof

functionalmusclenetworksacrossfrequenciesandposturaltasks.As

biomechanicalpropertiesofthemusculoskeletalsystemconstrainthemovement

patternsthatcanbegenerated,weexpectasimilarcommunitystructurefor

anatomicalandfunctionalmusclesnetworks.Deviationsincommunitystructure

indicateadditionalconstraintsimposedbythecentralnervoussystem.Wealso

comparefunctionalconnectivitybetweenmodulesduringdifferenttasks

conditionstoinvestigatechangesinfunctionalorganisationduringbehaviour.

Whileaveragefunctionalconnectivityisconstrainedbyanatomicalconstraints,we

expectthatfunctionalmusclenetworksreconfiguretoenabletask-dependent

coordinationpatternsbetweenmuscles.Suchtaskmodulationswouldindicate

thatfunctionalinteractionsbetweenmusclesarenothard-wired,butareinstead

governedbydynamicconnectivityinthecentralnervoussystemthatisshapedby

theanatomicaltopologyofthemusculoskeletalsystem.

Results

Anatomicalmusclenetwork

Weassessedtherelationshipbetweenanatomicalandfunctionalconnectivityof

keymusclesinvolvedintheposturalcontroltasks(36musclesdistributed

throughoutthebody).Weinvestigatedamuscle-centricnetworkinwhichthe

nodesrepresentthemusclesandtheedgesofthenetworkareanatomical

connectionsorfunctionalrelationsbetweenmuscles.Anatomicalmusclenetworks

weredefinedbymappingthephysicalconnectionsbetweenmusclesandbones

[28],whichformabipartitenetwork[29].Theanatomicalnetworkconstituteda

denselyconnected,symmetricalnetwork(Fig.1;networkdensityis0.27).

Modularityanalysisrevealedfivemodulesthatdividedtheanatomicalmuscle

networkintothemainbodysegments(rightarm,leftarm,torso,rightlegandleft

leg)withamodularityof0.38.

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprint (which wasthis version posted January 8, 2018. ; https://doi.org/10.1101/181818doi: bioRxiv preprint

Page 6: Network structure of the human musculoskeletal system ... · 08.01.2018  · The human body is a complex system consisting of many subsystems and regulatory pathways. The musculoskeletal

6

Figure1.Communitystructureoftheanatomicalmusclenetwork.A)Topological

representationoftheanatomicalnetwork.Thenodesofthenetworkrepresentthemusclesandedgesrepresentanatomicalconnectionsbetweenmusclesthatareattachedtothesamebonesorcartilages.Thefivemodulesarecolour-coded.B)Spatialrepresentationofanatomicalmusclenetworkdisplayedonthehumanbody[36].Thesize

ofeachnoderepresentsthenumberofothernodesitisconnectedto.

Functionalmusclenetwork

Functionalmusclenetworksweredefinedbymappingcorrelatedinputsbetween

muscles.Tomapfunctionalnetworks,wemeasuredsurfaceEMGfromthesame36

muscleswhilehealthyparticipantsperformeddifferentposturaltasks.Afull

factorialdesignwasusedinwhichwevariedposturalcontrol(normalstanding,

instabilityinanterior-posteriorormedial-lateraldirection)andpointing

behaviour(nopointing,pointingwiththedominanthandorwithbothhands;see

Methodsfordetails).Weassessedfunctionalconnectivitybymeansof

intermuscularcoherencebetweenallmusclecombinationsandusednon-negative

matrixfactorisation(NNMF)todecomposethesecoherencespectraintofrequency

componentsandcorrespondingedgeweights.Thisyieldedasetofweighted

networkswiththeircorrespondingspectralfingerprints(frequencycomponents).

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprint (which wasthis version posted January 8, 2018. ; https://doi.org/10.1101/181818doi: bioRxiv preprint

Page 7: Network structure of the human musculoskeletal system ... · 08.01.2018  · The human body is a complex system consisting of many subsystems and regulatory pathways. The musculoskeletal

7

Weobservedfourseparatefrequencycomponents(component1:0-3Hz,

component2:3-11Hz,component3:11-21Hz,component4:21-60Hz;Fig.2A),

whichserveasseparatelayersofamultiplexnetworkandexplainedmostofthe

varianceofthecoherencespectra(R2=0.90).Weightswerethresholdedtoobtain

aminimallyconnectedbinarynetworkacrosslayersandtokeepthenumberof

edgesconstantacrosslayers(relativethresholdof0.035).Usingmultiplex

modularityanalysis,weobtainedafixedcommunitystructureacrossallfour

frequenciesandnineconditions,whichrevealedsixmodules:rightupperarm

(rUA),bilateralforearms(FA),torso(T),rightupperleg(rUL),leftupperleg(lUL)

andbilaterallowerlegs(LL)(Fig.2B).Figure2Cdepictshowthesemodulesare

distributedacrossthebody.Distinctnetworktopologieswereobservedacross

layerswithamorewidelyconnectednetworkatlowerfrequenciesandmore

partitionednetworkathigherfrequencies:networkdensitywas0.10,0.09,0.08,

and0.06forcomponents1to4,respectively(Fig.2D).

Figure2.Communitystructureofmultiplexfunctionalmusclenetworks.A)ThefrequencyspectraofthefourcomponentsobtainedusingNNMF.B)Multiplexcommunitystructureoffunctionalmusclenetworkacrosslayersandconditions.Thedominanthand

ofallparticipantsisdisplayedontherightsideofthehumanbody.C)Spatialrepresentationoftheaveragemusclenetworkdisplayedonthehumanbody[36].Thesizeofthenodesrepresentsthenumberofothernodesitisconnectedtoandthewidthoftheedgestheaverageweight.D)Thebinarymusclenetworksforeachlayer.

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprint (which wasthis version posted January 8, 2018. ; https://doi.org/10.1101/181818doi: bioRxiv preprint

Page 8: Network structure of the human musculoskeletal system ... · 08.01.2018  · The human body is a complex system consisting of many subsystems and regulatory pathways. The musculoskeletal

8

Comparisonbetweenanatomicalandfunctionalnetworks

Thecommunitystructuresoftheanatomicalandfunctionalmusclenetworkswere

verysimilar(Randindex=0.80,adjustedRandindex=0.36,P<0.001).Amarked

differencebetweenanatomicalandfunctionalnetworksisthebilateral

connectionsbetweenhomologousforearmandlowerlegmusclesinthefunctional

networks,whichwereabsentintheanatomicalnetwork.Thisisreflectedinthe

communitystructureofthefunctionalnetworks,wherebilaterallowerlegmuscles

andbilateralforearmmusclesweregroupedinmodules.

Figure3.Relationshipbetweenfunctionalconnectivityandanatomicaldistance.A)Adjacencyanddistancematrixoftheanatomicalmusclenetwork.Maximumanatomicaldistance(pathlength)is4.B)Percentageoffunctionaledgesofthresholdednetworksacrossexperimentalconditionsasafunctionofanatomicaldistance.C)Distributionof

edgeweightsoffunctionalnetworksasafunctionofanatomicaldistanceforeachlayer.Weightswereaveragedacrossexperimentalconditions.Edgesconnectingmuscleswithinthesamemodulearecolour-coded(rUA:rightupperarm,FA:bilateralforearms,T:torso,rUL:rightupperleg,lUL:leftupperleg,andLL:bilaterallowerlegs)andgreydots

representedgesbetweenmodules.

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprint (which wasthis version posted January 8, 2018. ; https://doi.org/10.1101/181818doi: bioRxiv preprint

Page 9: Network structure of the human musculoskeletal system ... · 08.01.2018  · The human body is a complex system consisting of many subsystems and regulatory pathways. The musculoskeletal

9

Thecomparisonbetweenanatomicaldistance(pathlength)andfunctional

connectivityrevealedthatanatomicallynearbynodesaremorelikelytoreceive

commoninput(Fig.3A).Wefirstexaminedthepercentageofallpossibleedges,i.e.

thenumberofedgesabovethreshold,whichdecreasedasafunctionofanatomical

distance:11.3%,0.9%,0.6%and0.0%foranatomicaldistance1to4,respectively.

Thisdeclinewithdistancewasevenmorepronouncedforthehigherfrequency

components(Fig.3B).Next,weexaminedthedistributionoffunctionalweightsas

afunctionofanatomicaldistance.Thehighestweightswereobservedforedges

connectingmuscleswithinthesamemodule.Theedgeswithinmostmoduleshad

ananatomicaldistanceof1.Onlyafewedgeshadananatomicaldistanceof2or3

andalloftheseedgeswerecontainedintheFAandLLmodules.Inparticular,

edgesconnectingbilaterallowerlegmuscles(LL)showedrelativelargeweightsat

ananatomicaldistanceof3(Fig.3C).

Task-dependentmodulations

Wenextsoughttostudytheinfluenceoftaskonthisstructure-function

relationship.Thiswasachievedbyemployingclusteredgraphstocompare

functionalmusclenetworksacrosstaskconditions.Thefunctionalmodules

identifiedusingtheprecedingmultiplexmodularityanalysisformthenodesof

theseclusteredgraphs.Figure4Ashowstheclusteredgraphsinthenine

experimentalconditionsandforthefourlayers.Theclusteredgraphswerevery

sparse,asmoduleshavedensewithinmoduleconnectionsbutsparseconnections

betweennodesinothermodules.Mostedgeswereobservedbetweenlegmuscles

modules(LL,rULandlUL)atthelowestfrequencycomponents(0-3and3-11Hz),

inparticularwhenposturalstabilitywaschallengedbyinstabilityinanterior-

posteriorormedial-lateraldirection.Edgesbetweenthearmmusclemodules(rUA

andFA)andthetorso(T)weremainlyobservedatthehigherfrequency

components(11-21and21-60Hz)duringpointing(unimanualandbimanual).

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprint (which wasthis version posted January 8, 2018. ; https://doi.org/10.1101/181818doi: bioRxiv preprint

Page 10: Network structure of the human musculoskeletal system ... · 08.01.2018  · The human body is a complex system consisting of many subsystems and regulatory pathways. The musculoskeletal

10

Figure4.Clusteredgraphsoffunctionalmusclenetworksacrossconditions.A)Theclusteredgraphsinthenineexperimentalconditions(columns)andforeverylayer

(rows).Thenodesarethemodulesidentifiedusingmultiplexmodularityanalysis.Nodesizerepresentsthenetworkdensitywithinandthewidthoftheedgestheconnectiondensitybetweenmodules.B)Spatialrepresentationofthefunctionalmodulesonthehumanbody:rightupperarm(rUA),bilateralforearms(FA),torso(T),rightupperleg(rUL),leftupperleg(lUL)andbilaterallowerlegs(LL).Weusedtoolboxesforgeometry

processingtogeneratethecolouredmeshes[37]anddisplayitonthehumanbody[36].C)Significantdifferencesinclusteredgraphsbetweenthestabilityconditions.Twocontrastswereassessed:normalstability–anterior-posteriorinstabilityandnormalstability–medial-lateralinstability.Apermutationtestwasusedwithasignificancethreshold

correctedformultiplecomparisons(P<0.0033).Significantdifferencesarecolour-coded:Reddepictsanincreaseandblueadecreaseintheaverageweights.D)Significantdifferencesinclusteredgraphsbetweenthepointingconditions.Twocontrastswereassessed:nopointing–unimanualpointingandnopointing–bimanualpointing.

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprint (which wasthis version posted January 8, 2018. ; https://doi.org/10.1101/181818doi: bioRxiv preprint

Page 11: Network structure of the human musculoskeletal system ... · 08.01.2018  · The human body is a complex system consisting of many subsystems and regulatory pathways. The musculoskeletal

11

Theeffectsofthestabilitytaskswerelargelyconfinedtothelegmodules(Fig.4C).Increasedconnectivitywasobservedduringposturalinstability(anterior-posteriorandmedial-lateral)comparedtonormalstandingwithinmostfrequencycomponents.Atthelowestfrequencycomponent(0-3Hz),connectivityincreasedwithinandbetweenmostlegmodules(pcorrected<0.01).Onlysmalldifferenceswereobservedat3-11Hz:increasedconnectivitybetweenthetorso(T)andlowerleg(LL)modulesduringanterior-posteriorinstability(+25%,range[-9,46%],pcorrected=0.01)anddecreasedconnectivitywithinthetorsomoduleduringmedial-lateralinstability(-21%,range[-50,0.3%],pcorrected=0.01).Connectivityincreasedagainatthehighestfrequencycomponents(11-21and21-60Hz)withinandbetweenthetorsoandlegmodules(rUL,lUL,andLL,pcorrected<0.02).

Thepointingtasksshowedadifferentpatterncomparedtotheposturaltasks,but

theeffectsofunimanualandbimanualpointingwereverysimilar(Fig.4D).During

pointing,connectivitydecreasedwithinthetorso(T)moduleatthelowest

frequencycomponents(0-3Hz,-61%,range[-90,-1%],pcorrected<0.005;3-11Hz,-

59%,range[-86,2%],pcorrected<0.02)andbetweenthetorsoandtherightupper

arm(rUA)moduleonlyatthelowestfrequencycomponent(0-3Hz,-67%,range[-

93,-9%],pcorrected<0.005).Incontrast,asignificantincreaseinconnectivitywithin

therUAmodulewasobservedduringunimanualpointcomparedtonopointingat

thehighestfrequencycomponents(11-21Hz,+64%,range[-4,95%],pcorrected=

0.005;21-60Hz,+66%,range[-12,93%],pcorrected=0.015).Inaddition,therewas

increasedconnectivitybetweenthetorsoandtheforearm(FA)modules(+41%,

range[-8,82%],pcorrected<0.01)andbetweenrUAandFA(+44%,range[0,82%],

pcorrected<0.005)duringpointing(unimanualandbimanual)comparedtono

pointingatfrequencycomponent3(11-21Hz).

Discussion

Weusedanetworkapproachtostudythestructure-functionrelationshipofthe

humanmusculoskeletalsystem.Severalprinciplesofthefunctionalrelationship

betweenmuscleswereuncovered:(i)Functionalconnectivitypatternsbetween

musclesarestronglyshapedbytheanatomicalconstraintsofthemusculoskeletal

system,withfunctionalconnectivitystrongestwithinanatomicalmodulesand

decreasedasafunctionofanatomicaldistance;(ii)Bilateralconnectivitybetween

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprint (which wasthis version posted January 8, 2018. ; https://doi.org/10.1101/181818doi: bioRxiv preprint

Page 12: Network structure of the human musculoskeletal system ... · 08.01.2018  · The human body is a complex system consisting of many subsystems and regulatory pathways. The musculoskeletal

12

thehomologousupperandlowerextremitiesisakeycharacteristicofthe

functionalmusclenetworks;(iii)Thefunctionalrelationshipsaretask-dependent

withposturaltasksdifferentiallyimpactinguponfunctionalconnectivityat

differentfrequencyranges.Theuseofamultiplexapproachallowstheintegration

offunctionalmusclenetworksacrossfrequenciesandprovidesaunifyingwindow

intothedistributedcircuitryofthehumancentralnervoussystemthatcontrols

movementsbyinnervatingthespinalmotorneurons.

Identifyingrelationshipsbetweenanatomicalandfunctionalmusclenetworksis

crucialforunderstandinghowmovementiscoordinated.Previousstudieseither

investigatedhowbiomechanicalpropertiesofthemusculoskeletalsystem

constrainthemovementpatternsthatcanbegenerated[11,12],orhowmuscle

activationpatternscanbeexplainedbyacombinationofonlyafewcoherent

muscleactivationpatterns[14,15].Ourcombinedanalysesofanatomicaland

functionalmusclenetworksrevealastrongrelationshipbetweentheanatomical

connectionsinthemusculoskeletalsystemsandcorrelatedinputstospinalmotor

neurons.Thisbuildsonpreviousresearchshowingthatcommoninputisstrongest

tospinalmotorneuronsthatinnervatemusclespairsthatareanatomicallyand

functionallycloselyrelated[13,31].Thesimilaritybetweenstructuraland

functionalnetworkshasbeenasignatureofthestudyofbrainnetworks[38]and

thetopologyofbrainnetworksdependsonthebrain'sspatialembedding[39,40].

Thepresentfindingssuggestthattheprinciplesgoverningembodiedstructural

andfunctionalnetworksalsoappliestotheneuralcircuitrythatcontrols

movementsandmayhencereflectageneralprincipleofthecentralnervous

system.

Thesimilaritiesbetweenanatomicalandfunctionalconnectivitymayindicatethat

theanatomicalstructureconstrainsthefunctionalinteractionsbetweenmuscles.

Theanatomicalconnectionsbetweenmusclesremainlargelyunchangedoverthe

lifespan[41]anditismorelikelythatthefast-changingfunctionalnetworksare

constrainedbythemuchslowerchanginganatomicalnetworksthanviceversa.

Theseconstraintsmaybeimposedthroughafferentactivity.Themusculoskeletal

propertiesofthehumanbodyrestricttheposturaldynamics[12]andthese

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprint (which wasthis version posted January 8, 2018. ; https://doi.org/10.1101/181818doi: bioRxiv preprint

Page 13: Network structure of the human musculoskeletal system ... · 08.01.2018  · The human body is a complex system consisting of many subsystems and regulatory pathways. The musculoskeletal

13

mechanicalcouplingsresultincorrelatedproprioceptivefeedbacktospinalmotor

neurons.Theinfluenceofbiomechanicsonfunctionalmusclenetworksisexpected

tobemostpronouncedatthelowerfrequencycomponents:Musclesactasalow

passfilterofneuronalinputs[43]andkinematicsofthemusculoskeletalsystem

unfoldonaslowtimescale.Thisgeneratescorrelatedactivityatlowfrequencies

thatarefedbacktospinalmotorneuronsviasensoryafferents.Thespatial

distributionofcommoninputwouldarguablymirrorthetopologyofthe

musculoskeletalsystem.

Anatomicalconstraintsmayalsobeimposedduringneuraldevelopment.During

earlydevelopment,changesinthetopographicaldistributionofaxonterminalsof

descendingprojectsaredependentonpatternsofmotoractivityandanatomical

connectivitybetweenmuscles[44].Likewise,largechangesinfunctionalcoupling

isobservedininfantsbetween9and25weeks,whichmayreflectasensitive

periodwherefunctionalconnectionsbetweencorticospinaltractfibresandspinal

motorneuronsundergoactivity-dependentreorganization[45].Theanatomyof

themusculoskeletalsystemwilllimitthemotoractivitypatternsthatcanbe

performed.

Anatomicalandfunctionalconnectivitybetweenmusclesmayalsobothbe

influencedbyexternalfactors.Forexample,theconnectivitypatternsof

descendingpathwaysisinpartgeneticallydetermined[46].Asomatotopic

organisationisobservedacrosstheneuralmotorsystemandthecommunity

structureoftheanatomicalmusclenetworkmirrorstheorganisationofprimary

motorcortexcontrolmodules[29].Likewise,thespatialorganisationofmotor

neuronsofthespinalcordisalsorelatedtotheanatomicalorganisationofmuscles

[47].Thetopographicorganisationofspinalmotorneuronsissimilaracross

species[48]andmayhencebearesultofevolutionaryconservation[49].

Musculoskeletalanatomyandneuronalpathwaysarehencebothsubjecttosome

sortofgeneticcontrol.

Functionalconnectivitywasnotentirelydeterminedbyanatomyandweobserved

severalkeydifferencesbetweenanatomicalandfunctionalmusclenetworks.

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprint (which wasthis version posted January 8, 2018. ; https://doi.org/10.1101/181818doi: bioRxiv preprint

Page 14: Network structure of the human musculoskeletal system ... · 08.01.2018  · The human body is a complex system consisting of many subsystems and regulatory pathways. The musculoskeletal

14

Bilateralmodulesconsistingoftheupperandlowerextremitieswereakey

characteristicofthefunctionalmusclenetworkthatwasabsentintheanatomical

network.Thetwobilateralforearmmuscles(FDSandED)showedcoherent

activityat3-11Hz,consistentwithpreviousstudiesshowingbimanualcouplingat

~10Hzbetweenhomologoushandandforearmmuscles[50,51].Theobserved

bimanualcouplingat3-11Hzmaybegeneratedbytheolivocerebellarsystem,

whichisknowntoproduceoscillationsinthisfrequencyrangeandforits

involvementintheformationoffunctionalmusclecollectives[51,52].The

bilateralforearmmuscleswereonlyweaklycoupledtoothermuscles(Fig.2),

whichmayreflecttherelativelyhighproportionofdirectcorticospinalprojections

–andthusarelativelowproportionofdivergingprojections–tomotorneurons

innervatinghandandforearmmuscles[53].

Incontrast,thebilateralmoduleoflowerlegmusclesrevealedstrongcouplingat

multiplefrequencybands,consistentwithpreviousanalysesonfunctionalmuscle

networks[30],andshowedthestrongestlong-rangeconnectionsobservedinthe

presentstudy(Fig.3C).Bilateralconnectivitybetweenhomologousmusclesduring

balancingcouldbegeneratedbythevestibulospinaltract,whichisknowntobe

involvedinposturalstabilityandinnervatethespinalgreymatterbilaterally[31].

Bilateralconnectivityhasbeenobservedatalllevelsofthecorticospinalaxis[54]

andisparamountforfunctionalbrainnetworks,particularlybetweenhomologous

left-rightcorticalregions[55,56].Thepresentfindingssuggestthatbilateral

couplingisalsoadefiningfeatureoffunctionalmusclenetworks.

Functionalconnectivitydisplayeddistincttask-dependentmodulationsthatwere

linkedtothetaskthesubjectsperformed:functionalconnectivitywasincreased

withinandbetweenthelegmodulesduringposturalinstability,andincreased

withinandbetweenarmandupperbodymodulesinthepointingconditions.

Functionalconnectivitybetweenmusclesisthustaskdependent[31,50],which

maysuggestthepresenceofmultifunctionalcircuitsinwhichagivenanatomical

connectivitypatterncangeneratedifferentfunctionalactivitypatternsunder

variousconditions[42].Suchadistributedcircuitrycreatesthesubstrateto

supportmanybehavioursthataredrivenbytheconcertedactionsofalarge

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprint (which wasthis version posted January 8, 2018. ; https://doi.org/10.1101/181818doi: bioRxiv preprint

Page 15: Network structure of the human musculoskeletal system ... · 08.01.2018  · The human body is a complex system consisting of many subsystems and regulatory pathways. The musculoskeletal

15

distributednetworkasopposedtosimple,dedicatedpathways.Theunderlying

networkconnectivityhenceconstrainsthepossiblepatternsofpopulationactivity

toalow-dimensionalmanifoldspannedbyafewindependentpatterns–neural

modes–thatprovidethebasicbuildingblocksofneuraldynamicsandmotor

control[57].Again,thisfindssimilaritieswithrecentinvestigationsofthe

functionalprinciplesofcognitivenetworksinthebrain[58,59].

Task-dependentchangesoccurredatdifferentfrequencies,whichindicatethe

functioningofamultiplexnetworkorganisation,wherebythefourfrequency

componentsreflectdifferenttypesofinteractionsbetweenmuscles.Fourdistinct

frequencycomponents(0-3,3-11,11-21,and21-60Hz)wereextractedusing

NNMF.Thesefrequencybandscloselymatchthosefoundpreviously[30],

demonstratingtherobustnessofthisfinding.Aninterestingpossibilityisthat

thesefrequencycomponentsreflectthespectralfingerprintsofdifferentpathways

thatprojectontothespinalmotorneurons.Ithasbeensuggestedthatthese

differentfrequenciesmayhavespecificrolesincodingmotorsignals[60].

Functionalconnectivityatthelowestfrequencycomponentsmayresultfrom

afferentpathways,whilefunctionalconnectivityathigherfrequenciesmayreflect

correlatedinputfromdescendingpathways.Forexample,functionalconnectivity

inthebetaband(15-30Hz)mostlikelyreflectscorticospinalprojections[13,50].

Thehighestfrequencycomponentsobservedinthisstudy(21-60Hz)showedthe

mostlocalconnectivitypatterns.Theselocalconnectivitypatternsmayreflect

propriospinalpathways[4,23].Thesefunctionalconnectivitypatternsmaybe

usedtouncoverthecontributionofstructuralpathwaysintheformationof

coordinatedactivitypatternsinthemotorsystem[34].

Insummary,ournetworkanalysisrevealedwidespreadfunctionalconnectivity

betweenmuscles,indicativeofcorrelatedinputstospinalmotorneuronsat

multiplefrequencies.Correlatedinputsindicatedivergentprojectionsorlateral

connectionsintheneuralpathwaysthatinnervatespinalmotorneurons.These

findingsareconsistentwithamany-to-manyratherthananone-to-onemapping

betweenbrainandmuscle[5],inwhichcomplexmovementsarisethrough

relativelysubtlechangesintheco-activationofdifferentdistributedfunctional

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprint (which wasthis version posted January 8, 2018. ; https://doi.org/10.1101/181818doi: bioRxiv preprint

Page 16: Network structure of the human musculoskeletal system ... · 08.01.2018  · The human body is a complex system consisting of many subsystems and regulatory pathways. The musculoskeletal

16

modes.Wepresentanovelapproachthatalignsmovementneurosciencewith

currentresearchonbrainandphysiologicalnetworksbyshowinghowthecentral

nervoussysteminteractswiththemusculoskeletalsystemofthehumanbody.

Fromasystemsbiologyperspective,thebrainandspinalcordareinterwovenwith

thebody:theyare‘embodied’[10].Usingnetworkanalysisasacommon

framework,futureworkcouldintegratefunctionalinteractionsbetweensupra-

spinal,spinalandperipheralregionssimultaneously.Suchanintegrated

frameworkalignswiththebroaderapproachofnetworkmedicine,whichmay

providenewinsightsandinterventionsforneurologicaldisorders[61-63].

Methods

Dataacquisition

Fourteenhealthyparticipants(sevenmalesandsevenfemales,meanage25±8

years,tenrightandfourlefthanded)withoutanyneurological,motordisorderor

diabetesmellitusandwithaBMIbelow25wereincludedinthisstudy.The

experimentswereapprovedbytheEthicsCommitteeHumanMovementSciences

oftheVrijeUniversiteitAmsterdam(referenceECB2014-78)andperformedinfull

compliancewiththeDeclarationofHelsinki.Allparticipantswerewrittenand

verballyinformedabouttheprocedureandsignedaninformedconsentpriorto

participation.

Participantswereinstructedtoperformninedifferentposturaltasks.Afull

factorialdesignwasusedinwhichposturalstability(normalstanding,instability

inanterior-posteriordirectionandinstabilityinmedial-lateraldirection)and

pointingbehaviour(nopointing,pointingwithdominanthand,pointingwithboth

hands)werevaried.Posturalstabilitywasmanipulatedusingabalanceboardwith

onedegreeoffreedom,whichallowsmovementeitherintheanterior-posterioror

medial-lateraldirection.Inthepointingtask,participantsheldalaserpointerwith

theirdominanthand(unimanual)orwithbothhands(bimanual)andpointediton

awhitetarget(25cm2)locatedatadistanceof2.25meter,paralleltothe

transversalaxisofthebodyattheheightoftheacromionoftheparticipant.The

experimenthenceconsistedofnine(3´3)experimentalconditions.Thedurationof

atrialwas30secondsandeachconditionwasrepeatedsixtimes.

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprint (which wasthis version posted January 8, 2018. ; https://doi.org/10.1101/181818doi: bioRxiv preprint

Page 17: Network structure of the human musculoskeletal system ... · 08.01.2018  · The human body is a complex system consisting of many subsystems and regulatory pathways. The musculoskeletal

17

BipolarsurfaceEMGwasrecordedfrom36musclesdistributedacrossthebody,

i.e.18bilateralmuscles(Table1).Thesemusclesaretheprimarymusclesinvolved

inthestabilityandpointingtasksthatcanbeproperlymeasuredwithsurface

EMG.EMGwasacquiredusingthree16-channelPortisystems(TMSi,Enschede,

TheNetherlands),onlinehigh-passfilteredat5Hzandsampledat2kHz.

Table1.Listofmuscles

Muscle Abbreviationtibialisanterior TAgastrocnemiusmedialis GMsoleus SOLrectusfemoris RFbicepsfemoris BFvastuslateralis VLadductorlongus ALexternaloblique EOpectoralismajor PMAsternocleidomastoideus SMAlongissimus LOlatissimusdorsi LDtrapezius TZdeltoid Dbicepsbrachii BBtricepsbrachii TRBextensordigitorum EDflexordigitorumsuperficialis FDS

Anatomicalmusclenetwork

Theanatomicalmusclenetworkwasdefinedbymappingthephysicalconnections

betweenmuscles[28].Thenodesrepresentthe36muscles(18leftand18right)

andtheedgesofthenetworkrepresentthetendinousattachmentsofmusclesonto

bonesandcartilages.Thestructuralconnectionsweredefinedbasedontheorigin

andinsertionofthemuscles[3].Bonesthatshownooralmostnomotioninthe

jointbetweenthemwereconsideredasonerigidbonystructure,i.e.thepelvis,

skeletonthoracisorossacranii.Theconnectionsbetweenmusclesandbones

listedinTable2denoteabipartitenetwork𝐶withmusclesasonegroupand

bonesasthesecondgroup.Wethencreatedamuscle-centricnetworkastheone-

modeprojectionsof𝐶:𝐵 = 𝐶𝐶% [29].Thisgaveaweightedadjacencymatrix

wheretheweightsreflectthenumberofattachmentsbywhichtwomusclesare

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprint (which wasthis version posted January 8, 2018. ; https://doi.org/10.1101/181818doi: bioRxiv preprint

Page 18: Network structure of the human musculoskeletal system ... · 08.01.2018  · The human body is a complex system consisting of many subsystems and regulatory pathways. The musculoskeletal

18

connected.Weconvertedthistoabinarynetworkbysettingallnone-zeroweights

to1.

Table2.OriginandinsertionofmusclesMuscle Origin1 Origin2 Origin3 Insertion1 Insertion2TA tibia oscuneiformemediale ossa

metatarsiGM femur calcaneus SOL fibula tibia calcaneus RF oscoxae1,* osilium1,* tibia BF femur osischii1,* fibula tibiaVL femur tibia AL ospubis1,* femur EO costae2,* lineaalba osilium1,*PMA clavicula costae2,* sternum2,* humerus SMA clavicula sternum2,* ostemporale3,* LO ligamentum

sacrospinale1,*vertebra* costae2,* vertebra*

LD costae2,* fasciathoracolumbalis*

vertebra* humerus

TZ ligamentumnuchae* osoccipitale3,* vertebra* clavicula scapulaD clavicula scapula humerus BB scapula radius TRB humerus scapula ulna ED humerus ossadigitorum FDS humerus radius ulna ossadigitorum 1Partofthepelvis;2Partoftheskeletonthoracis;3Partoftheossacranii;*Connectivestructureonthemidlineofthebodyconnectingbilateralmuscles

Functionalmusclenetwork

EMGwasfilteredofflinewithaband-passfilter(1-400Hz)beforeindependent

componentanalysiswasusedforelectrocardiographyremoval[64].Foreach

participant,oneortwoindependentcomponentswereremoved.EMGdatawas

thenhigh-passfiltered(20Hz)andEMGenvelopeswereextractedbymeansofthe

Hilbertamplitude[33].

WefollowedtheproceduredescribedinBoonstraetal.[30]toextractfunctional

musclenetworksfromsurfaceEMG.First,complex-valuedcoherencywas

estimatedandaveragedovertrialswithineachconditionforeachparticipant.The

absolutevalueofcoherencywassquaredtoobtainmagnitude-squaredcoherence.

Intermuscularcoherencewasassessedbetweenall630musclepairs.Next,non-

negativematrixfactorisation(NNMF)[65]wasusedtodecomposethese

coherencespectraacrossallmusclecombinations,conditionsandparticipantsinto

fourdistinctfrequencycomponentsandthecorrespondingweights.Thisyieldeda

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprint (which wasthis version posted January 8, 2018. ; https://doi.org/10.1101/181818doi: bioRxiv preprint

Page 19: Network structure of the human musculoskeletal system ... · 08.01.2018  · The human body is a complex system consisting of many subsystems and regulatory pathways. The musculoskeletal

19

setofweightsforeachfrequencycomponent,whichdefinedanundirected

weightednetworkforeachconditionandparticipant.

Thesefunctionalnetworkswereconvertedtobinarynetworkstofacilitate

comparisontotheanatomicalnetwork.Weightswerethresholdedtoobtaina

minimallyconnectednetworkacrossconditionsandfrequencycomponents.This

thresholdingprocedureyieldsasingle,uniquethresholdvalue,whichcorresponds

tothepercolationthreshold[66].Thisresultedinsparsenetworksinwhicheach

nodewasconnectedtoatleastoneothernodebyanedgeatoneofthelayersof

themultiplexnetwork.

Communitystructure

ThestandardLouvainalgorithmwasusedtoextractthemodulesfromthe

anatomicalnetworks[67].AstheLouvainalgorithmisstochastic,weused

consensusclusteringtoobtainastablepartitionacross1000iterations[68].

Multiplexmodularityanalysis[35]wasusedtoidentifythemodulesoffunctional

musclenetworkacrosstheconditionsandfrequencycomponents.WeusedMolTi,

astandalonegraphicalsoftware,todetectcommunitiesfrommultiplexnetworks

byoptimisingthemultiplex-modularitywiththeadaptedLouvainalgorithm

(https://github.com/gilles-didier/MolTi).Moduleswereextractedacrossthe36

(9´4)binarynetworks,asmulti-graphapproachescanimproveclustering

accuracy[69].WeusedtheRandindexandtheadjustedRandindextocompare

themodulesoftheanatomicalandfunctionalmusclenetworks[25].

Comparisonoffunctionalnetworksacrossconditions

Tofacilitatethecomparisonoffunctionalnetworksacrosstaskconditions,we

coarse-grainedthenetworks[70].Weusedthesetoffunctionalmodulesestimated

acrossconditionsandfrequencycomponentsasaframeofreferencetocoarse-

grainthe36binarynetworksandthencomparedthestrengthoftheinter-and

intra-moduleconnectionsacrossnetworksusingthesemoduleboundaries.Inthe

clusterednetworksthenodesrepresentthemodules(groupsofmuscles,identified

above)andtheedgesrepresenttheconnectionsbetweenmodules.Thenon-

diagonalelementsoftheresultingweightedadjacencymatrixrepresentthe

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprint (which wasthis version posted January 8, 2018. ; https://doi.org/10.1101/181818doi: bioRxiv preprint

Page 20: Network structure of the human musculoskeletal system ... · 08.01.2018  · The human body is a complex system consisting of many subsystems and regulatory pathways. The musculoskeletal

20

averageedgeweightsbetweentwomodulesanddiagonalelementstheaverage

edgeweightswithinamodule.

Tocomparetheclusterednetworksacrossconditions,weusedsimplecontrasts

betweentaskconditionsandquantifieddifferencesinthenumbersofconnections

betweenandwithinmodules.Wetestedfourcontrasts:(i)unimanualand(ii)

bimanualpointingcomparedtonopointingand(iii)anterior-posteriorand(iv)

medial-lateralinstabilitycomparedtonormalstanding.Totestthestatistical

significanceofthesecontrasts,weperformedpairedpermutationtestsseparately

oneachofthematrixelements[70].Theclusterednetworkshadamuch-reduced

dimensionalitycomparedtotheoriginalfunctionalmusclenetworks(21insteadof

630edges).Family-wiseerrorcontrolwasmaintainedusingBonferronicorrection

tocorrectformultiplecomparisons(4´21=84comparisons).

Dataavailabilitystatement

Thedatathatsupportthefindingsofthisstudyareavailablefromthe

correspondingauthoruponreasonablerequest.

Acknowledgment

WethankDanieleMarinazzo,SimonFarmer,SjoerdBruijn,HenkSchutte,and

NadiaDominicifortheirinsightfulcomments.Thisworkwassupportedbythe

NetherlandsOrganizationforScientificResearch(NWO45110-030and

016.156.346),theARCCentreofExcellenceinIntegrativeBrainFunction,andthe

AustralianNationalHealthandMedicalResearchCouncil(APP1037196,

APP1110975).

Authorcontributions

J.K.,A.D.andT.B.conceivedthestudy;allauthorsdesignedtheexperiments;J.K.

acquiredtheEMGdata;J.K.andT.B.performedtheevaluationoftheanatomical

network;J.K.,L.G.andT.B.performedtheevaluationofthefunctionalnetwork;T.B.

performedthestatisticalanalyses;J.K.andT.B.wrotethemanuscript;andallthe

authorseditedthemanuscript.

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprint (which wasthis version posted January 8, 2018. ; https://doi.org/10.1101/181818doi: bioRxiv preprint

Page 21: Network structure of the human musculoskeletal system ... · 08.01.2018  · The human body is a complex system consisting of many subsystems and regulatory pathways. The musculoskeletal

21

References

1. BerkovitzB,HeimerL,HenkelC,MaT,McNealJ,MooreN.TerminologiaAnatomica:InternationalAnatomicalTerminology.NewYork:ThiemeStuttgart;1998.

2. SherringtonC.Theintegrativeactionofthenervoussystem:CUPArchive;1910.3. MartiniFH,TimmonsMJ,P.MM.HumanAnatomy(3rdEdition):PrenticeHallCollege

Div;1999.4. Pierrot-DeseillignyE,BurkeD.Thecircuitryofthehumanspinalcord:itsrolein

motorcontrolandmovementdisorders:CambridgeUniversityPress;2005.5. GrazianoM.Theorganizationofbehavioralrepertoireinmotorcortex.AnnuRev

Neurosci.2006;29:105-34.6. MiriA,WarrinerCL,SeelyJS,ElsayedGF,CunninghamJP,ChurchlandMM,etal.

Behaviorallyselectiveengagementofshort-latencyeffectorpathwaysbymotorcortex.Neuron.2017;95:683-96e11.

7. BernsteinN.Thecoordinationandregulationofmovements.London:Pergamon;1967.

8. TurveyMT.Coordination.AmPsychol.1990;45:938-53.9. KelsoJS.Dynamicpatterns:Theself-organizationofbrainandbehavior:MITpress;

1997.10. ChielHJ,BeerRD.Thebrainhasabody:adaptivebehavioremergesfrominteractions

ofnervoussystem,bodyandenvironment.TrendsNeurosci.1997;20(12):553-7.11. KuoAD,ZajacFE.Humanstandingposture:multi-jointmovementstrategiesbasedon

biomechanicalconstraints.ProgrBrainRes.1993;97:349-58.12. KutchJJ,Valero-CuevasFJ.Challengesandnewapproachestoprovingtheexistenceof

musclesynergiesofneuralorigin.PLoSComputBiol.2012;8:e1002434.13. FarmerSF,BremnerFD,HallidayDM,RosenbergJR,StephensJA.Thefrequency

contentofcommonsynapticinputstomotoneuronesstudiedduringvoluntaryisometriccontractioninman.JPhysiol.1993;470:127-55.

14. d'AvellaA,SaltielP,BizziE.Combinationsofmusclesynergiesintheconstructionofanaturalmotorbehavior.NatNeurosci.2003;6:300-8.

15. TingLH,MacphersonJM.Alimitedsetofmusclesynergiesforforcecontrolduringaposturaltask.JNeurophysiol.2005;93:609-13.

16. DominiciN,IvanenkoYP,CappelliniG,d’AvellaA,MondìV,CiccheseM,etal.Locomotorprimitivesinnewbornbabiesandtheirdevelopment.Science.2011;334(6058):997-9.

17. GhahramaniZ,WolpertDM.Modulardecompositioninvisuomotorlearning.Nature.1997;386(6623):392.

18. Mussa-IvaldiFA.Modularfeaturesofmotorcontrolandlearning.CurrOpinNeurobiol.1999;9(6):713-7.

19. GiszterSF.Motorprimitives—newdataandfuturequestions.CurrOpinNeurobiol.2015;33:156-65.

20. TakeiT,ConfaisJ,TomatsuS,OyaT,SekiK.Neuralbasisforhandmusclesynergiesintheprimatespinalcord.ProcNatAcadSci.2017;114(32):8643-8.

21. TreschMC,SaltielP,BizziE.Theconstructionofmovementbythespinalcord.NatNeurosci.1999;2(2):162–7.

22. HartCB,GiszterSF.Aneuralbasisformotorprimitivesinthespinalcord.JNeurosci.2010;30(4):1322-36.

23. LevineAJ,HinckleyCA,HildeKL,DriscollSP,PoonTH,MontgomeryJM,etal.Identificationofacellularnodeformotorcontrolpathways.NatNeurosci.2014;17(4):586.

24. NewmanME.Modularityandcommunitystructureinnetworks.ProcNatAcadSci.2006;103(23):8577-82.

25. FortunatoS.Communitydetectioningraphs.PhysRep.2010;486(3):75-174.

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprint (which wasthis version posted January 8, 2018. ; https://doi.org/10.1101/181818doi: bioRxiv preprint

Page 22: Network structure of the human musculoskeletal system ... · 08.01.2018  · The human body is a complex system consisting of many subsystems and regulatory pathways. The musculoskeletal

22

26. RavaszE,SomeraAL,MongruDA,OltvaiZN,BarabásiA-L.Hierarchicalorganizationofmodularityinmetabolicnetworks.Science.2002;297(5586):1551-5.

27. BullmoreE,SpornsO.Complexbrainnetworks:graphtheoreticalanalysisofstructuralandfunctionalsystems.NatRevNeurosci.2009;10(3):186-98.

28. Esteve-AltavaB,DiogoR,SmithC,BoughnerJC,Rasskin-GutmanD.Anatomicalnetworksrevealthemusculoskeletalmodularityofthehumanhead.SciRep.2015;5:8298.

29. MurphyAC,MuldoonSF,BakerD,LastowkaA,BennettB,YangM,etal.Structure,Function,andControloftheMusculoskeletalNetwork.arXiv:161206336.2016.

30. BoonstraTW,Danna-Dos-SantosA,XieHB,RoerdinkM,StinsJF,BreakspearM.Musclenetworks:ConnectivityanalysisofEMGactivityduringposturalcontrol.SciRep.2015;5:17830.

31. GibbsJ,HarrisonLM,StephensJA.Organizationofinputstomotoneuronpoolsinman.JPhysiol.1995;485(1):245-56.

32. FarinaD,NegroF,JiangN.Identificationofcommonsynapticinputstomotorneuronsfromtherectifiedelectromyogram.JPhysiol.2013;591(10):2403-18.

33. BoonstraTW,BreakspearM.Neuralmechanismsofintermuscularcoherence:implicationsfortherectificationofsurfaceelectromyography.JNeurophysiol.2012;107(3):796-807.

34. BoonstraTW,FarmerSF,BreakspearM.Usingcomputationalneurosciencetodefinecommoninputtospinalmotorneurons.FrontHumNeurosci.2016;10.

35. DidierG,BrunC,BaudotA.Identifyingcommunitiesfrommultiplexbiologicalnetworks.PeerJ.2015;3:e1525.

36. MakarovSN,NoetscherGM,NazarianA.TriangularSurfaceHumanBodyMeshesforComputationalPurposes.Low-frequencyElectromagneticModelingforElectricalandBiologicalSystemsUsingMATLAB.NewYork:Wiley;2015.p.89-130.

37. JacobsonA.MatlabtoolboxforGeometryProcessing.GitHubRepository.2017:https://github.com/alecjacobson/gptoolbox.

38. HoneyCJ,KötterR,BreakspearM,SpornsO.Networkstructureofcerebralcortexshapesfunctionalconnectivityonmultipletimescales.ProcNatAcadSci.2007;104(24):10240-5.

39. RobertsJA,PerryA,LordAR,RobertsG,MitchellPB,SmithRE,etal.Thecontributionofgeometrytothehumanconnectome.NeuroImage.2016;124:379-93.

40. HorvátS,GămănuțR,Ercsey-RavaszM,MagrouL,GămănuțB,VanEssenDC,etal.Spatialembeddingandwiringcostconstrainthefunctionallayoutofthecorticalnetworkofrodentsandprimates.PLoSBiol.2016;14(7):e1002512.

41. TielandM,TrouwborstI,ClarkBC.Skeletalmuscleperformanceandageing.JCachexiaSarcopeniaMuscle.2017.

42. BriggmanK,KristanJrW.Multifunctionalpattern-generatingcircuits.AnnuRevNeurosci.2008;31:271-94.

43. PartridgeLD.Signal-handlingcharacteristicsofload-movingskeletalmuscle.AmJPhysiol.1966;210(5):1178-91.

44. MartinJH.Thecorticospinalsystem:fromdevelopmenttomotorcontrol.Neuroscientist.2005;11(2):161-73.

45. Ritterband-RosenbaumA,HerskindA,LiX,Willerslev-OlsenM,OlsenMD,FarmerSF,etal.AcriticalperiodofcorticomuscularandEMG-EMGcoherencedetectioninhealthyinfantsaged9-25weeks.JPhysiol.2017;595(8):2699-713.

46. GoodmanCS,ShatzCJ.Developmentalmechanismsthatgenerateprecisepatternsofneuronalconnectivity.Cell.1993;72:77-98.

47. BácskaiT,FuY,SengulG,RusznákZ,PaxinosG,WatsonC.Musculotopicorganizationofthemotorneuronssupplyingforelimbandshouldergirdlemusclesinthemouse.BrainStructFunct.2013;218(1):221-38.

48. McHanwellS,BiscoeT.Thelocalizationofmotoneuronssupplyingthehindlimbmusclesofthemouse.PhilTransRoyalSoci.1981;293(1069):477-508.

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprint (which wasthis version posted January 8, 2018. ; https://doi.org/10.1101/181818doi: bioRxiv preprint

Page 23: Network structure of the human musculoskeletal system ... · 08.01.2018  · The human body is a complex system consisting of many subsystems and regulatory pathways. The musculoskeletal

23

49. LacquanitiF,IvanenkoYP,D'avellaA,ZelikK,ZagoM.Evolutionaryanddevelopmentalmodules.FrontCompNeurosci.2013;7:61.

50. DeVriesIEJ,DaffertshoferA,StegemanDF,BoonstraTW.Functionalconnectivityinneuromuscularsystemunderlyingbimanualcoordination.JNeurophysiol.2016;inpress.

51. McAuleyJ,FarmerS,RothwellJ,MarsdenC.Common3and10Hzoscillationsmodulatehumaneyeandfingermovementswhiletheysimultaneouslytrackavisualtarget.JPhysiol.1999;515(3):905-17.

52. WelshJP,LlinásR.Someorganizingprinciplesforthecontrolofmovementbasedonolivocerebellarphysiology.ProgrBrainRes.1997;114:449-61.

53. LemonRN.Descendingpathwaysinmotorcontrol.AnnuRevNeurosci.2008;31:195-218.

54. CarsonR.Neuralpathwaysmediatingbilateralinteractionsbetweentheupperlimbs.BrainResRev.2005;49(3):641-62.

55. BiswalB,ZerrinYetkinF,HaughtonVM,HydeJS.FunctionalconnectivityinthemotorcortexofrestinghumanbrainusingechoplanarMRI.MagneticResMed.1995;34(4):537-41.

56. ShenK,MišićB,CipolliniBN,BezginG,BuschkuehlM,HutchisonRM,etal.Stablelong-rangeinterhemisphericcoordinationissupportedbydirectanatomicalprojections.ProcNatAcadSci.2015;112(20):6473-8.

57. GallegoJA,PerichMG,MillerLE,SollaSA.Neuralmanifoldsforthecontrolofmovement.Neuron.2017;94(5):978-84.

58. ColeMW,BassettDS,PowerJD,BraverTS,PetersenSE.Intrinsicandtask-evokednetworkarchitecturesofthehumanbrain.Neuron.2014;83(1):238-51.

59. vandenHeuvelMP,SpornsO.Networkhubsinthehumanbrain.TrendsCogSci.2013;17(12):683-96.

60. McAuleyJH,MarsdenCD.Physiologicalandpathologicaltremorsandrhythmiccentralmotorcontrol.Brain.2000;123(8):1545-67.

61. FreundP,FristonK,ThompsonAJ,StephanKE,AshburnerJ,BachDR,etal.Embodiedneurology:anintegrativeframeworkforneurologicaldisorders.Brain.2016;139(6):1855–61.

62. IvanovPC,LiuKK,BartschRP.Focusontheemergingnewfieldsofnetworkphysiologyandnetworkmedicine.NewJPhys.2016;18(10):100201.

63. BashanA,BartschRP,KantelhardtJW,HavlinS,IvanovP.Networkphysiologyrevealsrelationsbetweennetworktopologyandphysiologicalfunction.NatCommun.2012;3:702.

64. WilligenburgNW,DaffertshoferA,KingmaI,vanDieenJH.RemovingECGcontaminationfromEMGrecordings:acomparisonofICA-basedandotherfilteringprocedures.JElectromyogrKinesiol.2012;22(3):485-93.

65. LeeDD,SeungHS.Learningthepartsofobjectsbynon-negativematrixfactorization.Nature.1999;401(6755):788-91.

66. GallosLK,MakseHA,SigmanM.Asmallworldofweaktiesprovidesoptimalglobalintegrationofself-similarmodulesinfunctionalbrainnetworks.ProcNatlAcadSciUSA.2012;109(8):2825-30.

67. BlondelVD,GuillaumeJ-L,LambiotteR,LefebvreE.Fastunfoldingofcommunitiesinlargenetworks.JStatMech.2008;2008(10):P10008.

68. LancichinettiA,FortunatoS.Consensusclusteringincomplexnetworks.SciRep.2012;2:336.

69. PapalexakisEE,AkogluL,IenceD,editors.Domoreviewsofagraphhelp?communitydetectionandclusteringinmulti-graphs.Informationfusion(FUSION),201316thinternationalconferenceon;2013:IEEE.

70. KujalaR,GlereanE,PanRK,JääskeläinenIP,SamsM,SaramäkiJ.Graphcoarse‐grainingrevealsdifferencesinthemodule‐levelstructureoffunctionalbrainnetworks.EurJNeurosci.2016;44(9):2673-84.

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprint (which wasthis version posted January 8, 2018. ; https://doi.org/10.1101/181818doi: bioRxiv preprint