Top Banner
Network Science: Theory, Modeling and Applications Madhav V. Marathe Dept. of Computer Science & Network Dynamics and Simulation Science Laboratory Virginia Bioinformatics Institute Virginia Tech NDSSL TR10148 Supported by Grants from NIH MIDAS, NSF HSD, NSF CNS, CDC COE, and DoD.
43
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Network Science: Theory, Modeling and Applications

Network  Science:  Theory,  Modeling  and  Applications  

Madhav  V.  Marathe    

Dept.  of  Computer  Science  &    Network  Dynamics  and  Simulation  Science  Laboratory  

Virginia  Bioinformatics  Institute  Virginia  Tech  

NDSSL  TR-­10-­148  

Supported by Grants from NIH MIDAS, NSF HSD, NSF CNS, CDC COE, and DoD.

Page 2: Network Science: Theory, Modeling and Applications

Network Dynamics & Simulation Science Laboratory

Where:  LLNL,  Livermore,    

Dates:  December  1st  to  December  15th      2010  

Hosts:  Dr.  David  Brown  and  Dr.  Celeste  Matarazzo  

Time:  10.00  am  to  11.30  am  (OfMice  hours  as  needed  afterwards)  

Lecturer:  Madhav  Marathe,  Virginia  Tech  ([email protected])  

Guest  Lectures:  Christopher  Kuhlman  (VT),  Goran  Konjevod  (Staff  Scientist,  LLNL),  Anil  Vullikanti  (Asst  Prof.  VT  and  DOE  Career  award  recipient)  

Page 3: Network Science: Theory, Modeling and Applications

Network Dynamics & Simulation Science Laboratory

Complex  Networks  are  pervasive  in  our  society.  Realistic  biological,   information,  social  and  technical  networks  share   a   number   of   unique   features   that   distinguish   them   from  physical   networks.   Examples   of   such   features  include:   irregularity,   time-­‐varying   structure,   heterogeneity   among   individual   components,   and   selMish/cooperative  game-­‐like  behavior  by  individual  components  and  co-­‐evolution.  The  size  and  heterogeneity  of  these  networks,   their   co-­‐evolving   nature   and   the   technical   difMiculties   in   applying   dimension   reduction   techniques  commonly  used  to  analyze  physical  systems  makes  reasoning,  prediction  and  controlling  of  these  networks  even  more  challenging.  Recent   quantitative   changes   in   high   performance   and   pervasive   computing   including   faster   machines,  distributed   sensors   and   service-­‐oriented   software   have   created   new   opportunities   for   collecting,   integrating,  analyzing   and   accessing   information   related   to   such   large   complex   networks.   The   advances   in   network   and  information  science  that  build  on  this  new  capability  provide  entirely  new  ways  for  reasoning  and  controlling  these   networks.   Together,   they   enhance   our   ability   to   formulate,   analyze   and   realize   novel   public   policies  pertaining  to  these  complex  networks.  The  course  will  cover  the  mathematical  and  computational  aspects  of  Network  Science.  It  will  provide  a  broad  overview  of  the  area  and  then  will  focus  on    • Mathematical  aspects,  including  structure  theorems,  existence  proofs,    • Computational   aspects,   including,   provable   lower   as   well   as   upper   bounds   on   the   computational   resources,  efMicient  algorithms  for  computing  the  structure  and  dynamics  over  complex  networks,  • Developing   high   performance   computing   based   computational   models   and   modeling   environments   for  supporting  Network  Science.  Practical   applications   arising   in   the   context   of   infrastructure   planning,   energy   systems,   national   security   and  integrated  communication  systems  will  be  used  to  illustrate  the  applicability  of  the  concepts.        

Course Synopsis

Page 4: Network Science: Theory, Modeling and Applications

Network Dynamics & Simulation Science Laboratory

Work  funded  in  part  by  NIGMS,  NIH  MIDAS    program,    CDC,  Center  of  Excellence  in  Medical  Informatics,  DTRA  CNIMS,  NSF,  NeTs,    NECO  and  OCI    program,  VT  Foundation.  

Page 5: Network Science: Theory, Modeling and Applications

Network Dynamics & Simulation Science Laboratory

•   Lada  Adamic:  For  graciously  sharing  her  course  notes    •   NDSSL  Laboratory  members  who  are  in  reality  coauthors  of  this.  •   Other  places  that  I  have  borrowed  the  material  includes:  

• Tim  Roughgarden’s  lectures  on  Games  • David  Kempe’s  Lectures  on  Networks  • Henning    Mortveit’s  lectures  on  SDS  • Bogdan  Oporowski’s  lecture  on  Graph  theory  • Michael  Kearns  lectures  on  Networks  and  Games    • …  and  many  more  

• Books  • Fernando  Vega-­‐Redondo,  Complex  Social  Networks,  Econometric  Society  Monographs,  ,    Cambridge  University  Press,  2007  • D.  Easley,  J.  Kleinberg.  Networks,  Crowds,  and  Markets:  reasoning  about  a  Highly  Connected  World,  Cambridge  University  Press,  2010.  • J.  Kleinberg,  E.  Tardos.  Algorithm  Design.  Addison  Wesley,  2005.    Matthew  Jackson,  Social  and  Economic  Networks,  Princeton  University  Press,  2010    • …  and  many  more  

Acknowledgements for Course Material

Page 6: Network Science: Theory, Modeling and Applications

What  is  a  Network?    History,  Broad  Research  Questions,  Illustrative  

Applications  

Page 7: Network Science: Theory, Modeling and Applications

Network Dynamics & Simulation Science Laboratory

What  is  a  network  ?  

  Although  no  formal  accepted  deMinition,  there  appears  to  be  a  consensus  that  all  network  comprise  of  the  following  attributes:    A  set  of  agents  (entities):  agents  can  be  simple,  game  like,  adaptive  …  

  Interaction  among  the  entities  governed  by  a  graph  (binary  or  in  general  k-­‐ary  relationship)    Graph  itself  can  change,  co-­‐evolve  with  the  entities  

  Entities  modify  their  local  states  and  behavior  by  interacting  with  their  neighbors  

Blogosphere (datamining.typepad.com)

points lines vertices edges, arcs math nodes links computer science sites bonds physics actors ties, relations sociology

node

edge

Page 8: Network Science: Theory, Modeling and Applications

Images  of  Various  Networks  

Page 9: Network Science: Theory, Modeling and Applications

Network Dynamics & Simulation Science Laboratory

Social  Networks:  Facebook  has  over  500Million  individuals!  

http://www.smrfoundation.org/category/industry/companies/facebook/

Page 10: Network Science: Theory, Modeling and Applications

Network Dynamics & Simulation Science Laboratory

High  School  Dating  Network  (Discovery  Magazine  2007)  

Page 11: Network Science: Theory, Modeling and Applications

Network Dynamics & Simulation Science Laboratory

Router-­level  network  based  on  ISPs  

Page 12: Network Science: Theory, Modeling and Applications

Network Dynamics & Simulation Science Laboratory

Delta  Airlines  Routes  (airline  routes  maps.com  

Page 13: Network Science: Theory, Modeling and Applications

Network Dynamics & Simulation Science Laboratory

EU  rail  network  

Page 14: Network Science: Theory, Modeling and Applications

Network Dynamics & Simulation Science Laboratory

Biological  Networks  

Institute of biology and technology - Saclay (iBiTec-S)/ Unités/ Department of Integrative Biology and Molecular Genetics (SBiGeM)/ Integrative biology laboratory (LBI)/ Dynamics of Biological Network (J. Labarre)

http://djpowell.wordpress.com/

http://www.leonelmoura.com/tree.html

Page 15: Network Science: Theory, Modeling and Applications

Network Dynamics & Simulation Science Laboratory

In  real  world  Networks  are  layered  and    coupled  

Page 16: Network Science: Theory, Modeling and Applications

Network Dynamics & Simulation Science Laboratory

Growth  of  network  science  as  measured  by  publications  

#papers  with  “complex  networks”  in  the  title  [National  Academy  of  Science  Report,  2007]  

Journal  special  issues  on  Network  Science  

Page 17: Network Science: Theory, Modeling and Applications

Network Dynamics & Simulation Science Laboratory

Even  appears  in  main  stream  publications  YESTERDAY  !    

Page 18: Network Science: Theory, Modeling and Applications

Network Dynamics & Simulation Science Laboratory

The  Emerging  Network  Science?  

  Newman,  Barabasi,  Watts:  The  Structure  and  Dynamics  of  Networks:  “We  argue  that  the  science  of  networks  that  has  been  taking  shape  over  the  last  few  years  is  distinguished  from  preceding  work  on  networks  in  three  important  ways:      (1)  by  focusing  on  the  properties  of  real-­‐world  networks,  it  is  concerned  with  

empirical  as  well  as  theoretical  questions;      (2)  it  frequently  takes  the  view  that  networks  are  not  static,  but  evolve  in  time  

according  to  various  dynamical  rules;  and      (3)  it  aims,  ultimately  at  least,  to  understand  networks  not  just  as  topological  

objects,  but  also  as  the  framework  upon  which  distributed  dynamical  systems  are  built.”  

  Kearns:  An  Emerging  Science:    Examine  apparent  similarities  (and  differences)  between  many  social,  economic,  information,  biological  and  technological  networks  

  Importance  of  network  effects  in  such  systems    How  things  are  connected  matters  greatly    Details  of  interaction  matter  greatly  

  Qualitative  and  quantitative;  can  be  very  subtle    A  revolution  of  measurement,  theory,  and  breadth  of  vision  

Page 19: Network Science: Theory, Modeling and Applications

Network Dynamics & Simulation Science Laboratory

Science  of  Networks:  A  personal  (and  likely  biased)  viewpoint  1:  

  Real  World  Networks:    Extremely  important  but  ..    Folks  in  social  sciences,  transportation,  electrical  systems,  VLSI,  …  all  have  been  studying  real  world  networks  

  We  need  to  seriously  revisit  the  use  of  simple  random  graph  models  as  a  way  to  explain  a  phenomenon:  the  mathematics  is  elegant  but  often  means  very  little  in  the  real  world  

  Real  world  networks  are  dynamic,  coupled  and  co-­‐evolve    Ability  to  collect  data  that  is  diverse  (spatially,  demographically),  process  it,  store  it  and  reason  about  it  very  fast    New  data  should  be  utilized  in  developing  network  models  

New  and  realistic  models  of  real  world  networks.    Models  should  represent  coupling  and  co-­evolution  

Page 20: Network Science: Theory, Modeling and Applications

Network Dynamics & Simulation Science Laboratory

Accessibility  of  Network  Science:  Pervasive  Computing    Environment  

  High  performance  computing  (larger  machines,  data  intensive  systems,  distributed  systems  …)  

  Software  as  a  service;  delivering  results  to  specialist  who  is  not  interested  in  becoming  a  computer  scientist  

  Ability  to  collect  data  that  is  diverse  (spatially,  demographically),  process  it,  store  it  and  reason  about  it  very  fast  

Develop  Pervasive  computing  technology  to  deliver  Network  Science  technology  to  domain  specialists  and  

others  who  are  not  computing  experts  

Page 21: Network Science: Theory, Modeling and Applications

Network Dynamics & Simulation Science Laboratory

Science  of  Networks:  Centrality  of  Computing  and  Information  Science  

  From  analytical  results  to  algorithmic  viewpoint:  this  is  the  essence  of  new  science  in  my  opinion  if  one  has  to  do  deal  with  real  networks  

  Questions  that  become  important  are:    How  can  we  design  certain  networks    How  can  we  measure  distributed  networks    What  is  a  certain  set  of  distributed  agents  computing:  interaction  based  computing  and  

social  cognition  

  Models  are  not  monolithic  or  federated  anymore  but  really  a  way  to  synthesize  information  by  interacting  with  various  components  –  Milner’s  in_luential  idea  on  interactionism  

Algorithmic  Viewpoint    provide  the  foundational  basis    HPC  computing  provide  the  underlying  technology  

Page 22: Network Science: Theory, Modeling and Applications

Network Dynamics & Simulation Science Laboratory

Inter  and  intra-­discipline  interactions  –  Emergence  of  a  Giant  Component  !    

  We  have  reached    critical  point  wherein  researchers  from  diverse  disciplines  are  starting  to  share  their  ideas  and  interact  (Gladwell’s  Tipping  point)    Beautiful  convergence  of  ideas  and  view  points  in  CS,  Engineering,  Economics,  Mathematics,  Physics,    Social  Science,  Biology….  (convergence  of  several  events,  world  becoming  smaller,  funding  agencies  pushing  to  do  joint  work!,  global  problems,  problems  that  were  being  solved  by  disciplinary  viewpoints)  

  Economic  drivers:  Information  economy,  distributed  logisitics,  global  markets,  mobile  labor  force,  funding  shortfalls  

  Measurement  technologies  and  technologies  for  developing  and  sustaining  diverse  organizations  and  ecosystems  have  taken  hold  

Multi-­disciplinary  view  important:  from  real  research  social  networks  !  

Page 23: Network Science: Theory, Modeling and Applications

Network Dynamics & Simulation Science Laboratory

Culmination  of  diverse  _ields:  Viewpoints  are  different  and  interesting  

Engineers  • Understand  how  infrastructure  networks  work    • Design  and  control  of  these  networks  

Computer  Scientists  • Understand  and  design  complex,  distributed  networks  •   algorithmic  view:    design  of  a  system  and  inferring  its  semantics  

Social  Scientists,  Behavioral  Psychologists,  Economists  • Understand  human  behavior  in  “simple”  settings  • Revised  views  of  economic  rationality  in  humans  

Biologists  • Neural  networks,  gene  regulatory  networks,…  • Understanding  the  evolution  of  networks  

Physicists  and  Mathematicians  • Interest  and  methods  in  complex  systems  • Theories  of  macroscopic  behavior  (phase  transitions)  

Scientists forming co-evolving

networks World

Page 24: Network Science: Theory, Modeling and Applications

Network Dynamics & Simulation Science Laboratory

Proposed  Components  of  a  Research  Program  in  Network  Science  and  Engineering  

Structural  Analysis  of  Complex  Networks  

Dynamics  on  Complex  Networks  

Co-­‐evolution  of  dynamics,  network  

and  individual  behavior  

Measurement  and  Inference  

Networks Science in Real

World

Page 25: Network Science: Theory, Modeling and Applications

Network Dynamics & Simulation Science Laboratory

Key  Research  Challenges  (NA  report  on  Network    Science)  

1.  Dynamics:  Better  understanding  between  structure  and  function  

2.  Modeling  and  Analysis  of  large  networks:  Tools,  abstractions,  approximations  

3.  Design  and  Synthesis  of  Networks  4.  Increasing  level  of  rigor  and  mathematical  structure  5.  Abstracting  common  concepts  across  Mields  6.  Better  experiments  and  measurements  of  network  

structure  7.  Robustness  and  Security  

Page 26: Network Science: Theory, Modeling and Applications

Motivating  examples/applications  

Page 27: Network Science: Theory, Modeling and Applications

Network Dynamics & Simulation Science Laboratory

Application  1  (1736):  First  Use  of  Graphs    Seven  Bridges  of  Königsberg  

  Seven  Bridges  of  Königsberg  –  one  of  the  Mirst  problems  in  graph  theory  

  Is  there  a  route  that  crosses  each  bridge  only  once  and  returns  to  the  starting  point?  

We  will  see  how  this  problem  can  be  solved  by  modeling  it  as  a  graph  theory  problem  later  

Page 28: Network Science: Theory, Modeling and Applications

Network Dynamics & Simulation Science Laboratory

Application  2  (1850s):  Cholera  Pandemic:  John  Snow    

First  Cholera  Pandemic  

Second  Cholera  Pandemic  

  During  this  time  germ  theory  of  diseases  was  not  widely  accepted.  

 During  John  Snow's  life  time  there  were  three  pandemics  of  Asiatic  cholera  (1817-­‐23,  1826-­‐37  and  1846-­‐63),  two  of  which  reached  the  British  isles.  

   The  epidemic  in  1848  to  1849,  killed    between  50,000  and  70,000  in  England  and  Wales.  A  third  outbreak  in  1854  left  over  30,000  people  dead  in  London  alone.    

 Vibrio  cholerae:  Toxin  alters  sodium  pump  in  intestinal  cells    Mluid  loss  

 Entry:  oral  Colonization:  small  intestine  Symptoms:  nausea,  diarrhea,  muscle  cramps,  shock  

http://www.ph.ucla.edu/epi/snow.html

Page 29: Network Science: Theory, Modeling and Applications

Network Dynamics & Simulation Science Laboratory

Application  3  (1950-­60)    Segregation  (Schelling):  Micromotives  to  Macrobehavior  

  Duncan  and  Duncan’s  (1957)  study  of  Chicago    1940-­‐1950  Census  tracts,  mixed  neighborhoods  all  segregate  

  Placed  pennies  and  dimes  on  a  chess  board  and  moved  them  around  according  to  various  rules.      Board  =    city,    Square  =  Housing  lot,  agent:  at  a  location    Pennies  and  dimes  =  agents  representing  two  groups  in  society,    

e.g.  boys  and  girls,  smokers  and  non-­‐smokers,  etc.      Neighborhood  =adjacent    locations  on  the  board    Happy  if  (neighbors  of  same  type  >  threshold)      If  Unhappy  then  move  to  a  random  location    that  is  happy  

  Result:  Many  basic  conMigurations  produce  segregation    relate  decisions  about  where  to  live  (micro)  to  patterns  of  

segregation  (macro)    No  obvious  relationship  between  individual  behavior  and  

aggregate  outcomes.      Behavior  is  interdependent.  Individuals’  behaviors  depend  on  

social  context  (micro)    Individual  behaviors  collectively  change  social  context  (long  

term,  macro)  

http://cs.gmu.edu/~eclab/projects/mason/projects/schelling/

Page 30: Network Science: Theory, Modeling and Applications

Network Dynamics & Simulation Science Laboratory

Application  4:  Power  grids  and  cascading  failures  

  Vast  system  of  electricity  generation,  transmission  &  distribution  is  essentially  a  single  network  

  Power  Mlows  through  all  paths  from  source  to  sink  (Mlow  calculations  are  important  for  other  networks,  even  social  ones)  

  All  AC  lines  within  an    interconnect  must  be  in  sync  

  If  frequency  varies  too  much  (as  line  approaches  capacity),  a  circuit  breaker  takes  the  generator  out  of  the  system  

  Larger  Mlows  are  sent  to  neighboring  parts  of  the  grid  –  triggering  a  cascading  failure  

Page 31: Network Science: Theory, Modeling and Applications

Network Dynamics & Simulation Science Laboratory

Application  4:    Blackout  of  2003:  

  Electrical  Infrastructure  Affected    Area  of  50  million  people  in  eight  US  states  and  two  provinces  in  Canada  

  Approximately61,800Megawatts(MW)oMload    

  Most  cascaded  happen  extremely  rapidly  from  4.10  pm  to  4.13  pm  

  Human  and  information  system  error  also  contributed  to  the  cascade  

  Other  Infrastructures  including  water,  communication,  and  most  notably  transportation  (rail,  road  and  air)  were  affected  

  TV  and  radio  stations  also  affected  

Page 32: Network Science: Theory, Modeling and Applications

Network Dynamics & Simulation Science Laboratory

Timeline  for  2003  Blackout:  Need  for  Multi-­level  networks  

The  2003  blackout  wasn't  just  about  fallen  trees  and  broken  transmission  lines.  As  this  timeline  from  the  Department  of  Energy  report  shows,  it  resulted  from  a  combination  of  many  grid  events,  

computer  glitches,  and  human  interaction.  

Page 33: Network Science: Theory, Modeling and Applications

Network Dynamics & Simulation Science Laboratory

Blackout  of  2003:Time  Line  –  The  Initial  Phase    12:15  p.m.  Incorrect  telemetry  data  renders  inoperative  the  state  estimator,  a  power  Mlow  

monitoring  tool  operated  by  the  Indiana-­‐basedMidwest  Independent  Transmission  System  Operator  (MISO).  An  operator  corrects  the  telemetry  problem  but  forgets  to  restart  the  monitoring  tool.    

  1:31  p.m.  The  Eastlake,  Ohio  generating  plant  shuts  down.  The  plant  is  owned  by  FirstEnergy,  an  Akron,  Ohio-­‐based  company  that  had  experienced  extensive  recent  maintenance  problems.  

  2:02  p.m.  The  Mirst  of  several  345  kV  overhead  transmission  lines  in  northeast  Ohio  fails  due  to  contact  with  a  tree  in  Walton  Hills,  Ohio.  

   2:14  p.m.  An  alarm  system  fails  at  FirstEnergy's  control  room  and  is  not  repaired.      3:05  p.m.  A  345  kV  transmission  line  known  as  the  Chamberlain-­‐Harding  line  fails  in  Parma,  south  

of  Cleveland,  due  to  a  tree.      3:17  p.m.  Voltage  dips  temporarily  on  the  Ohio  portion  of  the  grid.  Controllers  take  no  action.      3:32  p.m.  Power  shifted  by  the  Mirst  failure  onto  another  345  kV  power  line,  the  Hanna-­‐Juniper  

interconnection,  causes  it  to  sag  into  a  tree,  bringing  it  ofMline  as  well.  While  MISO  and  FirstEnergy  controllers  concentrate  on  understanding  the  failures,  they  fail  to  inform  system  controllers  in  nearby  states.    

  3:39  p.m.  A  FirstEnergy  138  kV  line  fails  in  northern  Ohio.    3:41  p.m.  A  circuit  breaker  connecting  FirstEnergy's  grid  with  that  of  American  Electric  Power  is  

tripped  as  a  345  kV  power  line  (Star-­‐South  Canton  interconnection)  and  Mifteen  138  kV  lines  fail  in  rapid  succession  in  northern  Ohio.    

http://en.wikipedia.org/wiki/Northeast_Blackout_of_2003  

Page 34: Network Science: Theory, Modeling and Applications

Network Dynamics & Simulation Science Laboratory

Blackout  of  2003:  Timeline  -­-­    the    cascade  begins  

  3:46  p.m.  A  Mifth  345  kV  line,  the  Tidd-­‐Canton  Central  line,  trips  ofMline.    

  4:05:57  p.m.  The  Sammis-­‐Star  345  kV  line  trips  due  to  undervoltage  and  overcurrent  interpreted  as  a  short  circuit.  Later  analysis  suggests  that  the  blackout  could  have  been  averted  prior  to  this  failure  by  cutting  1.5  GW  of  load  in  the  Cleveland–Akron  area.    

  4:06–4:08  p.m.  Sustained  power  surge  north  toward  Cleveland  overloads  3  138  kV  lines.    

  4:09:02  p.m.  Voltage  sags  deeply  as  Ohio  draws  2  GW  of  power  from  Michigan,  creating  simultaneous  undervoltage  and  overcurrent  conditions  as  power  attempts  to  Mlow  in  such  a  way  as  to  rebalance  the  system's  voltage.    

  4:10:34  p.m.  Many  transmission  lines  trip  out,  Mirst  in  Michigan  and  then  in  Ohio,  blocking  the  eastward  Mlow  of  power  around  the  south  shore  of  Lake  Erie.  Suddenly  bereft  of  demand,  generating  stations  go  ofMline,  creating  a  huge  power  deMicit.  In  seconds,  power  surges  in  from  the  east,  overloading  east-­‐coast  power  plants  whose  generators  go  ofMline  as  a  protective  measure,  and  the  blackout  is  on.  

  4:10:37  p.m.  The  eastern  and  western  Michigan  power  grids  disconnect  from  each  other.  Two  345  kV  lines  in  Michigan  trip.  A  line  that  runs  from  Grand  Ledge  to  Ann  Arbor  known  as  the  Oneida-­‐Majestic  interconnection  trips.  A  short  time  later,  a  line  running  from  Bay  City  south  to  Flint  in  Consumers  Energy's  system  known  as  the  Hampton-­‐Thetford  line  also  trips.    

  4:10:38  p.m.  Cleveland  separates  from  the  Pennsylvania  grid.  

Page 35: Network Science: Theory, Modeling and Applications

Network Dynamics & Simulation Science Laboratory

Blackout  of  2003:  Timeline  -­-­  Crescendo  

  4:10:39  p.m.  3.7  GW  power  Mlows  from  the  east  along  the  north  shore  of  Lake  Erie,  through  Ontario  to  southern  Michigan  and  northern  Ohio,  a  Mlow  more  than  ten  times  greater  than  the  condition  30  seconds  earlier,  causing  a  voltage  drop  across  the  system.  4:10:40  p.m.  Flow  Mlips  to  2  GW  eastward  from  Michigan  through  Ontario  (a  net  reversal  of  5.7  GW  of  power),  then  reverses  back  westward  again  within  a  half  second.  

  4:10:40  p.m.  Flow  Mlips  to  2  GW  eastward  from  Michigan  through  Ontario  (a  net  reversal  of  5.7  GW  of  power),  then  reverses  back  westward  again  within  a  half  second.    

  4:10:43  p.m.  International  connections  between  the  United  States  and  Canada  begin  failing.    4:10:45  p.m.  Northwestern  Ontario  separates  from  the  east  when  the  Wawa-­‐Marathon  230  kV  

line  north  of  Lake  Superior  disconnects.  The  Mirst  Ontario  power  plants  go  ofMline  in  response  to  the  unstable  voltage  and  current  demand  on  the  system.    

  4:10:46  p.m.  New  York  separates  from  the  New  England  grid.      4:10:50  p.m.  Ontario  separates  from  the  western  New  York  grid.      4:11:57  p.m.  The  Keith-­‐Waterman,  Bunce  Creek-­‐Scott  230  kV  lines  and  the  St.  Clair-­‐Lambton  #1  

230  kV  line  and  #2  345  kV  line  between  Michigan  and  Ontario  fail.      4:12:03  p.m.  Windsor,  Ontario  and  surrounding  areas  drop  off  the  grid.      4:12:58  p.m.  Northern  New  Jersey  separates  its  power-­‐grids  from  New  York  and  the  Philadelphia  

area,  causing  a  cascade  of  failing  secondary  generator  plants  along  the  Jersey  coast  and  throughout  the  inland  west.    

  4:13  p.m.  End  of  cascading  failure.  256  power  plants  are  off-­‐line,  85%  of  which  went  ofMline  after  the  grid  separations  occurred,  most  due  to  the  action  of  automatic  protective  controls.  

Page 36: Network Science: Theory, Modeling and Applications

Network Dynamics & Simulation Science Laboratory

Milgram’s  Small  World  Experiment    Travers  &  Milgram  1969:  classic  early  social  

network  study    destination:  a  Boston  stockbroker;      lived  in  Sharon,  MA  

  sources:  Nebraska  stockowners;      forward  letter  to  a  Mirst-­‐name      acquaintance  “closer”  to  target  

  Information  provided:    name,  address,  occupation,  Mirm,  college,  wife’s  name  and  hometown  

  navigational  value?    Basic  Mindings:  

  64  of  296  chains  reached  the  target    20%  of  senders  reached  target.    average  chain  length  =  6.5:  “Six  degrees  of  separation”    average  length  of  completed  chains:  5.2  

  interaction  of  chain  length  and  navigational  difMiculties  

  main  approach  routes:  home  (6.1)  and  work  (4.6)  

  Boston  sources  (4.4)  faster  than  Nebraska  (5.5)    no  advantage  for  Nebraska  stockowners  

NE

MA

Page 37: Network Science: Theory, Modeling and Applications

Network Dynamics & Simulation Science Laboratory

Recent  small  world  experiment  

Setup    Email  experiment    Dodds,  

Muhamad,  Watts,    Science  301,  (2003)  

  18  targets,  13  different  countries  60,000+  participants  

  a  professor  at  an  Ivy  League  university,  

  an  archival  inspector  in  Estonia,    a  technology  consultant  in  India,    a  policeman  in  Australia,    a  veterinarian  in  the  Norwegian  

army.  

Basic  Analysis    Approximate  37%  participation  rate  

approximately  .    Probability  of  a  chain  of  length  10  

getting  through:    .3710  ~  5  x  10-­‐5    so  only  one  out  of  20,000  chains  would  

make  it    actual  #  of  completed  chains:  384  

(1.6%  of  all  chains).    Average  path  length:  4,  median:  7    Small  changes  in  attrition  rates  lead  to  

large  changes  in  completion  rates    e.g.,  a  15%  decrease  in  attrition  rate  

would  lead  to  a  800%  increase  in  completion  rate  

Page 38: Network Science: Theory, Modeling and Applications

Network Dynamics & Simulation Science Laboratory

Estimating  ‘recovered’  chain  lengths  for  uncompleted  chains  

  <L>  =  4.05  for  all  completed  chains    L*  =  Estimated  `true'  median  chain  length    Intra-­‐country  chains:  L*  =  5    Inter-­‐country  chains:  L*  =  7    All  chains:  L*  =  7    Milgram:  L  *  ~  8-­‐9  hops  

Page 39: Network Science: Theory, Modeling and Applications

Network Dynamics & Simulation Science Laboratory

Attrition  rate  stays  approx.  constant  throughout  

  rL  –  probability  of  not  passing  on  the  message  at  distance  L  from  the  source  

average 95 % confidence interval

Page 40: Network Science: Theory, Modeling and Applications

Network Dynamics & Simulation Science Laboratory

Estimated  ‘recovered’  chain  lengths  

  observed  chain  lengths  

  ‘recovered’  histogram  of  path  lengths  

   inter-­‐country  intra-­‐country    

Page 41: Network Science: Theory, Modeling and Applications

Network Dynamics & Simulation Science Laboratory

Small  world  experiment  at  Columbia  

 Successful  chains  disproportionately  used     weak  ties  (Granovetter)     professional  ties  (34%  vs.  13%)     ties  originating  at  work/college     target's  work  (65%  vs.  40%)  

 .  .  .  and  disproportionately  avoided     hubs  (8%  vs.  1%)  (+  no  evidence  of  funnels)     family/friendship  ties  (60%  vs.  83%)  

 Strategy:  Geography  -­‐>  Work  

Page 42: Network Science: Theory, Modeling and Applications

Network Dynamics & Simulation Science Laboratory

How  many  hops  actually  separate  any  two  individuals  in  the  world?  

  Participants  are  not  perfect  in  routing  messages    They  use  only  local  information    “The  accuracy  of  small  world  chains  in  social  networks”    

Peter  D.  Killworth,  Chris  McCarty  ,  H.  Russell  Bernard&  Mark  House:    Analyze  10920  shortest  path  connections  between  105  members  of  an  interviewing  bureau,  

  together  with  the  equivalent  conceptual,  or  ‘small  world’  routes,  which  use  individuals’  selections  of  intermediaries.    

  This  permits  the  Mirst  study  of  the  impact  of  accuracy  within  small  world  chains.  

  The  mean  small  world  path  length  (3.23)  is  40%  longer  than  the  mean  of  the  actual  shortest  paths  (2.30)  

  Model  suggests  that  people  make  a  less  than  optimal  small  world  choice  more  than  half  the  time.  

Page 43: Network Science: Theory, Modeling and Applications

Network Dynamics & Simulation Science Laboratory

Tentative  Schedule  

  Week  1  –  Module  1.  December  1-­‐2  (Wednesday,  &  Thursday)    Wednesday(1st  December):  Introduction  to  Network  Science    Thursday(2nd  December):  SDS  and  Diffusion  on  Networks,    Friday  (Extra  Class  if  interest):  EpiCure  –  modeling  environment  for  studying  

malware  propagation  in  wireless  networks.     Week  2  –  Module  2  December  7-­‐9    (Monday,  Tuesday,  Thursday)    

  Monday  (6th  December):    Control  and  InMluence  maximization    Tuesday  (7th  December):  Branching  process  result,  proof  of  Fastdiffuse.  Introduction  to  

various  diffusion  style  modeling  environments    Wednesday  (Extra  class  if  interest):    Population  and  Network  Synthesis.  Introduction  

to  graph  analysis    Thursday  (9th  December):  SIMDEMICS  and  related  modeling  environments.  

  Week  3  –  Module  3  and  Module  4  (December  13-­‐16)    Monday  (13th  December):  Markets,  Games,  Mechanism  Design  and  SIGMA:  a  modeling  

environment  to  study  commodity  markets  on  networks,      Tuesday  (14th  December):  Shortest  Paths,  Formal  language  constrained  paths,  Greedy  

routing,  routing  in  small  world  networks,  Introduction  to  TRANSIMS.    Thursday  (15th  December):    Concluding  remarks,  Brief  discussion  of    uncovered  topics,  

Open  Problems,  Directions  for  Future  Work.