Top Banner
Network-Level Spam and Scam Defenses Nick Feamster Georgia Tech with Anirudh Ramachandran, Shuang Hao, Maria Konte Alex Gray, Jaeyeon Jung, Santosh Vempala
48

Network-Level Spam and Scam Defenses Nick Feamster Georgia Tech with Anirudh Ramachandran, Shuang Hao, Maria Konte Alex Gray, Jaeyeon Jung, Santosh Vempala.

Dec 26, 2015

Download

Documents

Emery Matthews
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Network-Level Spam and Scam Defenses Nick Feamster Georgia Tech with Anirudh Ramachandran, Shuang Hao, Maria Konte Alex Gray, Jaeyeon Jung, Santosh Vempala.

Network-Level Spam and Scam Defenses

Nick FeamsterGeorgia Tech

with Anirudh Ramachandran, Shuang Hao, Maria KonteAlex Gray, Jaeyeon Jung, Santosh Vempala

Page 2: Network-Level Spam and Scam Defenses Nick Feamster Georgia Tech with Anirudh Ramachandran, Shuang Hao, Maria Konte Alex Gray, Jaeyeon Jung, Santosh Vempala.

2

Spam: More than Just a Nuisance

• 95% of all email traffic– Image and PDF Spam

(PDF spam ~12%)

• As of August 2007, one in every 87 emails constituted a phishing attack

• Targeted attacks on the rise– 20k-30k unique phishing attacks per month

Source: CNET (January 2008), APWG

Page 3: Network-Level Spam and Scam Defenses Nick Feamster Georgia Tech with Anirudh Ramachandran, Shuang Hao, Maria Konte Alex Gray, Jaeyeon Jung, Santosh Vempala.

3

Approach: Filter

• Prevent unwanted traffic from reaching a user’s inbox by distinguishing spam from ham

• Question: What features best differentiate spam from legitimate mail?– Content-based filtering: What is in the mail?– IP address of sender: Who is the sender?– Behavioral features: How the mail is sent?

Page 4: Network-Level Spam and Scam Defenses Nick Feamster Georgia Tech with Anirudh Ramachandran, Shuang Hao, Maria Konte Alex Gray, Jaeyeon Jung, Santosh Vempala.

Content Filters: Chasing a Moving Target

...and even mp3s!

PDFs Excel sheets Images

Page 5: Network-Level Spam and Scam Defenses Nick Feamster Georgia Tech with Anirudh Ramachandran, Shuang Hao, Maria Konte Alex Gray, Jaeyeon Jung, Santosh Vempala.

5

Problems with Content Filtering

• Customized emails are easy to generate: Content-based filters need fuzzy hashes over content, etc.

• Low cost to evasion: Spammers can easily alter features of an email’s content can be easily adjusted and changed

• High cost to filter maintainers: Filters must be continually updated as content-changing techniques become more sophisticated

Page 6: Network-Level Spam and Scam Defenses Nick Feamster Georgia Tech with Anirudh Ramachandran, Shuang Hao, Maria Konte Alex Gray, Jaeyeon Jung, Santosh Vempala.

6

Another Approach: IP Addresses

• Problem: IP addresses are ephemeral

• Every day, 10% of senders are from previously unseen IP addresses

• Possible causes– Dynamic addressing– New infections

Page 7: Network-Level Spam and Scam Defenses Nick Feamster Georgia Tech with Anirudh Ramachandran, Shuang Hao, Maria Konte Alex Gray, Jaeyeon Jung, Santosh Vempala.

7

Our Idea: Network-Based Filtering

• Filter email based on how it is sent, in addition to simply what is sent.

• Network-level properties are less malleable– Network/geographic location of sender and receiver– Set of target recipients– Hosting or upstream ISP (AS number)– Membership in a botnet (spammer, hosting

infrastructure)

Page 8: Network-Level Spam and Scam Defenses Nick Feamster Georgia Tech with Anirudh Ramachandran, Shuang Hao, Maria Konte Alex Gray, Jaeyeon Jung, Santosh Vempala.

8

Why Network-Level Features?

• Lightweight: Don’t require inspecting details of packet streams– Can be done at high speeds– Can be done in the middle of the network

• Robust: Perhaps more difficult to change some network-level features than message contents

Page 9: Network-Level Spam and Scam Defenses Nick Feamster Georgia Tech with Anirudh Ramachandran, Shuang Hao, Maria Konte Alex Gray, Jaeyeon Jung, Santosh Vempala.

9

Challenges• Understanding network-level behavior

– What network-level behaviors do spammers have?– How well do existing techniques work?

• Building classifiers using network-level features– Key challenge: Which features to use?– Two Algorithms: SNARE and SpamTracker

• Building the system – Dynamism: Behavior itself can change– Scale: Lots of email messages (and spam!) out there

• Applications to phishing and scams

Page 10: Network-Level Spam and Scam Defenses Nick Feamster Georgia Tech with Anirudh Ramachandran, Shuang Hao, Maria Konte Alex Gray, Jaeyeon Jung, Santosh Vempala.

10

Data: Spam and BGP• Spam Traps: Domains that receive only spam• BGP Monitors: Watch network-level reachability

Domain 1

Domain 2

17-Month Study: August 2004 to December 2005

Page 11: Network-Level Spam and Scam Defenses Nick Feamster Georgia Tech with Anirudh Ramachandran, Shuang Hao, Maria Konte Alex Gray, Jaeyeon Jung, Santosh Vempala.

11

Finding: BGP “Spectrum Agility”• Hijack IP address space using BGP• Send spam• Withdraw IP address

A small club of persistent players appears to be using

this technique.

Common short-lived prefixes and ASes

61.0.0.0/8 4678 66.0.0.0/8 2156282.0.0.0/8 8717

~ 10 minutes

Somewhere between 1-10% of all spam (some clearly intentional,

others might be flapping)

Page 12: Network-Level Spam and Scam Defenses Nick Feamster Georgia Tech with Anirudh Ramachandran, Shuang Hao, Maria Konte Alex Gray, Jaeyeon Jung, Santosh Vempala.

12

Spectrum Agility: Big Prefixes?

• Flexibility: Client IPs can be scattered throughout dark space within a large /8– Same sender usually returns with different IP

addresses

• Visibility: Route typically won’t be filtered (nice and short)

Page 13: Network-Level Spam and Scam Defenses Nick Feamster Georgia Tech with Anirudh Ramachandran, Shuang Hao, Maria Konte Alex Gray, Jaeyeon Jung, Santosh Vempala.

13

How Well do IP Blacklists Work?

• Completeness: The fraction of spamming IP addresses that are listed in the blacklist

• Responsiveness: The time for the blacklist to list the IP address after the first occurrence of spam

Page 14: Network-Level Spam and Scam Defenses Nick Feamster Georgia Tech with Anirudh Ramachandran, Shuang Hao, Maria Konte Alex Gray, Jaeyeon Jung, Santosh Vempala.

14

Completeness and Responsiveness

• 10-35% of spam is unlisted at the time of receipt• 8.5-20% of these IP addresses remain unlisted

even after one month

Data: Trap data from March 2007, Spamhaus from March and April 2007

Page 15: Network-Level Spam and Scam Defenses Nick Feamster Georgia Tech with Anirudh Ramachandran, Shuang Hao, Maria Konte Alex Gray, Jaeyeon Jung, Santosh Vempala.

15

Problems with IP Blacklists

• IP addresses of senders have considerable churn

• Based on ephemeral identifier (IP address)– More than 10% of all spam comes from IP addresses not seen

within the past two months• Dynamic renumbering of IP addresses• Stealing of IP addresses and IP address space• Compromised machines

• Often require a human to notice/validate the behavior– Spamming is compartmentalized by domain and not analyzed

across domains

Page 16: Network-Level Spam and Scam Defenses Nick Feamster Georgia Tech with Anirudh Ramachandran, Shuang Hao, Maria Konte Alex Gray, Jaeyeon Jung, Santosh Vempala.

16

Outline

• Understanding the network-level behavior– What behaviors do spammers have?– How well do existing techniques work?

• Classifiers using network-level features– Key challenge: Which features to use?– Two algorithms: SNARE and SpamTracker

• System: SpamSpotter – Dynamism: Behavior itself can change– Scale: Lots of email messages (and spam!) out there

• Application to phishing and scams

Page 17: Network-Level Spam and Scam Defenses Nick Feamster Georgia Tech with Anirudh Ramachandran, Shuang Hao, Maria Konte Alex Gray, Jaeyeon Jung, Santosh Vempala.

17

Finding the Right Features

• Goal: Sender reputation from a single packet?– Low overhead– Fast classification– In-network– Perhaps more evasion resistant

• Key challenge– What features satisfy these properties and can

distinguish spammers from legitimate senders?

Page 18: Network-Level Spam and Scam Defenses Nick Feamster Georgia Tech with Anirudh Ramachandran, Shuang Hao, Maria Konte Alex Gray, Jaeyeon Jung, Santosh Vempala.

18

Set of Network-Level Features

• Single-Packet– Geodesic distance– Distance to k nearest senders– Time of day– AS of sender’s IP– Status of email service ports

• Single-Message– Number of recipients– Length of message

• Aggregate (Multiple Message/Recipient)

Page 19: Network-Level Spam and Scam Defenses Nick Feamster Georgia Tech with Anirudh Ramachandran, Shuang Hao, Maria Konte Alex Gray, Jaeyeon Jung, Santosh Vempala.

19

Sender-Receiver Geodesic Distance

90% of legitimate messages travel 2,200 miles or less

Page 20: Network-Level Spam and Scam Defenses Nick Feamster Georgia Tech with Anirudh Ramachandran, Shuang Hao, Maria Konte Alex Gray, Jaeyeon Jung, Santosh Vempala.

20

Density of Senders in IP Space

For spammers, k nearest senders are much closer in IP space

Page 21: Network-Level Spam and Scam Defenses Nick Feamster Georgia Tech with Anirudh Ramachandran, Shuang Hao, Maria Konte Alex Gray, Jaeyeon Jung, Santosh Vempala.

21

Local Time of Day at Sender

Spammers “peak” at different local times of day

Page 22: Network-Level Spam and Scam Defenses Nick Feamster Georgia Tech with Anirudh Ramachandran, Shuang Hao, Maria Konte Alex Gray, Jaeyeon Jung, Santosh Vempala.

22

Combining Features: RuleFit• Put features into the RuleFit classifier• 10-fold cross validation on one day of query logs

from a large spam filtering appliance provider

• Comparable performance to SpamHaus– Incorporating into the system can further reduce FPs

• Using only network-level features• Completely automated

Page 23: Network-Level Spam and Scam Defenses Nick Feamster Georgia Tech with Anirudh Ramachandran, Shuang Hao, Maria Konte Alex Gray, Jaeyeon Jung, Santosh Vempala.

23

Benefits of Whitelisting

Whitelisting top 50 ASes:False positives reduced to 0.14%

Page 24: Network-Level Spam and Scam Defenses Nick Feamster Georgia Tech with Anirudh Ramachandran, Shuang Hao, Maria Konte Alex Gray, Jaeyeon Jung, Santosh Vempala.

24

Outline

• Understanding the network-level behavior– What behaviors do spammers have?– How well do existing techniques work?

• Building classifiers using network-level features– Key challenge: Which features to use?– Algorithms: SpamTracker and SNARE

• System (SpamSpotter)– Dynamism: Behavior itself can change– Scale: Lots of email messages (and spam!) out there

Page 25: Network-Level Spam and Scam Defenses Nick Feamster Georgia Tech with Anirudh Ramachandran, Shuang Hao, Maria Konte Alex Gray, Jaeyeon Jung, Santosh Vempala.

25

Deployment: Real-Time Blacklist

• As mail arrives, lookups received at BL

• Queries provide proxy for sending behavior

• Train based on received data

• Return score

Approach

Page 26: Network-Level Spam and Scam Defenses Nick Feamster Georgia Tech with Anirudh Ramachandran, Shuang Hao, Maria Konte Alex Gray, Jaeyeon Jung, Santosh Vempala.

26

Design Choice: Augment DNSBL• Expressive queries

– SpamHaus: $ dig 55.102.90.62.zen.spamhaus.org

• Ans: 127.0.0.3 (=> listed in exploits block list)– SpamSpotter: $ dig \

receiver_ip.receiver_domain.sender_ip.rbl.gtnoise.net

• e.g., dig 120.1.2.3.gmail.com.-.1.1.207.130.rbl.gtnoise.net

• Ans: 127.1.3.97 (SpamSpotter score = -3.97)

• Also a source of data– Unsupervised algorithms work with unlabeled

data

Page 27: Network-Level Spam and Scam Defenses Nick Feamster Georgia Tech with Anirudh Ramachandran, Shuang Hao, Maria Konte Alex Gray, Jaeyeon Jung, Santosh Vempala.

27

Challenges

• Scalability: How to collect and aggregate data, and form the signatures without imposing too much overhead?

• Dynamism: When to retrain the classifier, given that sender behavior changes?

• Reliability: How should the system be replicated to better defend against attack or failure?

• Evasion resistance: Can the system still detect spammers when they are actively trying to evade?

Page 28: Network-Level Spam and Scam Defenses Nick Feamster Georgia Tech with Anirudh Ramachandran, Shuang Hao, Maria Konte Alex Gray, Jaeyeon Jung, Santosh Vempala.

28

Latency

Performance overhead is negligible.

Page 29: Network-Level Spam and Scam Defenses Nick Feamster Georgia Tech with Anirudh Ramachandran, Shuang Hao, Maria Konte Alex Gray, Jaeyeon Jung, Santosh Vempala.

29

Sampling

Relatively small samples can achieve low false positive rates

Page 30: Network-Level Spam and Scam Defenses Nick Feamster Georgia Tech with Anirudh Ramachandran, Shuang Hao, Maria Konte Alex Gray, Jaeyeon Jung, Santosh Vempala.

30

Possible Improvements

• Accuracy– Synthesizing multiple classifiers– Incorporating user feedback– Learning algorithms with bounded false positives

• Performance– Caching/Sharing– Streaming

• Security– Learning in adversarial environments

Page 31: Network-Level Spam and Scam Defenses Nick Feamster Georgia Tech with Anirudh Ramachandran, Shuang Hao, Maria Konte Alex Gray, Jaeyeon Jung, Santosh Vempala.

31

Spam Filtering: Summary

• Spam increasing, spammers becoming agile– Content filters are falling behind– IP-Based blacklists are evadable

• Up to 30% of spam not listed in common blacklists at receipt. ~20% remains unlisted after a month

• Complementary approach: behavioral blacklisting based on network-level features– Key idea: Blacklist based on how messages are sent– SNARE: Automated sender reputation

• ~90% accuracy of existing with lightweight features– SpamSpotter: Putting it together in an RBL system– SpamTracker: Spectral clustering

• catches significant amounts faster than existing blacklists

Page 32: Network-Level Spam and Scam Defenses Nick Feamster Georgia Tech with Anirudh Ramachandran, Shuang Hao, Maria Konte Alex Gray, Jaeyeon Jung, Santosh Vempala.

32

Phishing and Scams

• Scammers host Web sites on dynamic scam hosting infrastructure– Use DNS to redirect users to different sites

when the location of the sites move

• State of the art: Blacklist URL

• Our approach: Blacklist based on network-level fingerprints

Konte et al., “Dynamics of Online Scam Hosting Infrastructure”, PAM 2009

Page 33: Network-Level Spam and Scam Defenses Nick Feamster Georgia Tech with Anirudh Ramachandran, Shuang Hao, Maria Konte Alex Gray, Jaeyeon Jung, Santosh Vempala.

33

Online Scams

• Often advertised in spam messages• URLs point to various point-of-sale sites• These scams continue to be a menace

– As of August 2007, one in every 87 emails constituted a phishing attack

• Scams often hosted on bullet-proof domains

• Problem: Study the dynamics of online scams, as seen at a large spam sinkhole

Page 34: Network-Level Spam and Scam Defenses Nick Feamster Georgia Tech with Anirudh Ramachandran, Shuang Hao, Maria Konte Alex Gray, Jaeyeon Jung, Santosh Vempala.

34

Online Scam Hosting is Dynamic

• The sites pointed to by a URL that is received in an email message may point to different sites

• Maintains agility as sites are shut down, blacklisted, etc.

• One mechanism for hosting sites: fast flux

Page 35: Network-Level Spam and Scam Defenses Nick Feamster Georgia Tech with Anirudh Ramachandran, Shuang Hao, Maria Konte Alex Gray, Jaeyeon Jung, Santosh Vempala.

35

Mechanism for Dynamics: “Fast Flux”

Source: HoneyNet Project

Page 36: Network-Level Spam and Scam Defenses Nick Feamster Georgia Tech with Anirudh Ramachandran, Shuang Hao, Maria Konte Alex Gray, Jaeyeon Jung, Santosh Vempala.

36

Summary of Findings

• What are the rates and extents of change?– Different from legitimate load balance– Different cross different scam campaigns

• How are dynamics implemented?– Many scam campaigns change DNS mappings at all

three locations in the DNS hierarchy• A, NS, IP address of NS record

• Conclusion: Might be able to detect based on monitoring the dynamic behavior of URLs

Page 37: Network-Level Spam and Scam Defenses Nick Feamster Georgia Tech with Anirudh Ramachandran, Shuang Hao, Maria Konte Alex Gray, Jaeyeon Jung, Santosh Vempala.

37

Data Collection Method

• Three months of spamtrap data– 384 scam hosting domains– 21 unique scam campaigns

• Baseline comparison: Alexa “top 500” Web sites

Page 38: Network-Level Spam and Scam Defenses Nick Feamster Georgia Tech with Anirudh Ramachandran, Shuang Hao, Maria Konte Alex Gray, Jaeyeon Jung, Santosh Vempala.

38

Top 3 Spam Campaigns

• Some campaigns hosted by thousands of IPs• Most scam domains exhibit some type of flux• Sharing of IP addresses across different roles

(authoritative NS and scam hosting)

Page 39: Network-Level Spam and Scam Defenses Nick Feamster Georgia Tech with Anirudh Ramachandran, Shuang Hao, Maria Konte Alex Gray, Jaeyeon Jung, Santosh Vempala.

39

Rates of Change

• How (and how quickly) do DNS-record mappings change?

• Rates of change are much faster than for legitimate load-balanced sites.– Scam domains change on shorter intervals than their

TTL values.

• Domains for different scam campaigns exhibit different rates of change.

Page 40: Network-Level Spam and Scam Defenses Nick Feamster Georgia Tech with Anirudh Ramachandran, Shuang Hao, Maria Konte Alex Gray, Jaeyeon Jung, Santosh Vempala.

40

Rates of Change

• Domains that exhibit fast flux change more rapidly than legitimate domains

• Rates of change are inconsistent with actual TTL values

Rates of change are much faster than for legitimate load-balanced sites.

Page 41: Network-Level Spam and Scam Defenses Nick Feamster Georgia Tech with Anirudh Ramachandran, Shuang Hao, Maria Konte Alex Gray, Jaeyeon Jung, Santosh Vempala.

41

Time Between Record ChangesFast-flux Domains tend to change much more frequently than legitimately hosted sites

Page 42: Network-Level Spam and Scam Defenses Nick Feamster Georgia Tech with Anirudh Ramachandran, Shuang Hao, Maria Konte Alex Gray, Jaeyeon Jung, Santosh Vempala.

42

Rates of Change by CampaignDomains for different scam campaigns exhibit different

rates of change.

Page 43: Network-Level Spam and Scam Defenses Nick Feamster Georgia Tech with Anirudh Ramachandran, Shuang Hao, Maria Konte Alex Gray, Jaeyeon Jung, Santosh Vempala.

43

Rates of Accumulation

• How quickly do scams accumulate new IP addresses?

• Rates of accumulation differ across campaigns• Some scams only begin accumulating IP

addresses after some time

Page 44: Network-Level Spam and Scam Defenses Nick Feamster Georgia Tech with Anirudh Ramachandran, Shuang Hao, Maria Konte Alex Gray, Jaeyeon Jung, Santosh Vempala.

44

Rates of Accumulation

Page 45: Network-Level Spam and Scam Defenses Nick Feamster Georgia Tech with Anirudh Ramachandran, Shuang Hao, Maria Konte Alex Gray, Jaeyeon Jung, Santosh Vempala.

45

Location

• Where in IP address space do hosts for scam sites operate?

• Scam networks use a different portion of the IP address space than legitimate sites– 30/8 – 60/8 --- lots of legitimate sites, no scam sites

• Sites that host scam domains (both sites and authoritative DNS) are more widely distributed than those for legitimate sites

Page 46: Network-Level Spam and Scam Defenses Nick Feamster Georgia Tech with Anirudh Ramachandran, Shuang Hao, Maria Konte Alex Gray, Jaeyeon Jung, Santosh Vempala.

46

Location: Many Distinct SubnetsScam sites appear in many more distinct networks

than legitimate load-balanced sites.

Page 47: Network-Level Spam and Scam Defenses Nick Feamster Georgia Tech with Anirudh Ramachandran, Shuang Hao, Maria Konte Alex Gray, Jaeyeon Jung, Santosh Vempala.

47

Conclusion• Scam campaigns rely on a dynamic hosting

infrastructure• Studying the dynamics of that infrastructure may

help us develop better detection methods

• Dynamics– Rates of change differ from legitimate sites, and differ

across campaigns– Dynamics implemented at all levels of DNS hierarchy

• Location– Scam sites distributed across distinct subnets

Data: http://www.gtnoise.net/scam/fast-flux.html TR: http://www.cc.gatech.edu/research/reports/GT-CS-08-07.pdf

Page 48: Network-Level Spam and Scam Defenses Nick Feamster Georgia Tech with Anirudh Ramachandran, Shuang Hao, Maria Konte Alex Gray, Jaeyeon Jung, Santosh Vempala.

48

References• Anirudh Ramachandran and Nick Feamster, “Understanding

the Network-Level Behavior of Spammers”, ACM SIGCOMM, August 2006

• Anirudh Ramachandran, Nick Feamster, and Santosh Vempala, “Filtering Spam with Behavioral Blacklisting”, ACM CCS, November 2007

• Shuang Hao, Nick Feamster, Alex Gray and Sven Krasser, “SNARE: Spatio-temporal Network-level Automatic Reputation Engine”, USENIX Security, August 2009

• Maria Konte, Nick Feamster, Jaeyeon Jung, “Dynamics of Online Scam Hosting Infrastructure”, Passive and Active Measurement, April 2009