Top Banner
Upgrade of the Bucharest FN Upgrade of the Bucharest FN Tandem Accelerator Tandem Accelerator S. S. Dobrescu, I. Branzan, C. V. Craciun, G. Dobrescu, I. Branzan, C. V. Craciun, G. Dumitru, Dumitru, C. Florea, D. Ghita, G. Ion, G. Mihon, D. C. Florea, D. Ghita, G. Ion, G. Mihon, D. Moisa, Moisa, D. V. Mosu, G. Naghel, C. Paun, S. Papureanu D. V. Mosu, G. Naghel, C. Paun, S. Papureanu and T. Sava and T. Sava HIAT HIAT 2009 2009 National Institute for Physics and National Institute for Physics and Nuclear Engineering “Horia Hulubei” Nuclear Engineering “Horia Hulubei” (IFIN-HH, Bucharest, Romania) (IFIN-HH, Bucharest, Romania)
30

National Institute for Physics and Nuclear Engineering “Horia Hulubei”

Jan 11, 2016

Download

Documents

nola

Upgrade of the Bucharest FN Tandem Accelerator S. Dobrescu, I. Branzan, C. V. Craciun, G. Dumitru, C. Florea, D. Ghita, G. Ion, G. Mihon, D. Moisa, D. V. Mosu, G. Naghel, C. Paun, S. Papureanu and T. Sava. National Institute for Physics and Nuclear Engineering “Horia Hulubei” - PowerPoint PPT Presentation
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: National Institute for Physics and Nuclear Engineering “Horia Hulubei”

Upgrade of the Bucharest FN Upgrade of the Bucharest FN

Tandem AcceleratorTandem Accelerator

S. S. Dobrescu, I. Branzan, C. V. Craciun, G. Dobrescu, I. Branzan, C. V. Craciun, G. Dumitru, Dumitru,

C. Florea, D. Ghita, G. Ion, G. Mihon, D. Moisa, C. Florea, D. Ghita, G. Ion, G. Mihon, D. Moisa, D. V. Mosu, G. Naghel, C. Paun, S. Papureanu D. V. Mosu, G. Naghel, C. Paun, S. Papureanu

and T. Savaand T. Sava

HIAT 2009HIAT 2009

National Institute for Physics and Nuclear National Institute for Physics and Nuclear Engineering “Horia Hulubei” Engineering “Horia Hulubei”

(IFIN-HH, Bucharest, Romania)(IFIN-HH, Bucharest, Romania)

Page 2: National Institute for Physics and Nuclear Engineering “Horia Hulubei”
Page 3: National Institute for Physics and Nuclear Engineering “Horia Hulubei”
Page 4: National Institute for Physics and Nuclear Engineering “Horia Hulubei”

Main milestones of the BucharestMain milestones of the BucharestFN tandem accelerator FN tandem accelerator

• 1973 : Commissioning of the FN Tandem accelerator• 1977 : A strong earthquake (7.2 Richter scale) induced the collapse of the tandem column• 1979 : Upgrade to 9 MV of the tandem (5-10% SF6)• 1983 : A second negative heavy ion injector (HICONEX 834) was installed• 1986 : Another strong earthquake (6.9 Richter scale) damaged again the tandem column• 1989 - 1990 : An original seismic protection system of the tandem accelerator tank was installed (see picture)• 1990 : A new terminal voltage divider was installed• 1991 – 2005 : About 3500 beam hours/year• 2006 – 2009 : Upgrade program of the Bucharest tandem accelerator

Page 5: National Institute for Physics and Nuclear Engineering “Horia Hulubei”
Page 6: National Institute for Physics and Nuclear Engineering “Horia Hulubei”

Main milestones of the BucharestMain milestones of the BucharestFN tandem accelerator FN tandem accelerator

• 1973 : Commissioning of the FN Tandem accelerator• 1977 : A strong earthquake (7.2 Richter scale) induced the collapse of the tandem column• 1979 : Upgrade to 9 MV of the tandem (5-10% SF6)• 1983 : A second negative heavy ion injector (HICONEX 834) was installed• 1986 : Another strong earthquake (6.9 Richter scale) damaged again the tandem column• 1989 - 1990 : An original seismic protection system of the tandem accelerator tank was installed• 1990 : A new terminal voltage divider was installed• 1991 – 2005 : About 3500 beam hours/year• 2006 – 2009 : Upgrade program of the Bucharest tandem accelerator

Page 7: National Institute for Physics and Nuclear Engineering “Horia Hulubei”

The main original tandem equipment still in use in 2006 was in very poor condition due to physical and moral wear and some of the necessary spare

parts were no longer available on the market.

Question:

Is it worth to invest in an old facility ?

Answer:Yes, in certain conditions:

- The main accelerator parts (column, tank, The main accelerator parts (column, tank, magnets, building) are in good conditionmagnets, building) are in good condition

- There is a scientific interest and a strategy for the There is a scientific interest and a strategy for the future research with accelerated ion beamsfuture research with accelerated ion beams

Page 8: National Institute for Physics and Nuclear Engineering “Horia Hulubei”

Motivations

The Bucharest FN Tandem Accelerator :

Is the only tandem accelerator of this type in Romania and even in S-E Europe

Is an important facility for: - Atomic and some nuclear physics research - Applications (IBA, AMS) - Preparation of experiments for LSF - Education

Page 9: National Institute for Physics and Nuclear Engineering “Horia Hulubei”

Upgrade program (2006 – 2009)

• Pelletron system installationPelletron system installation• New set of accelerator tubesNew set of accelerator tubes• Renewing of the tandem injectorRenewing of the tandem injector• Millisecond beam pulsingMillisecond beam pulsing• Nanosecond beam pulsingNanosecond beam pulsing• Replacement of all electrical equipment Replacement of all electrical equipment • Refurbish of the tandem vacuum system Refurbish of the tandem vacuum system • Improvement of auxiliary equipmentImprovement of auxiliary equipment

Page 10: National Institute for Physics and Nuclear Engineering “Horia Hulubei”

1. Pelletron system installation1. Pelletron system installation

Page 11: National Institute for Physics and Nuclear Engineering “Horia Hulubei”

1

2

3

4

5 cm

Frames with 300 MΩ resistorsFrames with 300 MΩ resistors

Page 12: National Institute for Physics and Nuclear Engineering “Horia Hulubei”

2. New set of accelerator tubes2. New set of accelerator tubes

The old set of accelerator tubes (st. steel electrodes, inclined field)

A set of new accelerator tubes(titanium electrodes, spiral field)

Page 13: National Institute for Physics and Nuclear Engineering “Horia Hulubei”

3. Renewing of the tandem 3. Renewing of the tandem injector of negative ionsinjector of negative ions

a)a) New sputter negative ion source (SNICS II)New sputter negative ion source (SNICS II)

b)b) New helium negative ion sourceNew helium negative ion source

c)c) New sputter ion source for AMS application New sputter ion source for AMS application (MC-SNICS II)(MC-SNICS II)

Page 14: National Institute for Physics and Nuclear Engineering “Horia Hulubei”

a. SNICS II sputter source installationa. SNICS II sputter source installation

Page 15: National Institute for Physics and Nuclear Engineering “Horia Hulubei”

b. He negative ion sourceb. He negative ion source

Page 16: National Institute for Physics and Nuclear Engineering “Horia Hulubei”

4. Millisecond pulsing system4. Millisecond pulsing system• Chopper system (two plates 500 mm long)• Rectangular TTL-pulses• Period: T = 5 ms - 2x104 s • Amplitude: up to 1 kV• Rise time: < 50 ns• Pulse duration: 3% - 50% of T• Home made

Page 17: National Institute for Physics and Nuclear Engineering “Horia Hulubei”

5. Nanosecond pulsing system5. Nanosecond pulsing system

• Chopper + buncher• Chopper pulse rate: 5 MHz, 1.25 MHZ, 625 kHz, …. , 19.53 kHz• Buncher: two tubes, match injected beams from mass 1 to over mass 40 u• Pulse duration: 1-3 ns• Packing efficiency: 25%• Made by NEC (2009)

Page 18: National Institute for Physics and Nuclear Engineering “Horia Hulubei”

The injector and LE line of the The injector and LE line of the Bucharest tandemBucharest tandem

Page 19: National Institute for Physics and Nuclear Engineering “Horia Hulubei”

Buncher of the nanosecond pulsing system

Millisecond pulsing systemMillisecond pulsing system

Page 20: National Institute for Physics and Nuclear Engineering “Horia Hulubei”

6. Replacement of all electric equipment6. Replacement of all electric equipment

Power supplies of low voltage for the inflection magnet (1 kW), analyzing magnet (12 kW) and switching magnet (20 kW) (DANFYSIK, Denmark) Long term current stability : 10 ppm Power supplies for two magnetic quadrupole lenses. (SORENSEN, USA) Long term current stability : 100 ppm High voltage power supplies for the ion injectors and for the Einzel lens on the LE ion beam line (GLASSMAN, USA) Hall probe fluxmeter for the inflection magnet (Group3, New Zeeland) RMN fluxmeter for the analyzing magnet (METROLAB, Switzerland) GVM : a second GVM, terminal stability < 1 kV at 9 MV

Page 21: National Institute for Physics and Nuclear Engineering “Horia Hulubei”

Old GVMOld GVM

New GVMNew GVM

Page 22: National Institute for Physics and Nuclear Engineering “Horia Hulubei”

6. Refurbish of the vacuum system 6. Refurbish of the vacuum system

• New turbomolecular and fore vacuum pumps

• New gate valves

• New vacuum measuring system

Page 23: National Institute for Physics and Nuclear Engineering “Horia Hulubei”

6. Improvement of auxiliary 6. Improvement of auxiliary equipmentequipment

• Installation of a high power (250 kVA) on-line, dual UPS (Uninterruptible Power Supply)

• Increase of the thermal capacity of the refrigeration system that cools down the distilled water

• Installation of new distilled water pumps and air compressors

Page 24: National Institute for Physics and Nuclear Engineering “Horia Hulubei”

CONCLUSIONSCONCLUSIONS1. The upgrade program of the Bucharest FN tandem

accelerator, developed in the period 2006-2009, had as a main result the transformation of this 36 years old accelerator into a modern, performing and reliable facility

2. The tandem delivers stable beams of a large range of ion species: protons (2 – 18 MeV), helium (3-27 MeV) and a broad range of heavy ions at energies up to 100 MeV

3. The beam intensities range from nA to µA depending on the electron affinity of the elements

4. The accelerated beam may be pulsed in the millisecond range and in the nanosecond range

Page 25: National Institute for Physics and Nuclear Engineering “Horia Hulubei”

The performances of the upgraded Bucharest FN tandem accelerator combined with a strong scientific research program and with high level results open for this facility the prospect to become an active part of the European Infrastructure in European Infrastructure in Nuclear PhysicsNuclear Physics.

Page 26: National Institute for Physics and Nuclear Engineering “Horia Hulubei”

Thank youThank you..

Page 27: National Institute for Physics and Nuclear Engineering “Horia Hulubei”
Page 28: National Institute for Physics and Nuclear Engineering “Horia Hulubei”
Page 29: National Institute for Physics and Nuclear Engineering “Horia Hulubei”
Page 30: National Institute for Physics and Nuclear Engineering “Horia Hulubei”

Research program In-beam Gamma-ray Spectroscopy using a small array of HPGe detectors, silicon

detectors for charged particles and liquid scintillators for neutron detection. Proton induced fission studies on actinides using an array of 81 plastic

scintillators for neutron detection to be installed. Studies of nuclear isomery, namely accurate measurements of the

electromagnetic moments of excited isomeric states, using ns pulsed accelerated ion beams.

Atomic physics: new studies of the inner shell vacancy production and sharing in heavy systems at intermediate ion energies.

New applications of IBA methods using up-to-date experimental set-ups now under development.

In-house research making use of the tandem accelerator ion beams for testing new detection systems and experimental methods for large scale facilities.