Top Banner
Nanophotonics Prof. Albert Polman Center for Nanophotonics FOM-Institute AMOLF, Amsterdam Debye Institute, Utrecht University
28

Nanophotonics Prof. Albert Polman Center for Nanophotonics FOM-Institute AMOLF, Amsterdam Debye Institute, Utrecht University.

Dec 27, 2015

Download

Documents

Collin Dawson
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Nanophotonics Prof. Albert Polman Center for Nanophotonics FOM-Institute AMOLF, Amsterdam Debye Institute, Utrecht University.

Nanophotonics

Prof. Albert Polman

Center for NanophotonicsFOM-Institute AMOLF, Amsterdam

Debye Institute, Utrecht University

Page 2: Nanophotonics Prof. Albert Polman Center for Nanophotonics FOM-Institute AMOLF, Amsterdam Debye Institute, Utrecht University.

Nanophotonics: defined by its applications • communications technology• lasers• solid-state lighting• data storage• lithography• (bio-)sensors• optical computers• solar cells• displays• medical imaging• light-activated medical therapies

Nanophotonics is a unique part of physics/chemistry/materials science because it combines

a wealth of scientific challenges with a large variety of near-term applications.

Large interest from industry infundamental research on nanophotonics

Page 3: Nanophotonics Prof. Albert Polman Center for Nanophotonics FOM-Institute AMOLF, Amsterdam Debye Institute, Utrecht University.

Optical fiber

core

cladding

shielding

Page 4: Nanophotonics Prof. Albert Polman Center for Nanophotonics FOM-Institute AMOLF, Amsterdam Debye Institute, Utrecht University.

Silica fiber transparent at 1.55 m

1012 Hz

1.3 m

1.55 m

Page 5: Nanophotonics Prof. Albert Polman Center for Nanophotonics FOM-Institute AMOLF, Amsterdam Debye Institute, Utrecht University.

Optical fiber: long distance communication

Page 6: Nanophotonics Prof. Albert Polman Center for Nanophotonics FOM-Institute AMOLF, Amsterdam Debye Institute, Utrecht University.

Length scales in photonics

km 1 mm

10 m 1 m = 5 m

Page 7: Nanophotonics Prof. Albert Polman Center for Nanophotonics FOM-Institute AMOLF, Amsterdam Debye Institute, Utrecht University.

Merging optics and electronicsrequires nanoscale optics

40 nm

Plasmonics Photonics

Electronicsfr

equ

ency

size1 m

10 GHz

Page 8: Nanophotonics Prof. Albert Polman Center for Nanophotonics FOM-Institute AMOLF, Amsterdam Debye Institute, Utrecht University.

Planar optical waveguide

Si

high indexlow index

1 mm

Page 9: Nanophotonics Prof. Albert Polman Center for Nanophotonics FOM-Institute AMOLF, Amsterdam Debye Institute, Utrecht University.

Photonic integrated circuits on silicon

1 mm

SiO2/Al2O3/SiO2/Si

Al2O3 technology by M.K. Smit et al., TUD

Page 10: Nanophotonics Prof. Albert Polman Center for Nanophotonics FOM-Institute AMOLF, Amsterdam Debye Institute, Utrecht University.

Optical clock distribution on a Si microprocessor

Intel Website

Photonicson silicon

Page 11: Nanophotonics Prof. Albert Polman Center for Nanophotonics FOM-Institute AMOLF, Amsterdam Debye Institute, Utrecht University.

http://www.ima.umn.edu/industrial/2002-2003/sigalas/sigalas.pdf

Computer interconnects hierarchy

Mihail M. Sigalas, Agilent Laboratories, Palo Alto, CA

Page 12: Nanophotonics Prof. Albert Polman Center for Nanophotonics FOM-Institute AMOLF, Amsterdam Debye Institute, Utrecht University.

Nanophotonics examples:Surface plasmons guide light to the

nanoscale

k

E

xz

Page 13: Nanophotonics Prof. Albert Polman Center for Nanophotonics FOM-Institute AMOLF, Amsterdam Debye Institute, Utrecht University.

Nanophotonics examples:light trapping in solar cells by metal

nanoparticles

Page 14: Nanophotonics Prof. Albert Polman Center for Nanophotonics FOM-Institute AMOLF, Amsterdam Debye Institute, Utrecht University.

Nanophotonics examples:DNA assisted assembly of metal

nanoparticles

n=1.5

600nm

Page 15: Nanophotonics Prof. Albert Polman Center for Nanophotonics FOM-Institute AMOLF, Amsterdam Debye Institute, Utrecht University.

Nanophotonics examples:large-area fabrication of photonic

nanostructures

Marc Verschuuren, Philips Research

Page 16: Nanophotonics Prof. Albert Polman Center for Nanophotonics FOM-Institute AMOLF, Amsterdam Debye Institute, Utrecht University.

Nanophotonics examples:Exciting surface plasmons with an electron

beam

Page 17: Nanophotonics Prof. Albert Polman Center for Nanophotonics FOM-Institute AMOLF, Amsterdam Debye Institute, Utrecht University.

Nanophotonics examples:Light concentration in core-shell particles

Page 18: Nanophotonics Prof. Albert Polman Center for Nanophotonics FOM-Institute AMOLF, Amsterdam Debye Institute, Utrecht University.

Nanophotonics examples:Energy transfer in quantum dot / Er system

Page 19: Nanophotonics Prof. Albert Polman Center for Nanophotonics FOM-Institute AMOLF, Amsterdam Debye Institute, Utrecht University.

Nanophotonics examples:Anomalous transmission in metal hole arrays

Kobus Kuipers

Page 20: Nanophotonics Prof. Albert Polman Center for Nanophotonics FOM-Institute AMOLF, Amsterdam Debye Institute, Utrecht University.

Nanophotonics examples:Light emission from quantum dots

Page 21: Nanophotonics Prof. Albert Polman Center for Nanophotonics FOM-Institute AMOLF, Amsterdam Debye Institute, Utrecht University.

Nanophotonics examples:Multiple exciton generation in quantum dots

Mischa Bonn

Page 22: Nanophotonics Prof. Albert Polman Center for Nanophotonics FOM-Institute AMOLF, Amsterdam Debye Institute, Utrecht University.

Nanophotonics examples:Light emission from semiconductor

nanowires

4 m

Jaime Gomez Rivas

Page 23: Nanophotonics Prof. Albert Polman Center for Nanophotonics FOM-Institute AMOLF, Amsterdam Debye Institute, Utrecht University.

Nanophotonics examples:Controlled spontaneous emission in photonic

crystals

Willem Vos

Page 24: Nanophotonics Prof. Albert Polman Center for Nanophotonics FOM-Institute AMOLF, Amsterdam Debye Institute, Utrecht University.

What will you learn in this class?!

1) Theory of nanophotonics

2) Applications of nanophotonics

3) Nanophotonics fabrication techniques

4) New developments in science and technology

5) Presentation skills

Page 25: Nanophotonics Prof. Albert Polman Center for Nanophotonics FOM-Institute AMOLF, Amsterdam Debye Institute, Utrecht University.

Fabrication technology:• Thin film deposition• Clean room fabrication technology• Lithography• Focused ion beam milling• Colloidal self-assembly• Bio-templating

Characterization technology:• Photoluminescence spectroscopy• Optical absorption/extinction spectroscopy• Near-field microscopy• Cathodoluminescence imaging spectroscopy• Pump-probe spectroscopy

Practical training at FOM-Institute AMOLF

Page 26: Nanophotonics Prof. Albert Polman Center for Nanophotonics FOM-Institute AMOLF, Amsterdam Debye Institute, Utrecht University.

Weekly schedule

• Nanophotonics fundamentals• Fabrication technology• Characterization principles / techniques• Application examples• News of the week• Paper/homework presentations• Excursions/labtours

Albert PolmanE-mail: [email protected]: www.erbium.nl/nanophotonics

Page 27: Nanophotonics Prof. Albert Polman Center for Nanophotonics FOM-Institute AMOLF, Amsterdam Debye Institute, Utrecht University.

Class schedule

ALL DAY

ALL DAY

ALL MORNING

Page 28: Nanophotonics Prof. Albert Polman Center for Nanophotonics FOM-Institute AMOLF, Amsterdam Debye Institute, Utrecht University.

Course grading

No final examination

Grades are determined by:

Homework: 60 %Paper presentation 1: 10%Paper presentation 2: 15%Participation in class: 5%Nature Milestones 10 %

Homework must be handed next week Friday. No exceptions!Homework grade: average of (all homework – worst made)

Use help by teaching assistants!

Course time Friday, 11.00-13.00 hr.Absence: must be notified by e-mail