Top Banner
Nanometre-level stabilisation on nanosecond timescales Neven Blaskovic Kraljevic FONT group, John Adams Institute, Oxford University
48

Nanometre-level stabilisation on nanosecond timescales

Dec 10, 2021

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Nanometre-level stabilisation on nanosecond timescales

Nanometre-level stabilisation on nanosecond timescales

Neven Blaskovic Kraljevic

FONT group, John Adams Institute, Oxford University

Page 2: Nanometre-level stabilisation on nanosecond timescales

About me

Neven Blaskovic Kraljevic 2

Born & raised

Madrid (Spain)

Page 3: Nanometre-level stabilisation on nanosecond timescales

About me

Neven Blaskovic Kraljevic 3

Born & raised MPhys & DPhil

Madrid (Spain)

Oxford (UK)

Page 4: Nanometre-level stabilisation on nanosecond timescales

About me

Neven Blaskovic Kraljevic 4

Born & raised MPhys & DPhil Travelled for experiment

Madrid (Spain)

Oxford (UK)

Tsukuba (Japan)

Page 5: Nanometre-level stabilisation on nanosecond timescales

Outline

Neven Blaskovic Kraljevic 5

• Introduction

– Feedback at a linear collider

– International Linear Collider

– Feedback on Nanosecond Timescales

• Experimental setup at Accelerator Test Facility

• Beam position monitor signal processing

• Modes of feedback operation

• Results

Page 6: Nanometre-level stabilisation on nanosecond timescales

Introduction

Feedback at a Linear Collider

Neven Blaskovic Kraljevic 6

• Successful collision of bunches at a linear collider is critical

• A fast position feedback system is required

Misaligned beams at interaction point (IP) cause

beam-beam deflection

Page 7: Nanometre-level stabilisation on nanosecond timescales

Neven Blaskovic Kraljevic 7

• Successful collision of bunches at a linear collider is critical

• A fast position feedback system is required

Introduction

Feedback at a Linear Collider

Misaligned beams at interaction point (IP) cause

beam-beam deflection

Measure deflection on one of outgoing beams

(beam position monitor)

Page 8: Nanometre-level stabilisation on nanosecond timescales

Neven Blaskovic Kraljevic 8

• Successful collision of bunches at a linear collider is critical

• A fast position feedback system is required

Misaligned beams at interaction point (IP) cause

beam-beam deflection

Measure deflection on one of outgoing beams

Correct orbit of next bunch (correlated to previous bunch due to short bunch spacing)

(beam position monitor)

Introduction

Feedback at a Linear Collider

Page 9: Nanometre-level stabilisation on nanosecond timescales

Introduction

International Linear Collider (ILC)

Neven Blaskovic Kraljevic 9

• Proposed linear electron-positron collider

• Centre-of-mass energy: 250-1000 GeV

• Vertical beamsize: 5.9 nm

• Bunch separation: 554 ns

ILC Technical Design Report

Page 10: Nanometre-level stabilisation on nanosecond timescales

Introduction

Accelerator Test Facility (ATF) at KEK

Neven Blaskovic Kraljevic 10

• Test bed for the International Linear Collider

• Facility located at KEK in Tsukuba, Japan

• Goals:

– 37 nm vertical spot size at final focus

– Nanometre level vertical beam stability

Page 11: Nanometre-level stabilisation on nanosecond timescales

Introduction

Accelerator Test Facility (ATF) at KEK

Neven Blaskovic Kraljevic 11

Electron source

90 meters

Page 12: Nanometre-level stabilisation on nanosecond timescales

Introduction

Accelerator Test Facility (ATF) at KEK

Neven Blaskovic Kraljevic 12

1.28 GeV linear accelerator

Electron source

90 meters

Page 13: Nanometre-level stabilisation on nanosecond timescales

Introduction

Accelerator Test Facility (ATF) at KEK

Neven Blaskovic Kraljevic 13

Damping ring

Electron source

1.28 GeV linear accelerator

90 meters

Page 14: Nanometre-level stabilisation on nanosecond timescales

Introduction

Accelerator Test Facility (ATF) at KEK

Neven Blaskovic Kraljevic 14

Damping ring

Electron source

Extraction line Final focus

Model interaction point (IP) of a collider

1.28 GeV linear accelerator

90 meters

Page 15: Nanometre-level stabilisation on nanosecond timescales

Introduction

Accelerator Test Facility (ATF) at KEK

Neven Blaskovic Kraljevic 15

Damping ring

Electron source

Extraction line Final focus

Model interaction point (IP) of a collider

Feedback system

1.28 GeV linear accelerator

90 meters

Page 16: Nanometre-level stabilisation on nanosecond timescales

Introduction

Accelerator Test Facility (ATF) at KEK

Neven Blaskovic Kraljevic 16

• ATF can be operated with 2-bunch trains in the extraction line and final focus

• The separation of the bunches is ILC-like (tuneable up to ~300 ns)

• Our prototype feedback system:

– Measures the position of the first bunch

– Then corrects the path of the second bunch

• Train extraction frequency: ~3 Hz

Page 17: Nanometre-level stabilisation on nanosecond timescales

Introduction

Feedback on Nanosecond Timescales (FONT)

Neven Blaskovic Kraljevic 17

• Low-latency, high-precision feedback system

• We have previously demonstrated a system meeting ILC latency, BPM resolution and beam kick requirements

• We have extended the system for use at ATF

• We aim for nanometre level beam stabilisation

Page 18: Nanometre-level stabilisation on nanosecond timescales

Neven Blaskovic Kraljevic 18

P3 P2 P Stripline BPM

• 12 cm long strips • 12 mm radius • On x and y mover system

Experimental Setup

beam

Page 19: Nanometre-level stabilisation on nanosecond timescales

Neven Blaskovic Kraljevic 19

P3 P2 for stripline BPM

• Analogue: latency 15 ns • Dynamic range of ±500 μm • Resolution of ~300 nm

Σ

Δ BPM top

BPM bottom Pro

cess

or

Pro

cess

or

Processor

Experimental Setup

beam

Page 20: Nanometre-level stabilisation on nanosecond timescales

Neven Blaskovic Kraljevic 20

P3 P2 P

roce

sso

r

Pro

cess

or

IPB IPB Cavity BPM at beam waist

• C-band: 6.4 GHz in y • Low Q: decay time < 30 ns • Resolve 2-bunch trains

Experimental Setup

Page 21: Nanometre-level stabilisation on nanosecond timescales

Neven Blaskovic Kraljevic 21

P3 P2 for cavity BPM

• Analogue, 2-stage downmixer • Developed by Honda et al. • Resolution of ~50 nm

Pro

cess

or

Pro

cess

or

Processor IPB

Pro

cess

or

Experimental Setup

Page 22: Nanometre-level stabilisation on nanosecond timescales

Neven Blaskovic Kraljevic 22

P3 P

roce

sso

r P2

Pro

cess

or

IPB

Pro

cess

or

Board Board

Board

• 9 ADC channels at 357 MHz • 2 DAC channels at 179 MHz • Xilinx Virtex 5 FPGA

Experimental Setup

Page 23: Nanometre-level stabilisation on nanosecond timescales

Neven Blaskovic Kraljevic 23

P3 P

roce

sso

r P2

Pro

cess

or

Am

plif

ier

Am

plif

ier

Am

plif

ier

IPB

Pro

cess

or

Board Board

• Made by TMD Technologies • ± 30 A drive current • 35 ns rise time (90 % of peak)

Amplifier

Experimental Setup

Page 24: Nanometre-level stabilisation on nanosecond timescales

Neven Blaskovic Kraljevic 24

P3 P

roce

sso

r P2

Pro

cess

or

K2

Am

plif

ier

IPK

Am

plif

ier

K1

Am

plif

ier

IPB

Pro

cess

or

Board Board

• Vertical stripline kicker • 30 cm long strips for K1 & K2 • 12.5 cm long strips for IPK

K Kicker

Experimental Setup

Page 25: Nanometre-level stabilisation on nanosecond timescales

Neven Blaskovic Kraljevic 25

for stripline BPM

Σ

Δ BPM top

BPM bottom

Processor

Stripline BPM Signal Processing

Page 26: Nanometre-level stabilisation on nanosecond timescales

Stripline BPM Signal Processing

Neven Blaskovic Kraljevic 26

As the bunch travels through the BPM, it induces a bipolar signal on the strips In the frequency domain, this signal peaks at ~700 MHz

R. J. Apsimon et al., PRST-AB, 2015

Page 27: Nanometre-level stabilisation on nanosecond timescales

Stripline BPM Signal Processing

Neven Blaskovic Kraljevic 27

The top and bottom strips are used to measure the vertical beam position The ‘difference over sum’ of the two signals gives the beam position

Page 28: Nanometre-level stabilisation on nanosecond timescales

Neven Blaskovic Kraljevic 28

Stripline BPM Signal Processing

The signals from the two strips are subtracted using a 180° hybrid and added using a coupler

simplified schematic

Page 29: Nanometre-level stabilisation on nanosecond timescales

Neven Blaskovic Kraljevic 29

Stripline BPM Signal Processing

An external 714 MHz local oscillator (LO) downmixes the signals to baseband The beam position is proportional to 𝑉Δ/𝑉Σ

simplified schematic

Page 30: Nanometre-level stabilisation on nanosecond timescales

Neven Blaskovic Kraljevic 30

for cavity BPM Processor

Cavity BPM Signal Processing

Page 31: Nanometre-level stabilisation on nanosecond timescales

Cavity BPM Signal Processing

Neven Blaskovic Kraljevic 31

Reference cavity Monopole mode frequency (in y)

~6426 MHz

IPB cavity Dipole mode frequency (in y)

~6426 MHz

Page 32: Nanometre-level stabilisation on nanosecond timescales

Neven Blaskovic Kraljevic 32

Cavity BPM Signal Processing

The IPB and reference cavity signals are downmixed using a common, external 5712 MHz LO

simplified schematic

Page 33: Nanometre-level stabilisation on nanosecond timescales

Neven Blaskovic Kraljevic 33

Cavity BPM Signal Processing

The IPB signal is downmixed using the reference cavity signal as LO The I and Q output signals at baseband are used to obtain the beam position

simplified schematic

Page 34: Nanometre-level stabilisation on nanosecond timescales

IPK IPB

Neven Blaskovic Kraljevic 34

P3 P

roce

sso

r P2

Pro

cess

or

K2

Am

plif

ier

Am

plif

ier

K1

Am

plif

ier

Pro

cess

or

Board Board

• Coupled-loop feedback system allows correction of both position & angle

• P2 and P3 are used to drive K1 and K2

• Latency: 134 ns • Effect measured at

witness BPM MFB1FF, located 30 meters downstream from P3

Upstream Feedback

Page 35: Nanometre-level stabilisation on nanosecond timescales

Neven Blaskovic Kraljevic 35

Upstream Feedback

FB Off Jitter: 1.80 ± 0.06 μm

FB On Jitter: 1.70 ± 0.05 μm

FB Off Jitter: 1.56 ± 0.05 μm

FB On Jitter: 1.66 ± 0.05 μm

FB Off Jitter: 29.9 ± 1.0 μm

FB On Jitter: 29.4 ± 0.9 μm

Bu

nch

1

P2 P3 MFB1FF

Page 36: Nanometre-level stabilisation on nanosecond timescales

Neven Blaskovic Kraljevic 36

Upstream Feedback

FB Off Jitter: 1.74 ± 0.06 μm

FB On Jitter: 0.44 ± 0.01 μm

FB Off Jitter: 1.55 ± 0.05 μm

FB On Jitter: 0.61 ± 0.02 μm

FB Off Jitter: 27.5 ± 0.9 μm

FB On Jitter: 8.3 ± 0.3 μm

Bu

nch

2

P2 P3 MFB1FF

Page 37: Nanometre-level stabilisation on nanosecond timescales

Neven Blaskovic Kraljevic 37

Upstream Feedback

FB Off Correlation: 96.9 ± 0.3 %

FB On Correlation: –25 ± 4 %

FB Off Correlation: 93.3 ± 0.6 %

FB On Correlation: +15 ± 4 %

FB Off Correlation: 98.3 ± 0.2 %

FB On Correlation: –14 ± 4 %

P2 P3 MFB1FF

Page 38: Nanometre-level stabilisation on nanosecond timescales

P3 P2 K2 K1

Neven Blaskovic Kraljevic 38

Pro

cess

or

Pro

cess

or

Am

plif

ier

Am

plif

ier

Am

plif

ier

Pro

cess

or

Board Board

IPK IPB

Interaction Point Feedback

• IPB position is used to drive the local kicker IPK

• Latency: 212 ns • Effect measured at IPB

Page 39: Nanometre-level stabilisation on nanosecond timescales

Neven Blaskovic Kraljevic 39

Interaction Point Feedback

FB Off Jitter: 412 ± 29 nm

FB On Jitter: 389 ± 28 nm

Bu

nch

1

Page 40: Nanometre-level stabilisation on nanosecond timescales

Neven Blaskovic Kraljevic 40

Interaction Point Feedback

FB Off Jitter: 420 ± 30 nm

FB On Jitter: 74 ± 5 nm

Bu

nch

2

Page 41: Nanometre-level stabilisation on nanosecond timescales

Neven Blaskovic Kraljevic 41

Interaction Point Feedback

FB Off Correlation: 98.2 ± 0.4 %

FB On Correlation: –13 ± 10 %

Page 42: Nanometre-level stabilisation on nanosecond timescales

Neven Blaskovic Kraljevic 42

Outlook

Two IP BPMs can be used to

stabilise the beam at a location

between them

Page 43: Nanometre-level stabilisation on nanosecond timescales

Conclusions

Neven Blaskovic Kraljevic 43

• Demonstrated low-latency, high-precision, intra-train feedback systems

• Upstream coupled-loop position & angle feedback stabilises beam locally to 600 nm

• IP position feedback reduces jitter to 75 nm

• Future plans involve using 2 IP BPMs to drive IP feedback

Page 44: Nanometre-level stabilisation on nanosecond timescales

Thank you for your attention!

Neven Blaskovic Kraljevic 44

Many thanks to the FONT team and our ATF colleagues

Page 45: Nanometre-level stabilisation on nanosecond timescales

FONT group

Neven Blaskovic Kraljevic 45

Phil Burrows

Colin Perry

Glenn Christian

Ryan Bodenstein

Neven Blaskovic Kraljevic

Jack Roberts

Davide Gamba

Talitha Bromwich

Rebecca Ramjiawan

Project leader

Engineer

Lecturer

Postdoctoral researchers

DPhil students (CERN)

DPhil students (Oxford)

Page 46: Nanometre-level stabilisation on nanosecond timescales

Ground Motion vs. Frequency

Neven Blaskovic Kraljevic 46

Vertical ground motion power spectral density integrated up from a range of cut-off frequencies to give the RMS ground motion as a function of frequency

R. Amirikas et al., EUROTeV, 2005

Page 47: Nanometre-level stabilisation on nanosecond timescales

Monopole and Dipole Cavity Modes

Neven Blaskovic Kraljevic 47

Monopole mode TMrφz = TM010

Dipole mode TMrφz = TM110

Electric field position independent

Electric field proportional to position

Y. Inoue et al., PRST-AB, 2008

Page 48: Nanometre-level stabilisation on nanosecond timescales

Neven Blaskovic Kraljevic 48

Upstream Feedback

measured propagated