Top Banner
1 Nanometer-Scale InGaAs Field-Effect Transistors for THz and CMOS Technologies J. A. del Alamo Microsystems Technology Laboratories, MIT Acknowledgements: D. Antoniadis, A. Guo, D.-H. Kim, T.-W. Kim, D. Jin, J. Lin, N. Waldron, L. Xia Sponsors: Intel, FCRP-MSD, ARL, SRC Labs at MIT: MTL, NSL, SEBL ESSDERC-ESSCIRC 2013 Bucharest, Romania, September 16-20, 2013
38

Nanometer-Scale InGaAs Field-Effect Transistors for THz and ...

Jan 22, 2023

Download

Documents

Khang Minh
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Nanometer-Scale InGaAs Field-Effect Transistors for THz and ...

1

Nanometer-Scale InGaAs Field-Effect Transistors for THz and CMOS Technologies

J. A. del Alamo

Microsystems Technology Laboratories, MIT

Acknowledgements:• D. Antoniadis, A. Guo, D.-H. Kim, T.-W. Kim, D. Jin, J. Lin, N. Waldron, L. Xia• Sponsors: Intel, FCRP-MSD, ARL, SRC• Labs at MIT: MTL, NSL, SEBL

ESSDERC-ESSCIRC 2013Bucharest, Romania, September 16-20, 2013

Page 2: Nanometer-Scale InGaAs Field-Effect Transistors for THz and ...

1. InGaAs HEMT today

2. InGaAs HEMTs towards THz operation

3. InGaAs MOSFETs: towards sub-10 nm

CMOS

2

Outline

Page 3: Nanometer-Scale InGaAs Field-Effect Transistors for THz and ...

• Invention of AlGaAs/GaAs HEMT: Fujitsu Labs. 1980 • First InAlAs/InGaAs HEMT on InP: Bell Labs. 1982• First AlGaAs/InGaAs Pseudomorphic HEMT: U. Illinois 1985• Main attraction of InGaAs: RT μe = 6,000~30,000 cm2/V.s

A bit of perspective…

3

Mimura, JJAPL 1980 Ketterson, EDL 1985Chen, EDL 1982

Page 4: Nanometer-Scale InGaAs Field-Effect Transistors for THz and ...

4

Bipolar/E-D PHEMT process

Henderson, Mantech 2007

40 Gb/s modulator driverTessmann, GaAs IC 1999

77 GHz transceiverCarroll, MTT-S 2002

UMTS-LTE PA moduleChow, MTT-S 2008

Single-chip WLAN MMIC, Morkner, RFIC 2007

InGaAs Electronics Today

Page 5: Nanometer-Scale InGaAs Field-Effect Transistors for THz and ...

InGaAs High Electron Mobility Transistor (HEMT)

5

Modulation doping: 2-Dimensional Electron Gas at InAlAs/InGaAs interface

Page 6: Nanometer-Scale InGaAs Field-Effect Transistors for THz and ...

0

100

200

300

400

500

600

700

800

1980 1990 2000 2010

f T(GHz)

Year

InGaAs HEMT: high-frequency record vs. time

6

• Highest fT of any FET on any material system• Best balanced fT and fmax of any transistor on any material

Teledyne/MIT: fT=688 GHz, fmax=800 GHz

Devices fabricated at MIT

on GaAs substrate

on InP substrate

fT=710 GHzfmax=478 GHzChang, APEX 2013 (NCTU)

Page 7: Nanometer-Scale InGaAs Field-Effect Transistors for THz and ...

InGaAs HEMTs: circuit demonstrations

7

10-stage 670 GHz LNA80 Gb/s multiplexer IC

Wurfl, GAAS 2004

6-stage 600 GHz LNA

Tessmann, CSICS 2012

Leong, IPRM 2012

Sarkozy, IPRM 2013

Page 8: Nanometer-Scale InGaAs Field-Effect Transistors for THz and ...

InGaAs HEMTs on InP used to map infant universe

8

Full-sky map of Cosmic MicrowaveBackground radiation (oldest light in Universe) age of Universe: 13.73B years (±1%)

WMAP=Wilkinson Microwave Anisotropy ProbeLaunched 2001

0.1 µm InGaAs HEMT LNA Pospieszalski, MTT-S 2000http://map.gsfc.nasa.gov/

Page 9: Nanometer-Scale InGaAs Field-Effect Transistors for THz and ...

99

A closer look: InGaAs HEMTs at MIT

99

- QW channel (tch = 10 nm):• InAs core • InGaAs cladding

e = 13,200 cm2/V-sec- InAlAs barrier (tins = 4 nm)- Lg = 30 nmKim, EDL 2010

Page 10: Nanometer-Scale InGaAs Field-Effect Transistors for THz and ...

109 1010 1011 10120

10

20

30

40

Frequency [Hz]

Gai

ns [d

B]

-1

0

1

2

3

K

H21

K

MSG/MAG

Ug

1010

Lg=30 nm InGaAs HEMT

10

• High transconductance: gm= 1.9 mS/μm at VDD=0.5 V • First transistor of any kind with both fT and fmax > 640 GHz

10

Kim, EDL 2010

-0.6 -0.4 -0.2 0.0 0.20.0

0.5

1.0

1.5

2.0

g m [m

S/m

]

VGS [V]

VDS = 0.5 V

0.0 0.2 0.4 0.6 0.80.0

0.2

0.4

0.6

0.8

0.2 V

0.4 V

0 V

I D [m

A/

m]

VDS [V]

VGS =

VDS=0.5 V, VGS=0.2 V

Page 11: Nanometer-Scale InGaAs Field-Effect Transistors for THz and ...

11

How to reach fT = 1 THz?

fT = 1 THz feasible by: scaling to Lg ≈ 25 nm ~30% R and C parasitic reduction

100200

400

600

800

1000

1200

VDS = 0.6 V

30% reductionin all the parasitics

Measured fT

Modeled fT

Model Projection

f T [GH

z]

Lg [nm]

1 THz

30Kim, IEDM 2011

Page 12: Nanometer-Scale InGaAs Field-Effect Transistors for THz and ...

Record fT InGaAs HEMTs: megatrends

12

• Over time: Lg↓, InxGa1-xAs channel xInAs↑• Lg, xInAs saturated no more progress possible?

x=0.53

Page 13: Nanometer-Scale InGaAs Field-Effect Transistors for THz and ...

Record fT InGaAs HEMTs: megatrends

13

• Over time: tch↓, tins↓• tch, tins saturated no more progress possible?

Page 14: Nanometer-Scale InGaAs Field-Effect Transistors for THz and ...

14

Limit to HEMT barrier scaling: gate leakage current

InGaAsHEMTs

At Lg=30-40 nm, modern HEMTs are at the limit of scaling!

Lg=40 nmVDS=0.5 V

Kim, EDL 2013

Page 15: Nanometer-Scale InGaAs Field-Effect Transistors for THz and ...

15

Solution: MOS gate!

Need high-K gate dielectric: HEMT MOSFET!

InGaAsHEMTs

10-5x!

Lg=40 nmVDS=0.5 V

Kim, EDL 2013

Al2O3 (3 nm)/InP (2 nm)/InGaAs MOSFET

Page 16: Nanometer-Scale InGaAs Field-Effect Transistors for THz and ...

16

InGaAs MOSFETs with fT=370 GHz(Teledyne/MIT/IntelliEpi/Sematech)

• Channel: 10 nm In0.7Ga0.3As• Barrier: 1 nm InP + 2 nm Al2O3

• Lg = 60 nm• gm = 2 mS/μm• RON = 220 Ω.μm109 1010 1011

0

10

20

30

40

50

fmax = 280 GHz

MSG

Ug

Gai

ns [d

B]

Frequency [Hz]

H21

fT = 370 GHz

VDS=0.5 V

H21

Kim, APL 2012

fT=370 GHz

Page 17: Nanometer-Scale InGaAs Field-Effect Transistors for THz and ...

17

Historical evolution: InGaAs MOSFETs vs. HEMTs

Ren, EDL 1998 Radosavljevic, IEDM 2009Wieder, EDL 1981

Lin, IEDM 2013

Progress reflects improvements in oxide/III-V interface

Page 18: Nanometer-Scale InGaAs Field-Effect Transistors for THz and ...

18

Huang, APL 2005

ALD eliminates surface oxides that pin Fermi level: – First observed with Al2O3, then with other high-K dielectrics– First seen in GaAs, then in other III-Vs

Clean, smooth interface without surface oxides

What made the difference?Oxide/III-V interfaces with unpinned

Fermi level by ALD

“Self cleaning”

Page 19: Nanometer-Scale InGaAs Field-Effect Transistors for THz and ...

Interface quality: Al2O3/InGaAs vs. Al2O3/Si

19

Close to Ec, Al2O3/InGaAs comparable Dit to Al2O3/Si interface

Werner, JAP 2011

Al2O3/Si Al2O3/InGaAs

Brammertz, APL 2009

EcEvEv Ec

Page 20: Nanometer-Scale InGaAs Field-Effect Transistors for THz and ...

InGaAs n-MOSFET:best candidate for post-Si CMOS

Si CMOS scaling seriously stressed Moore’s law threatened

20

?

Intel microprocessors

Page 21: Nanometer-Scale InGaAs Field-Effect Transistors for THz and ...

21

Page 22: Nanometer-Scale InGaAs Field-Effect Transistors for THz and ...

CMOS scaling in the 21st century

Si CMOS has entered era of “power-constrained scaling”: Microprocessor power density saturated at ~100 W/cm2

22

Pop, Nano Res 2010

Future scaling demands VDD↓

Page 23: Nanometer-Scale InGaAs Field-Effect Transistors for THz and ...

• Transistor is switch:

• Goals of scaling: – reduce transistor footprint– reduce VDD

– extract maximum ION for given IOFF

• The path forward:– increase electron velocity ION ↑ – tighten electron confinement S ↓

23

use InGaAs!

How to enable further VDD reduction?

Page 24: Nanometer-Scale InGaAs Field-Effect Transistors for THz and ...

Measurements of electron injection velocity in HEMTs:

EC

vinj

• vinj(InGaAs) increases with InAs fraction in channel• vinj(InGaAs) > 2vinj(Si) at less than half VDD

• ~100% ballistic transport at Lg~30 nm

Electron injection velocity: InGaAs vs. Si

Kim, IEDM 2009Liu, Springer 2010Khakifirooz, TED 2008del Alamo, Nature 2011

24

EV

Page 25: Nanometer-Scale InGaAs Field-Effect Transistors for THz and ...

Lg=30 nm InGaAs HEMT –Subthreshold characteristics

25

• S = 74 mV/dec• Sharp subthreshold behavior due to tight electron

confinement in quantum well

Kim, EDL 2010

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.410-9

10-8

10-7

10-6

10-5

10-4

10-3

VDS = 0.05 V

VDS = 0.5 V

IG

ID

VDS = 0.5 V

I D, I

G [A

/m

]

VGS [V]

VDS = 0.05 V

Lg=30 nm

Page 26: Nanometer-Scale InGaAs Field-Effect Transistors for THz and ...

Lg=30 nm InGaAs HEMT –Subthreshold characteristics

26

• S = 74 mV/dec• At IOFF=100 nA/μm and VDD=0.5 V, ION=0.52 mA/μm

Kim, EDL 2010

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.410-9

10-8

10-7

10-6

10-5

10-4

10-3

VDS = 0.05 V

VDS = 0.5 V

IG

ID

VDS = 0.5 V

I D, I

G [A

/m

]

VGS [V]

VDS = 0.05 V

ION=0.52 mA/μm

IOFF=100 nA/μm

0.5 V

Page 27: Nanometer-Scale InGaAs Field-Effect Transistors for THz and ...

FOM that integrates short-channel effects and transport: ION @ IOFF=100 nA/µm, VDD=0.5 V

InGaAs HEMTs: higher ION for same IOFF than Si

InGaAs HEMTs: Benchmarking with Si

27

IEDM 2008

Kim EDL 2010InGaAs HEMT (MIT)

del Alamo, Nature 2011

Page 28: Nanometer-Scale InGaAs Field-Effect Transistors for THz and ...

n+n+

InGaAs MOSFET: possible designs

Regrown S/D QW-MOSFET

Trigate MOSFET Nanowire MOSFET

Recessed S/D QW-MOSFET

28

Page 29: Nanometer-Scale InGaAs Field-Effect Transistors for THz and ...

Self-Aligned InGaAs QW-MOSFETs (MIT)• Scaled barrier (InP: 1 nm + HfO2: 2 nm)• 10 nm thick channel with InAs core• Tight S/D spacing (Lside~30 nm)• Process designed to be compatible with Si fab

Lin, IEDM 2012

29

Page 30: Nanometer-Scale InGaAs Field-Effect Transistors for THz and ...

30

Lg=30 nm Self-aligned QW-MOSFET

At VDS = 0.5 V:• gm = 1.4 mS/µm• S = 114 mV/dec• RON = 470 m

Lin, IEDM 2012

-0.4 -0.2 0.0 0.210-8

10-7

10-6

10-5

10-4

10-3

S (m

V/d

ec)

50 mV

I D (A

/m

)

VGS (V)

VDS=0.5 V

Lg=30 nm

80

120

160

200

240

280

320

Page 31: Nanometer-Scale InGaAs Field-Effect Transistors for THz and ...

Scaling and benchmarking

• Superior behavior to any planar III-V MOSFET to date• Matches performance of Intel’s InGaAs Trigate MOSFETs

[Radosavljevic, IEDM 2011]31

Lin, IEDM 2012

40 80 120 1600

100

200

300

400

500

III-V FETs

I on (

A/

m)

Lg (nm)

Ioff=100 nA/mVDD=0.5 V

MIT HEMTPlanarTrigateThis work

40 80 120 16060

80

100

120

140

160 III-V FETsVDS= 0.5 VMIT HEMTPlanarTrigateThis work

Sm

in (m

V/d

ec)

Lg (nm)

Page 32: Nanometer-Scale InGaAs Field-Effect Transistors for THz and ...

Sharp Subthreshold Characteristics

32

• S = 69 mV/dec at VDS = 50 mV• Close to lowest S reported in any III-V MOSFET: 66 mV/dec

[Radosavljevic, IEDM 2011]

• Aggressively scaled barrier• High quality interface: gate last process

Lin, IEDM 2012

Barrier:InP (1 nm) + Al2O3 (0.4 nm) + HfO2 (2 nm)

From:

Page 33: Nanometer-Scale InGaAs Field-Effect Transistors for THz and ...

Regrown source/drain InGaAs QW-MOSFET on Si (HKUST)

33

• MOCVD epi growth on Si wafer

• n+-InGaAs raised source/drain

• Self-aligned to gate

• Composite barrier:

InAlAs (10 nm) + Al2O3 (4.6 nm)Zhou, IEDM 2012

Page 34: Nanometer-Scale InGaAs Field-Effect Transistors for THz and ...

Characteristics of Lg=30 nm MOSFET

34

At VDS=0.5 V:• gm = 1.7 mS/µm• S = 186 mV/dec• RON = 157 Ω.µm

Zhou, IEDM 2012

Page 35: Nanometer-Scale InGaAs Field-Effect Transistors for THz and ...

Multiple-gate MOSFETs

# gates ↑ improved electrostatics enhanced scalability

35

FinFET

Trigate

Nanowire

Chen, ICSICT 2008

Page 36: Nanometer-Scale InGaAs Field-Effect Transistors for THz and ...

InGaAs Trigate MOSFET (Intel)

36Improved S over planar MOSFET on same heterostructure

Radosavljevic, IEDM 2011

HFIN=40 nm

Page 37: Nanometer-Scale InGaAs Field-Effect Transistors for THz and ...

D = 30 nm

InGaAs Nanowire MOSFETs

37Gu, IEDM 2012

D = 20 nm

Zhao, IEDM 2013

D = 28 nm

Persson, DRC 2012

Page 38: Nanometer-Scale InGaAs Field-Effect Transistors for THz and ...

38

Conclusions: exciting future for InGaAs

• Most promising material for ultra-high frequency and ultra-high speed applications first THz transistor?

• Most promising material for n-MOSFET in a post-Si CMOS logic technology first sub-10 nm CMOS logic?

• InGaAs + Si integration: THz + CMOS + optics integrated systems?