Top Banner
Surfaces and Interfaces Shyue Ping Ong
21

NANO266 - Lecture 11 - Surfaces and Interfaces

Jan 12, 2017

Download

Education

Shyue Ping Ong
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: NANO266 - Lecture 11 - Surfaces and Interfaces

Surfaces and Interfaces

Shyue Ping Ong

Page 2: NANO266 - Lecture 11 - Surfaces and Interfaces

Imperfections

Real-world materials are not perfect infinite crystals

•  Defects (substitutional, interstitial, anti-site, etc.) •  Surfaces •  Interfaces, e.g., grain boundaries

NANO266 2

Page 3: NANO266 - Lecture 11 - Surfaces and Interfaces

The Supercell Method

Create larger cell from unit cell Limitations

•  Computational cost limits cell sizes and hence concentrations •  Charged defects require complicated correction procedures •  As always, test for convergence!

NANO266 3

Change to Al

Al in Cu example

Page 4: NANO266 - Lecture 11 - Surfaces and Interfaces

Surfaces

Slab + Vacuum

NANO266 4

With PBC

Page 5: NANO266 - Lecture 11 - Surfaces and Interfaces

Lattice Planes

A lattice plane of a given Bravais lattice is a plane (or family of parallel planes) whose intersections with the lattice are periodic (i.e., are described by 2D Bravais nets) and intersect the Bravais lattice; equivalently, a lattice plane is any plane containing at least three noncollinear Bravais lattice points.

NANO 106 - Crystallography of Materials by Shyue Ping Ong - Lecture 2

Page 6: NANO266 - Lecture 11 - Surfaces and Interfaces

Miller indices

Lattice planes are represented by Miller indices, denoted as , where h, k and l are integers.

NANO 106 - Crystallography of Materials by Shyue Ping Ong - Lecture 2

hkl( )

Page 7: NANO266 - Lecture 11 - Surfaces and Interfaces

Surface construction

NANO266 7

Sun, W.; Ceder, G. Efficient creation and convergence of surface slabs, Surf. Sci., 2013, 617, 53–59, doi:10.1016/j.susc.2013.05.016.

Page 8: NANO266 - Lecture 11 - Surfaces and Interfaces

Key considerations of surface structures

1.  Which termination?

2.  Is the termination polar?

3.  Does surface reconstruction occur?

NANO266 8

Page 9: NANO266 - Lecture 11 - Surfaces and Interfaces

Surface terminations

Symmetrically unique Most terminations break bonds – how many and which ones?

NANO266 9

(010) surface in LiFePO4

PO4 group

FeO6 octahedral

Page 10: NANO266 - Lecture 11 - Surfaces and Interfaces

Tasker Classification

NANO266 10

Tasker, P. W. The stability of ionic crystal surfaces, J. Phys. C Solid State Phys., 1979, 12, 4977–4984, doi:10.1088/0022-3719/12/22/036.

Page 11: NANO266 - Lecture 11 - Surfaces and Interfaces

Reconstruction of Surfaces

Tasker 3 -> Tasker 2b

Structural distortions

NANO266 11

Move half of M+ to bottom layer.

Page 12: NANO266 - Lecture 11 - Surfaces and Interfaces

Si(111)-(7x7) – 25 years of science!

NANO266 12

https://vimeo.com/1086112

Page 13: NANO266 - Lecture 11 - Surfaces and Interfaces

Convergence of Surface energies

Typically, most people remember convergence wrt vacuum and slab size, but convergence wrt surface area can be important, particularly if there are relaxations that can break symmetry!

NANO266 13

γ =12A

E(Slab)− NE(bulk)[ ]

Convergence wrt vacuum size

Convergence wrt slab size – how many layers?

Convergence wrt surface area

Sholl, D.; Steckel, J. A. Density Functional Theory: A Practical Introduction; 1st ed.; Wiley-Interscience, 2009.

Page 14: NANO266 - Lecture 11 - Surfaces and Interfaces

Practical aspects of surface calculations – k points

NANO266 14

Note: Data shown is for unreconstructed Si(111) Key takeaway: Maintaining equivalent k-point grids is essential to efficient convergence!

Sun, W.; Ceder, G. Efficient creation and convergence of surface slabs, Surf. Sci., 2013, 617, 53–59, doi:10.1016/j.susc.2013.05.016.

Page 15: NANO266 - Lecture 11 - Surfaces and Interfaces

Practical aspects of surface calculations – functionals

NANO266 15

Singh-Miller, N. E.; Marzari, N. Surface energies, work functions, and surface relaxations of low-index metallic surfaces from first principles, Phys. Rev. B - Condens. Matter Mater. Phys., 2009, 80, 1–9, doi:10.1103/PhysRevB.80.235407.

Page 16: NANO266 - Lecture 11 - Surfaces and Interfaces

Absorbates on Surfaces

NANO266 16

Sha, Y.; Yu, T. H.; Merinov, B. V; Shirvanian, P.; Goddard, W. A. Mechanism for Oxygen Reduction Reaction on Pt 3 Ni Alloy Fuel Cell Cathode, J. Phys. Chem. C, 2012, 116, 21334–21342, doi:10.1021/jp303966u.

Page 17: NANO266 - Lecture 11 - Surfaces and Interfaces

Applications - Catalysis

NANO266 17

Nørskov, J. K.; Abild-Pedersen, F.; Studt, F.; Bligaard, T. Surface chemistry special feature: Density functional theory in surface chemistry and catalysis., Proc. Natl. Acad. Sci. U. S. A., 2011, 108, 937–943, doi:10.1073/pnas.1006652108.

Page 18: NANO266 - Lecture 11 - Surfaces and Interfaces

Applications

NANO266 18

Wang, L.; Zhou, F.; Meng, Y.; Ceder, G. First-principles study of surface properties of LiFePO4: Surface energy, structure, Wulff shape, and surface redox potential, Phys. Rev. B, 2007, 76, 1–11, doi:10.1103/PhysRevB.76.165435.

Sun, W.; Jayaraman, S.; Sun, W.; Jayaraman, S.; Chen, W.; Persson, K. A.; Ceder, G. Nucleation of metastable aragonite CaCO 3 in seawater, Proc. Natl. Acad. Sci., 2015, 201506100, doi:10.1073/pnas.1506100112.

Page 19: NANO266 - Lecture 11 - Surfaces and Interfaces

Interfaces

NANO266 19

Grain boundaries

Chen, Y. Z.; Bovet, N.; Trier, F.; Christensen, D. V.; Qu, F. M.; Andersen, N. H.; Kasama, T.; Zhang, W.; Giraud, R.; Dufouleur, J.; Jespersen, T. S.; Sun, J. R.; Smith, a.; Nygård, J.; Lu, L.; Büchner, B.; Shen, B. G.; Linderoth, S.; Pryds, N. A high-mobility two-dimensional electron gas at the spinel/perovskite interface of γ-Al2O3/SrTiO3, Nat. Commun., 2013, 4, 1371, doi:10.1038/ncomms2394.

Page 20: NANO266 - Lecture 11 - Surfaces and Interfaces

Liquid metal embrittlement in Ni

NANO266 20

Kang, J.; Glatzmaier, G. C.; Wei, S. H. Origin of the bismuth-induced decohesion of nickel and copper grain boundaries, Phys. Rev. Lett., 2013, 111, 1–5, doi:10.1103/PhysRevLett.111.055502.

Luo, J.; Cheng, H.; Asl, K. M.; Kiely, C. J.; Harmer, M. P. The Role of a Bilayer Interfacial Phase on Liquid Metal Embrittlement, Science (80-. )., 2011, 333, 1730–1733, doi:10.1126/science.1208774.

Page 21: NANO266 - Lecture 11 - Surfaces and Interfaces

Solutes at Fe grain boundaries

NANO266 21

Jin, H.; Elfimov, I.; Militzer, M. Study of the interaction of solutes with ??5 (013) tilt grain boundaries in iron using density-functional theory, J. Appl. Phys., 2014, 115, doi:10.1063/1.4867400.