Top Banner

of 141

N20122 Mathematical Economics II 1 141

Apr 06, 2018

Download

Documents

xdaapx
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 8/3/2019 N20122 Mathematical Economics II 1 141

    1/141

    1

    Econ 416/616 Mathematical Economics II Lau

    Lecture Notes Spring 2012

    Review of Integration

    Indefinite integral as anti-derivative:

    1.

    1

    11 1

    ( )111 Note that ( 1)

    1 1

    a

    aa a a

    xd c

    x a x dx c a a x xa dx a

    Example:7

    76 7 1 6

    33

    21 3 3 12

    12 2 2 2

    22

    31 2 1 133 3 3

    ( )17Note that (7)

    7 7

    2( )

    2 2 33Note that ( )3 3 3 2

    2

    3( )

    3 3 22Note that ( )2 2 2 3

    3

    xd c

    x x dx c x x

    dx

    d x c

    x x dx c x c x xdx

    d x cx

    x dx c x c x xdx

    3

    2. 11 (ln ) 1

    ln Note thatd x c

    x dx dx x c x dx x

    3.x x

    e dx e c Example:2

    22 2 2

    ( )12Note that (2)

    2 2

    x

    x x x x

    ed c

    ee dx c e e

    dx

    Definite integral:

    ( )b

    a

    f x dx

    ( )f x

    a b

  • 8/3/2019 N20122 Mathematical Economics II 1 141

    2/141

    2

    Example:22 2 2 2

    1 1

    22

    1 1

    22 5 10 55

    1 1

    (2) (1) 4 1 3

    2 2 2 2 2 2

    1

    ln ln 2 ln1 ln 2

    5 5

    x

    x

    xxdx

    dx xx

    e e ee dx

    33

    0 0

    1ln ln 3 ln 0dx x undefined

    x

    0 3

    Integration by parts: udv uv vdu

    Proof: duv udv vdu uv duv udv vdu

    Example 1 Evaluate x xe dx

    Let

    x x x

    u x du dx

    dv e dx dv e dx v e

    x x x x x xe dx xe e dx xe e c

    Example 2 Evaluate ln x dx

    Let

    1lnu x du dx

    x

    dv dx dv dx v x

    1ln (ln )( ) ( ) ln ln x dx x x x dx x x dx x x x c

    x

    unbounded

  • 8/3/2019 N20122 Mathematical Economics II 1 141

    3/141

    3

    Example 3 Evaluate 2 x x e dx

    Let

    2 2

    x x x

    u x du xdx

    dv e dx dv e dx v e

    2 2 2

    ( ) ( )(2 ) 2

    x x x x x

    x e dx x e e xdx x e xe dx

    Let

    x x x

    u x du dx

    dv e dx dv e dx v e

    2 2 2 2

    2 2

    2 2 ( ) ( ) 2 ( ) ( )

    2 2 ( 2 2)

    x x x x x x x x x

    x x x x

    x e dx x e xe dx x e x e e dx x e x e e c

    x e xe e c e x x c

    Example 4 Evaluate xe cos x dx

    Let

    cos cos sin

    x xu e du e dx

    dv x dx dv x dx v x

    sin sin x x xe cos x dx e x x e dx

    Let

    sin sin cos

    x xu e du e dx

    dv x dx dv x dx v x

    sin sin sin ( cos ) ( cos )

    sin cos cos

    2 sin cos

    1sin cos

    2

    x x x x x x

    x x x x

    x x x

    x x x

    e cos x dx e x x e dx e x e x x e dx

    e cos x dx e x e x e x dx

    e cos x dx e x e x

    e cos x dx e x e x c

  • 8/3/2019 N20122 Mathematical Economics II 1 141

    4/141

    4

    First Order Liner Differential Equations

    Example 1: '( ) 1 or 1dy

    y tdt

    1 ( )dy

    dy dt dy dt y t t cdt

    Note: When we differentiate ( ) with respect to y t t c t , we get '( ) 1y t .

    Example 2: '( ) y t y

    1 1ln

    1ln ( ) wheret c cy tdy dy dy

    y dt dt y t c e e y t Ce C edt y y

    Note: When we differentiate ( ) t y t Ce with respect to t, we get '( ) t y t Ce y .

    Example 3:2'( ) y t y

    2 1

    2 2

    1( )

    dy dy dy y dt dt y t c y t

    dt t cy y

    Note: 2 2( )dy

    t c ydt

    Example 4: 1'( ) y t y 21

    ( ) 2( )2

    dy y ydy dt ydy dt t c y t t c

    dt y

    Note:1 2 1 1

    2 2( ) 2( )

    dy

    dt yt c t c

    Example 5: '( ) 2 (0) 1 y t y

    2 2 2 ( ) 2

    (0) 2(0) 1 1

    ( ) 2 1

    dy dy dt dy dt y t t cdt

    y c c

    y t t

    Note: 2 (0) 2(0) 1 1dy

    ydt

  • 8/3/2019 N20122 Mathematical Economics II 1 141

    5/141

    5

    Example 6: '( ) 3 (0) 1 y t y y

    13

    13 3 ln 3 ( ) wherectdy dy

    y dt y t c y t Ce C edt y

    3(0)(0) 1 y Ce C

    3

    ( )t

    y t e

    Note: 3 3(0)3 3 (0) 1tdy

    e y y edt

    Example 7: '( ) 3 (1) 4 y t y y 3( ) t y t Ce 3(1) 3(1) 4 4 y Ce C e 3 3 3 3( ) 4 4t t y t e e e

    3 3 3(1) 3Note: 4(3) 3 (1) 4 4tdy

    e y y edt

    Example 8: '( ) ( ) y t Py t Q

    [ ( )]'( ) ( ' )

    PtPt Pt Pt Pt d e y t

    e y t yPe e y Py e Qdt

    [ ( )] ( ) ( ) ( ) (**)Pt Pt Pt Pt Pt Pt Pt Q Q

    d e y t Qe dt de y t Qe dt e y t e C y t CeP P

    Note: '( ) ( ) Pt Pt dy y t C P e CPedt

    '( ) ( ) [ ]Pt Pt Pt Pt Q

    y t Py t CPe P Ce CPe Q CPe QP

    Example 9: '( ) 3 y t y

    Using (**): ( 3 ) 30

    3, 0 ( ) ( )3

    t tP Q y t Ce y t Ce

    Example 10: '( ) 3 4 (0) 1 y t y y

    Using (**): ( 3) 34 4

    3, 4 ( ) ( )3 3

    t tP Q y t Ce y t Ce

    3(0) 34 7 7 4(0) 1 ( )3 3 3 3

    t y Ce C y t e

  • 8/3/2019 N20122 Mathematical Economics II 1 141

    6/141

    6

    Example 11: '( ) ( ) ( ) ( )y t P t y t Q t ( ) ( )

    ( ) ( ) (***)P t dt P t dt

    y t e Q t e dt c

    Example 12:1

    '( ) 3 y t y t t

    Using (***): 1( ) , ( ) 3P t Q t t t

    1 1

    ln 1 2 1 3 2( ) 3 3 ( ) ( 3 ) ( )dt dt

    tt tc

    y t e te dt c e t t dt c t t dt c t t c t t

    Example13: 22

    '( ) 6 y t y t t

    Using (***): 22

    ( ) , ( ) 6P t Q t t t

    2 2 5 3

    2 2 ln 2 2 2 4 2

    26 6( ) 6 6 ( ) ( 6 ) ( )5 5

    dt dt tt t t t c y t e t e dt c e t t dt c t t dt c t ct

  • 8/3/2019 N20122 Mathematical Economics II 1 141

    7/141

    7

    Second Order Linear Differential Equation (Homogeneous)

    "( ) '( ) ( ) 0 y t Ay t By t

    Let ( )rt

    y t ce be the solution of the differential equation.

    2'( ) , "( )rt rt y t cre y t cr e

    Substitute to the differential equation, we have2 20 ( ) 0rt rt rt rt r ce Acre Bce ce r Ar B

    This leads to a characteristic equation: 2 0r Ar B

    The characteristic roots:2

    1 2

    4,

    2

    A A Br r

    Case 1 2 4A B

    1 2

    1 2( )r t r t

    y t c e c e

    Example: " 4 0y y

    0, 4 orA B characteristic equation2

    2

    1 2

    (0) (0) 4( 4)4 0 , 2, 2

    2r r r

    2 2

    1 2( )t t

    y t c e c e

    Note:2 2

    1 2

    2 2

    1 2

    '( ) 2 2

    "( ) 4 4

    t t

    t t

    y t c e c e

    y t c e c e

    Example: 2 " 12 ' 10 0 y y y or " 6 ' 5 0 y y y

    6, 5 orA B characteristic equation2

    2

    1 2

    (6) (6) 4(1)(5) (6) 166 5 0 , 1, 5

    2 2

    r r r r

    5

    1 2( ) t t y t c e c e

    Note:5 5

    1 2 1 2'( ) 5 and "( ) 25t t t t y t c e c e y t c e c e

    Hence5 5 5 5

    1 2 1 2 1 2 1 1 1 2 2 2( 25 ) 6( 5 ) 5( ) ( 6 5 ) (25 30 5 ) 0t t t t t t t t c e c e c e c e c e c e c c c e c c c e

  • 8/3/2019 N20122 Mathematical Economics II 1 141

    8/141

    8

    Case 2 2 4A B (complex roots)

    Suppose the characteristic roots 1 2,r r a bi , then 1 2( ) ( cos sin )at

    y t e k bt k bt

    Example: "( ) 4 '( ) 13 ( ) 0y t y t y t

    4, 13 orA B characteristic equation2

    2

    1 2

    ( 4) ( 4) 4(13)4 13 0 , 2 3 , 2 3

    2r r r r i i

    2

    1 2 1 2( ) ( cos sin ) ( cos3 sin3 )at t y t e k bt k bt e k t k t

    Note:2

    1 2( ) ( cos3 sin3 )t

    y t e k t k t 2 2 2

    1 2 1 2 2 1 1 2

    2 22 1 1 2 2 1 1 2

    2

    2 1 1 2

    '( ) [ 3 sin 3 3 cos3 ] ( cos3 sin 3 )(2 ) [(2 3 )sin 3 (2 3 )cos3 ]

    "( ) [3(2 3 )cos3 3(2 3 )sin3 ] [(2 3 )sin3 (2 3 )cos3 ]2

    {[(4 6 ) (6 9 )

    t t t

    t t

    t

    y t e k t k t k t k t e e k k t k k t

    y t e k k t k k t k k t k k t e

    e k k k k

    2 1 1 2

    2

    2 1 2 1

    ]sin3 [(6 9 ) (4 6 )]cos3 }

    {( 5 12 )sin 3 (12 5 )cos3 }t

    t k k k k t

    e k k t k k t

    2 2

    2 1 2 1 2 1 1 2

    2

    1 2

    2 2 2 2 2 2

    2 1 2 1 2 2 1 1 2 1

    "( ) 4 '( ) 13 ( )

    {( 5 12 )sin3 (12 5 )cos3 } 4 [(2 3 )sin 3 (2 3 )cos3 ]

    13 ( cos3 sin 3 )

    ( 5 12 ) 4 (2 3 ) 13 sin 3 (12 5 ) 4 (2 3 ) 13 cos3

    t t

    t

    t t t t t t

    y t y t y t

    e k k t k k t e k k t k k t

    e k t k t

    e k k e k k k e t e k k e k k k e t

    2 2

    2 1 2 1 2 2 1 1 2 1( 5 12 8 12 13 ) sin 3 (12 5 8 12 13 ) cos3 0

    t tk k k k k e t k k k k k e t

    sincos

    cossin

    d tt

    dt

    d tt

    dt

  • 8/3/2019 N20122 Mathematical Economics II 1 141

    9/141

    9

    Case 3 2 4A B (equal roots)

    1 2( ) ( )rt

    y t e c c t

    Example "( ) 4 '( ) 4 ( ) 0y t y t y t

    4, 4 orA B characteristic equation2

    2

    1 2

    ( 4) (4) 4(4)4 4 0 , 2

    2r r r r

    2

    1 2 1 2( ) ( ) ( )rt ty t e c c t e c c t

    Note:2

    1 2

    2 2 2

    2 1 2 2 1 2

    2 2 2

    2 1 2 2 1 2 2

    ( ) ( )

    '( ) ( ) 2 ( ) ( 2 2 )

    "( ) ( 2 2 )( 2 ) ( 2 ) (4 4 4 )

    t

    t t t

    t t t

    y t e c c t

    y t e c e c c t c c c t e

    y t c c c t e e c c c c t e

    2 2 2

    1 2 2 2 1 2 1 2

    2

    1 2 2 2 1 2 1 2

    "( ) 4 '( ) 4 ( ) (4 4 4 ) 4 ( 2 2 ) 4 ( )

    [(4 4 4 ) (4 8 8 ) (4 4 )] 0

    t t t

    t

    y t y t y t c c c t e c c c t e e c c t

    e c c c t c c c t c c t

    Example "( ) 8 '( ) 16 ( ) 0y t y t y t

    8, 16 orA B characteristic equation2

    2

    1 2

    ( 8) (8) 4(16)8 16 0 , 4

    2r r r r

    41 2 1 2( ) ( ) ( )

    rt ty t e c c t e c c t

    Note:4

    1 2

    4 4 4

    2 1 2 2 1 2

    4 4 4

    2 1 2 2 1 2 2

    ( ) ( )

    '( ) ( ) 4 ( ) ( 4 4 )

    "( ) ( 4 4 )( 4 ) ( 4 ) (16 8 16 )

    t

    t t t

    t t t

    y t e c c t

    y t e c e c c t c c c t e

    y t c c c t e e c c c c t e

    4 4 4

    1 2 2 2 1 2 1 2

    4

    1 2 2 2 1 2 1 2

    "( ) 8 '( ) 16 ( ) (16 8 16 ) 8 ( 4 4 ) 16 ( )

    [(16 8 16 ) (8 32 32 ) (16 16 )] 0

    t t t

    t

    y t y t y t c c c t e c c c t e e c c t

    e c c c t c c c t c c t

  • 8/3/2019 N20122 Mathematical Economics II 1 141

    10/141

    10

    Second Order Linear Differential Equation (Non-homogeneous)"( ) '( ) ( ) ( ) y t Ay t By t f t

    Solution: ( ) H P y t y y

    i) if 1 2real roots and r r , 1 21 2( )r t r t

    y t c e c eB

    ii) if complex roots,1 2( ) ( cos sin )

    at y t e k bt k bt

    B

    iii) if 1 2real roots and r r , 1 2( ) ( )rt

    y t e c c t

    B

    Example: Find the Py of "( ) '( ) ( ) y t gy t hy t t

    Let ( ) '( ) "( ) 0P P P y t at b y t a y t

    LHS: "( ) '( ) ( ) 0 ( ) ( ) y t gy t hy t g a h at b aht ga bh

    RHS: t

    Comparing coefficients, we have

    2

    i)

    ii)

    ah ah

    gga h ghga bh b

    h h h

    2( ) ( )P

    h g y t at b t

    h h

    Example: Find the Py of2"( ) 4 '( ) 4 ( ) 2y t y t y t t

    Let 2 '( ) 2 "( ) 2P P P y at bt c y t at b y t a

    LHS:2 2"( ) 4 '( ) 4 ( ) (2 ) 4(2 ) 4( ) 4 (4 8 ) (2 4 4 ) y t y t y t a at b at bt c at b a t a b c

    RHS: 2 2t

    Comparing coefficients, we have

    4 1, 4 8 0, 2 4 4 2a b a a b c 21 1 7 7

    , , ( )4 2 8 4 2 8

    P

    t ta b c y t

    solution for the homogeneous

    particular solution for the non-homogeneous equation

    Solving for Py when ( ) (constant)f t : ( ) '( ) 0 "( ) 0P P P y t y t y t B

    This satisfies "( ) '( ) ( ) y t Ay t By t

    When ( ) is a polynomialf t of degree n , then the Py will also be a polynomial of degree n .

  • 8/3/2019 N20122 Mathematical Economics II 1 141

    11/141

    11

    Example: Find the Py of "( ) '( ) ( )qt

    y t y t y t pe

    Let 2( ) '( ) "( )qt qt qt P P P y t Ae y t Aqe y t Aq e

    LHS:2 2"( ) '( ) ( ) ( ) ( ) ( )qt qt qt qt y t y t y t Aq e Aqe Ae e Aq Aq A

    RHS: qtpe

    Comparing coefficients, we have

    2

    2 2( )

    qt

    P

    p pe Aq Aq A p A y t

    q q q q

    Note that this only works when2 0q q .

    The condition2 0q q means that q is not a solution of the characteristic equation

    2 0r r , that is qte is not a solution of "( ) '( ) ( ) 0y t y t y t .

    If q is a simple root of

    2

    0q q , we look for a constant B such thatqt

    Bte is a solution.

    If q is a double root of2 0q q , we look for a constant C such that 2 qtCt e is a solution.

    Example: Find the Py of "( ) 4 '( ) 4 ( ) 2cos2 y t y t y t t

    Let ( ) sin 2 cos2 '( ) 2 cos2 2 sin 2 "( ) 4 sin 2 4 cos2P P P

    y t A t B t y t A t B t y t A t B t

    LHS: "( ) 4 '( ) 4 ( ) [ 4 sin 2 4 cos2 ] 4[2 cos2 2 sin 2 ] 4[ sin 2 cos2 ]y t y t y t A t B t A t B t A t B t ( 4 8 4 )sin 2 ( 4 8 4 )cos2 8 sin 2 8 cos2A B A t B A B t B t A t

    RHS: 2cos2t

    Comparing coefficients, we have1 1

    8 0 and 8 2 0 and ( ) sin 24 4

    P B A B A y t t

    When ( ) sin cos f t p rt q rt , then ( ) sin cosP y t A rt B rt

    When ( ) qt f t pe , then ( ) qtP y t Ae

    The corresponding homogeneous second order linear differential equation is

    "( ) '( ) ( ) 0y t y t y t and the characteristic equation is 2 0r r

    , , ,p q are given

  • 8/3/2019 N20122 Mathematical Economics II 1 141

    12/141

    12

    Note that these techniques for obtaining particular solutions also apply if ( )f t is a sum,

    difference, or product of polynomials, exponential functions, or trigonometric functions.

    Example:

    If2 3 2 3

    ( ) ( 1) sin 2 ( ) ( ) sin 2 cos2t t

    P f t t e t y t At Bt C e D t E t

  • 8/3/2019 N20122 Mathematical Economics II 1 141

    13/141

    13

    Example"( ) '( ) 0 y t Ay t

    Let ( )rt

    y t ce be the solution of the differential equation.

    2'( ) , "( )rt rt y t cre y t cr e

    Substitute to the differential equation, we have2 20 ( ) 0rt rt rt r ce Acre ce r Ar

    This leads to a characteristic equation: 2 0r Ar

    The characteristic roots:2

    1 2, or 02 2

    A A A Ar r A

    (0)

    1 2 1 2( )At t At

    y t c e c e c e c

    Note:2

    1 1'( ) and "( ) At At y t c Ae y t c A e

    Hence2

    1 1 1 2"( ) '( ) ( ) ( ) 0( ) 0 At At At y t Ay t c A e A c Ae c e c

    Example

    Looking for the for "( ) '( )P

    y y t Ay t

    Conjecture: ( )P y t C

    ( ) '( ) 0 and "( ) 0P P P y t C y t y t Does not work

    Conjecture: ( )P y t at

    ( ) '( ) and "( ) 0P P P y t at y t a y t

    "( ) '( ) (0) ( )

    ( )P

    y t Ay t A a aA

    y t t A

    Note:

    '( ) and "( ) 0P P y t y t A

    "( ) '( ) (0) ( )P P y t Ay t A

    A

  • 8/3/2019 N20122 Mathematical Economics II 1 141

    14/141

    14

    Example

    Looking for the for "( ) '( )P y y t Ay t t

    Conjecture: ( )P y t at b

    ( ) '( ) and "( ) 0P P P

    y t at b y t a y t

    "( ) '( ) (0) ( )P P y t Ay t A a t

    Conjecture: 2( )P y t at bt 2( ) '( ) 2 and "( ) 2

    P P P y t at bt y t at b y t a

    2

    2

    2

    "( ) '( ) (2 ) (2 )

    2 (2 )

    22

    2

    2 22

    ( )2

    P P

    P

    y t Ay t a A at b t

    aAt a Ab t

    aA aA

    a Aa Ab b

    A A A A

    y t t t A A A

    Note:

    2'( ) + and "( )P t y t y t A A A A

    2"( ) '( ) ( ) +

    P P

    t y t Ay t A t t

    A A A A A A

    Does not work!!

  • 8/3/2019 N20122 Mathematical Economics II 1 141

    15/141

    15

    Example

    "( ) 0y t

    Conjecture: ( ) y t at b

    '( ) and "( ) 0 y t a y t

    Hence the solution is ( ) for any , y t at b a b

    Example

    Looking for the for "( )P y y t

    Conjecture: ( )P y t at b

    ( ) '( ) and "( ) 0P P P

    y t at b y t a y t Does not work.

    Conjecture: 2( )P y t at bt c

    2

    2

    ( ) '( ) 2 and "( ) 22

    ( ) for any ,2

    P P P

    P

    y t at bt c y t at b y t a a

    y t t bt c b c

    Note:

    '( ) and "( )P P y t t b y t

  • 8/3/2019 N20122 Mathematical Economics II 1 141

    16/141

  • 8/3/2019 N20122 Mathematical Economics II 1 141

    17/141

    17

    Steady State Equilibrium and Stable Equilibrium

    Definition: Let '( ) ( )y t F y . If *y such that '( ) ( *) 0 y t F y , then *y is a steady state

    equilibrium.

    Definition: Let *y be a steady state equilibrium. It is a stable equilibrium if lim ( ) *t y t y .

    Definition: Let ' ( ) y F y . If t does not appear explicitly on the right-hand side, it is called an

    autonomous (or time-independent) differential equation.

    Theorem: If ( *) 0F y and '( *) 0 *F y y is a stable equilibrium.

    If ( *) 0F y and '( *) 0 *F y y is an unstable equilibrium.'y

    stable equilibrium ( )F y

    y

    unstable equilibrium

    ( )'( )

    dF yF y

    dy

  • 8/3/2019 N20122 Mathematical Economics II 1 141

    18/141

    18

    Example:

    Solows neoclassical economic growth model

    Assumptions:

    1. one output ( )Y t

    2. linear homogenous production function ( ) [ ( ), ( )]Y t F K t L t

    [ , ]

    1Let [ ,1] ( ) per capita production function

    Y F K L

    Y KF y f k

    L L L

    a) marginal product of capital

    1 1

    '( )( ) 1

    '( )

    K

    K

    Y

    y YL MP

    MP f k K K L K L y f k

    f kK K L

    i) '( ) 0f k

    ii)0 0

    lim '( ) [Given , lim ]Kk K

    f k L MP

    iii) lim '( ) 0 [Given , lim 0]Kk K

    f k L MP

    iv)'( ) ''( )

    ''( ) 0 [ ]KMP f k f k

    f kK K L

    b) marginal product of labor

    2

    2

    '( )( ) '( ) ( ) '( )

    ( )'( )

    L L

    YYL Y

    y LLY f k K

    L MP Y f k K MP f k kf k L L LL

    y f k K f k

    L L L

    c) (0) 0f

    d) ( )f

    3. 0 1S sY s 4. 'K I 5. At equilibrium, I S

    6.'

    is exogenousL

    n nL

  • 8/3/2019 N20122 Mathematical Economics II 1 141

    19/141

    19

    Model:

    ' '

    ( ) ( ) (1)

    Y C I

    Y C I

    L L L

    C K K C

    f k f k L L L L

    ' ' ' 'ln ln ln

    ' ' '' ' (2)

    K k K L K k k K L n

    L k K L K

    K K Kk k nk nk k nk

    K L L

    (1) and (2) ( ) 'C

    f k k nk L

    fund

    ' ( ) ( )

    '( ) ( ) amental equation of neo-classical economic growth model

    C S sY

    k f k nk nk nk sf k nk L L L

    k t sf k nk

    nk

    ( )sf k

    k

    * steady state equilibriumk

    ' 0k

    0 k

    ' 0k

  • 8/3/2019 N20122 Mathematical Economics II 1 141

    20/141

    20

    The stability of *k

    @ *, * ( *)

    * ( *)

    k nk sf k

    nk f k

    s

    ( *) ( *) (0)

    * * 0

    n f k f k f

    s k k

    By the Mean Value Theorem,( *) (0)

    (0, *) such that '( )* 0

    f k f x k f x

    k

    Define so that (0,1)*

    x

    k and

    ( *) ( *) (0)'( *) (**)

    * * 0

    n f k f k f f k

    s k k

    .

    Multiply (**) by *k * ( *) * '( *) * '( *)n

    k f k k f k k f k s

    * * '( *) '( *)n n

    k k f k f k s s

    '( *)n sf k

    Note that ( ) '( ) ( )F k k t sf k nk fundamental equation

    Hence '( ) '( ) and '( *) '( *) 0F k sf k n F k sf k n *k is a stable equilibrium.

    Mean Value Theorem

    Let ( )f x be differentiable on ( , )a b and continuous on [ , ]a b . Then there is at least one point c

    where( ) ( )

    '( )f b f a

    f cb a

    ( ) y f x

    y

    x

    a c b

    (0) 0f

    diminishing MPK

  • 8/3/2019 N20122 Mathematical Economics II 1 141

    21/141

    21

    System of first order ordinary differential equations

    Definition

    1 1 1 2

    1 2

    ' ( , ,..., , )

    ...

    ' ( , ,..., , )

    n

    n n n

    x f x x x t

    x f x x x t

    is a system of first order ordinary differential equations

    Theorem (existence and uniqueness of solution)

    If 1(...)

    ( , ... , , ) and ii n

    j

    f f x x t

    x

    are continuous, then for every point 0 0

    0 1( , , ..., )

    nt x x , a unique

    solution ( )i ix t satisfying the system of differential equation and0

    0( )

    i ix t .

    Definition If if does not depends (explicitly) on t, i.e.

    1 1 1 2

    1 2

    ' ( , ,..., )

    ...

    ' ( , ,..., )

    n

    n n n

    x f x x x

    x f x x x

    is an autonomous system of first order ordinary differential equations

    Definition Any point 1( *, ..., *)nx x is a critical point if

    1 1 1 2

    1 2

    ' ( *, *,..., *) 0

    ...

    ' ( *, *,..., *) 0

    n

    n n n

    x f x x x

    x f x x x

    Definition 1( *, ..., *)nx x is an isolated critical point if a neighborhood of 1( *, ..., *)nx x

    containing no other critical points.

    Definition If if is linear in , 1,...,j x j n , then

    1 1 1 2

    1 2

    ' ( , ,..., )

    ...' ( , ,..., )

    n

    n n n

    x f x x x

    x f x x x

    is a system oflinear ordinary differential equations.

  • 8/3/2019 N20122 Mathematical Economics II 1 141

    22/141

    22

    Properties of the solution of an autonomous system

    For simplicity, we will consider a system of 2 equations.

    ' ( , )

    ' ( , )

    x F x y

    y G x y

    (1) , and their derivatives are continuousF G

    Lemma 1 If 1 2( ), ( ),x x t y y t t t t is a solution of (1), then for any real constant c , the

    functions 1 1( ) ( ) and ( ) ( )x t x t c y t y t c are also solutions of (1).

    Proof: By chain rule, we have 1 1'( ) '( ) and '( ) '( )x t x t c y t y t c .

    1 1 1

    1 1 1

    '( ) '( ) [ ( ), ( )] [ ( ), ( )]

    '( ) '( ) [ ( ), ( )] [ ( ), ( )]

    x t x t c F x t c y t c F x t y t

    y t y t c G x t c y t c G x t y t

    1 1( ) and ( ) x t y t are solutions to (1).

    Note: This lemma only applies for autonomous system.

    Definition As t varies, a solution ( ), y( ) x t t of (1) describes parametrically a curve on the x y

    plane. This curve is called a trajectory or a path.y

    Example:

    2

    ( )

    ( )

    x t t

    y t t

    2

    y x

    x

    Lemma 2 Through any point passes at most one path.

    Remark: Note the distinction between solutions and trajectories of (1). A trajectory is a curve

    that is represented by more than one solution.

    Example:

    2

    ( )

    ( )

    x t t

    y t t

    and

    2

    4

    ( )

    ( )

    x t t

    y t t

    are different solutions with the same trajectories.

    Definition Let ( *, *)x y be an isolated critical point of (1). If [ ( ), ( )]C x t y t is a path of (1), then

    we say that C APPROACHES ( *, *)x y as t if lim ( ) * and lim ( ) *t t

    x t x y t y

    .

    Geometrically, if ( , )P x y is a point that traces out C in accordance with the

    equations ( ) and ( )x x t y y t , then ( *, *) asP x y t .

  • 8/3/2019 N20122 Mathematical Economics II 1 141

    23/141

    23

    Definition If( ) *

    lim( ) *t

    y t y

    x t x

    exists, or if it becomes either positively infinite or negatively infinite as

    t , then we say that C ENTERS the critical point ( *, *x y ) as t .

    Note: The quotient is the slope of the line joining ( *, *x y ) and the point ( ( ), ( ))P x t y t .

    Note: This property is a property of the path C, and it does not depend on which solution isused to represent the path.

    Definition A critical point is said to be STABLE if for each 0R , r R such that every path

    which is inside the circle 2 2 2 0( *) ( *) @ x x y y r t t will remain inside the circle2 2 2

    0( *) ( *) for x x y y R t t .

    Note: Loosely speaking, a critical point is stable if all paths that get sufficiently close to the

    critical point will stay close to the critical point.

    Definition A critical point is ASYMPTOTICALLY STABLE if it is stable and a circle2 2 2

    0( *) ( *) x x y y r such that every path which is inside this circle 0@t t

    will approach the critical point as t .

    Definition A critical point that is not stable is UNSTABLE.

    Solving a pair of linear differential equation/ Phase diagram of the solution

    1 1

    2 2

    '

    '

    x a x b y

    y a x b y

    (1) homogeneous system

    Theorem A If the homogeneous system has 2 solutions 1

    1

    ( )

    ( )

    x x t

    y y t

    and 2

    2

    ( )

    ( )

    x x t

    y y t

    , then

    1 1 2 2

    1 1 2 2

    ( ) ( )

    ( ) ( )

    x c x t c x t

    y c y t c y t

    (2) is also a solution for the system for any constant 1 2andc c .

    Theorem B If the 2 solutions in Theorem A has a Wronskian1 2

    1 2

    ( ) ( )( )

    ( ) ( )

    x t x t W t

    y t y t

    that does not

    vanish, then (2) is the general solution of the system.

    Example:' 4

    ' 2

    x x y

    y x y

    has 2 solutions

    3

    3

    t

    t

    x e

    y e

    and

    2

    22

    t

    t

    x e

    y e

    .

    1 2

    1 2

    3 2

    5

    3 2

    ( ) ( )( )

    ( ) ( )

    02

    t t

    t

    t t

    x t x t W t

    y t y t

    e ee

    e e

  • 8/3/2019 N20122 Mathematical Economics II 1 141

    24/141

    24

    Tryrt

    rt

    x Ae

    y Be

    ,A B are constants to be determined

    Substitute this into the system, 1 1

    2 2

    '

    '

    x a x b y

    y a x b y

    1 1

    2 2

    '

    '

    rt rt rt

    rt rt rt

    x rAe a Ae b Be

    y rBe a Ae b Be

    1 1

    2 2

    rA a A b B

    rB a A b B

    1 1

    2 2

    ( ) 0

    ( ) 0

    a r A b B

    a A b r B

    (3)

    Note that 0A B are the trivial solution of the system.

    Note that (3) has a non-trivial solution if 1 1

    2 2

    0a r b

    a b r

    1 1 2

    1 2 1 2 1 2 1 2 2 1

    2 2

    0 ( )( ) 0 ( ) 0a r b

    a r b r b a r a b r a b a ba b r

    2

    1 2 1 2 1 2 2 1( ) ( ) 4( )

    2

    a b a b a b a br

    Solution:1

    1

    1 1

    1 1

    ( )

    ( )

    r t

    r t

    x t A e

    y t B e

    and

    2

    2

    2 2

    2 2

    ( )

    ( )

    r t

    r t

    x t A e

    y t B e

    Solving the system 1 1

    2 2

    '

    '

    x a x b y

    y a x b y

    Note that

    1

    1 12

    1 1 2 2

    2 2

    0

    00 if 0

    b

    a r bb r

    a r b a b r

    a b r

    characteristic equation

  • 8/3/2019 N20122 Mathematical Economics II 1 141

    25/141

    25

    Case 1: Distinct real roots

    General solution:1 2

    1 2

    1 1 2 2

    1 1 2 2

    ( )

    ( )

    r t r t

    r t r t

    x t c A e c A e

    y t c B e c B e

    Example:'

    ' 4 2

    x x y

    y x y

    (1 ) 0 1 1 0

    4 ( 2 ) 0 4 2 0

    r A B r A

    A r B r B

    Characteristic equation:2(1 )( 2 ) (1)(4) 0 2 2 4 0r r r r r

    2

    1 26 0 ( 3)( 2) 0 3, 2r r r r r r

    1 3r :[1 ( 3)] 0 4 0

    4 [ 2 ( 3)] 0 4 0

    A B A B

    A B A B

    3

    1

    3

    1

    ( )

    ( ) 4

    t

    t

    x t e

    y t e

    22r :

    [1 (2)] 0 0

    4 [ 2 (2)] 0 4 4 0

    A B A B

    A B A B

    2

    2

    2

    2

    ( )

    ( )

    t

    t

    x t e

    y t e

    General solution:3 2

    1 2

    3 2

    1 2

    ( )

    ( ) 4

    t t

    t t

    x t c e c e

    y t c e c e

    Suppose (0) 1, (0) 2x y .

    3(0) 2(0)

    1 2 1 2

    3(0) 2(0)1 2 1 2

    1 (0)

    2 (0) 4 4

    x c e c e c c

    y c e c e c c

    1 2

    1 6and

    5 5c c

    3 2

    3 2

    1 6( )

    5 5

    4 6( )5 5

    t t

    t t

    x t e e

    y t e e

    A simple non-trivial solution is

    1 and 4A B

    A simple non-trivial solution is

    1 and 1A B

  • 8/3/2019 N20122 Mathematical Economics II 1 141

    26/141

    26

    Case 1A Real and distinct, same sign: Node Assume 1 2 0r r

    General solution:1 2

    1 2

    1 1 2 2

    1 1 2 2

    ( )

    ( )

    r t r t

    r t r t

    x t c A e c A e

    y t c B e c B e

    Note: i) critical point (0,0) ii) 1 2lim lim 0

    r t r t

    t te e

    iii) lim ( ) lim ( ) 0t t

    x t y t

    [i.e. ( ( ( ), ( )) (0,0) as ] x t y t t

    iv) 1 2

    1 2

    ( the roots are distinct)B B

    A A

    When2 2

    22

    2 2 2 21

    2 22 2

    ( ) ( )0

    ( )( )

    r t r t

    r tr t

    x t c A e B e By tc

    x t A e Ay t c B e

    When1 1

    11

    1 1 1 12

    1 11 1

    ( ) ( )0

    ( )( )

    r t r t

    r tr t

    x t c A e B e By tc

    x t A e Ay t c B e

    When

    1 2

    1 2 1 2

    1 21 21 2

    ( )1 12

    1 1 2 2 1 1 2 2 21 2

    ( )1 11 1 2 21 1 2 22

    2

    ( ) ( )0, 0

    ( )( )

    r r t

    r t r t r t r t

    r t r t r t r t r r t

    c Be B

    x t c A e c A e c B e c B e cy tc c

    c Ax t c A e c A ey t c B e c B e e Ac

    1 2

    1 2

    ( )1 12

    2 2

    ( )1 1 2

    22

    lim

    r r t

    t r r t

    c Be B

    c B

    c A A

    e Ac

    as 1 2 0r r

    Also

    2 1

    1 2

    1 2

    2 1

    ( )2 21

    1 1 2 2 1

    ( )2 21 1 2 21

    1

    ( )

    ( )

    r r t

    r t r t

    r t r t r r t

    c BB e

    c B e c B e cy t

    c Ax t c A e c A eA e

    c

    2 1

    2 1

    ( )2 21

    1 1

    ( )2 2 11

    1

    lim

    r r t

    t r r t

    c BB e

    c B

    c A AA e

    c

    as 2 1 0r r

    y

    1

    1

    B

    A

    Node: Asymptotically stable

    x

    2

    2

    B

    A

    1 2andc c are arbitrary constants

  • 8/3/2019 N20122 Mathematical Economics II 1 141

    27/141

  • 8/3/2019 N20122 Mathematical Economics II 1 141

    28/141

    28

    Case 2 Equal real roots: Node 1 2r r r

    General solution: 1 2 1 2

    1 2 1 2

    ( ) ( )

    ( ) ( )

    rt rt

    rt rt

    x t c Ae c A A t e

    y t c Be c B B t e

    Note that21 2 1 2 1 2 2 1( ) ( ) 4( )

    2

    a b a b a b a br

    2

    1 2 1 2 1 2 2 1( ) 4( ) 0r r r a b a b a b

    Case 2A 1 2 2 10 and 0a b a a b 2 2 2

    1 2 1 2 2 1 1 2 1 2 1 2[( ) 4( ) ( ) 4 ( ) 0]a b a b a b a b a b a b

    1

    2

    ' ( )

    ' ( )

    rt

    rt

    x ax x t c e

    y ay x t c e

    If 0r , then lim ( ) 0 and lim ( ) 0t t

    x t y t

    If 0r , then lim ( ) 0 and lim ( ) 0t t

    x t y t

    1 2

    12

    ( ) ( )

    ( )( )

    rt

    rt

    x t c e cy t

    x t cy t c e

    y 2

    1

    c

    c 0r

    Node: Asymptotically stable

    x

    2

    2

    B

    A

    1 2andc c are arbitrary constants

  • 8/3/2019 N20122 Mathematical Economics II 1 141

    29/141

    29

    Case 2B Any other combination: Node

    General solution: 1 2 1 2

    1 2 1 2

    ( ) ( )

    ( ) ( )

    rt rt

    rt rt

    x t c Ae c A A t e

    y t c Be c B B t e

    If 0, lim ( ) 0 and lim ( ) 0t t

    r x t y t

    [Note that the term t is dominated by the term rte .]

    If 0, lim ( ) 0 and lim ( ) 0t t

    r x t y t .

    When 12

    1

    ( )0

    ( )

    rt

    rt

    c Be y t Bc

    x t c Ae A

    When 2 1 2 1 212 1 2 1 2

    ( )( )0

    ( ) ( )

    rt

    rt

    c B B t e B B t y tc

    x t c A A t e A A t

    12

    1 2 2

    11 2 22

    lim limt t

    BB

    B B t Bt

    A A A t AAt

    When

    1 12 2

    1 2 1 21 2

    1 11 2 1 22 2

    ( )( )( )

    0, 0( ) ( )

    ( )

    rt rt

    rt rt

    c B Bc B

    c Be c B B t ey t t tc cc A Ax t c Ae c A A t e

    c At t

    1 12 2

    2

    1 1 22 2

    ( )

    lim

    ( )t

    c B Bc B

    Bt tc A A A

    c At t

    y

    0r Node: Asymptotically stable

    x

    B

    A

    2

    2

    B

    A

  • 8/3/2019 N20122 Mathematical Economics II 1 141

    30/141

    30

    Example:

    ' 3 4

    '

    x x y

    y x y

    In order to have a nontrivial solution forA

    B

    ,3 4

    0

    1 1

    r

    r

    2 2(3 )( 1 ) ( 4)(1) 0 2 1 0 ( 1) 0r r r r r real and equal roots

    (3 1) 4 0 2 4 0(1)

    (1 1) 0 2 0

    A B A B

    A B A B

    A simple non-trivial solution of this system is 2, 1A B so that( ) 2

    ( )

    t

    t

    x t e

    y t e

    A second linearly independent solution:

    1 2 1 2 2 1 2 2

    1 2 1 2 2 1 2 2

    ( ) ( ) '( ) ( ) ( )

    ( ) ( ) '( ) ( ) ( )

    t t t t

    t t t t

    x t A A t e x t A A t e e A A A t A e

    y t B B t e y t B B t e e B B B t B e

    system 1 2 2 1 2 1 2

    1 2 2 1 2 1 2

    ( ) 3( ) 4( )

    ( ) ( ) ( )

    t t t

    t t t

    A A t A e A A t e B B t e

    B B t B e A A t e B B t e

    2 2 1 2 11 2 2 1 2 1 2

    2 2 1 1 21 2 2 1 2 1 2

    (2 4 ) (2 4 ) 0( ) 3( ) 4( )

    ( 2 ) ( 2 ) 0( ) ( ) ( )

    t t t

    t t t

    A B t A A BA A t A e A A t e B B t e

    A B t A B BB B t B e A A t e B B t e

    2 2 1 2 1

    2 2 1 1 2

    2 4 0 2 4 0

    2 0 2 0

    A B A A B

    A B A B B

    The 2 equations on the left 2 22, 1A B .

    The 2 equations on the right 1 1 1 1 1 12 4 2 and 2 1 1 and 0 A B A B A B

    ( ) (1 2 )(2)

    ( )

    t

    t

    x t t e

    y t te

    1 2

    1 2

    ( ) 2 (1 2 )general solution:

    ( )

    t t

    t t

    x t c e c t e

    y t c e c te

    rt

    rt

    x Ae

    y Be

  • 8/3/2019 N20122 Mathematical Economics II 1 141

    31/141

    31

    Case 3 Distinct complex roots: Spirals

    1 1

    2 2

    '

    '

    x a x b y

    y a x b y

    1 2,r r a bi

    General solution: 1 1 2 2 1 2

    1 1 2 2 1 2

    ( ) [ ( cos sin ) ( sin cos )]( ) [ ( cos sin ) ( sin cos )]

    at

    at x t e c A bt A bt c A bt A bt y t e c B bt B bt c B bt B bt

    If 1 2 0a a b , then lim ( ) 0 and lim ( ) 0t t

    x t y t

    , i.e. ( ( ), ( )) (0,0) as x t y t t , i.e. (0,0) is

    asymptotically stable.

    However, ( ) and ( ) x t y t change sign infinitely often as t , all paths must spiral to the criticalpoint.

    y

    0a Spiral: Asymptotically stable

    x

    Case 4: Pure imaginary roots: Center

    1 2,r r bi

    General solution:1 1 2 2 1 2

    1 1 2 2 1 2

    ( ) ( cos sin ) ( sin cos )

    ( ) ( cos sin ) ( sin cos )

    x t c A bt A bt c A bt A bt

    y t c B bt B bt c B bt B bt

    y

    Center:stable but not Asymptotically stable

    x

  • 8/3/2019 N20122 Mathematical Economics II 1 141

    32/141

    32

    Non-homogeneous system

    1 1 1

    2 2 2

    '

    '

    x a x b y c

    y a x b y c

    Solving this system 1 1 1

    2 2 2

    * * 0

    * * 0

    a x b y c

    a x b y c

    will give us the critical point ( *, *)x y .

    Define ( ) ( ) * and ( ) ( ) *x t x t x y t y t y [ '( ) '( ) and '( ) '( )x t x t y t y t ]

    The original system can be written as1 1

    2 2

    '

    '

    x a x b y

    y a x b y

    The properties of the critical point of the non-homogeneous system are the same as those of the critical

    point for the corresponding homogeneous system.

    1 1 1 1 1 1 1 1 1 1 1

    2 2 2 2 2 2 2 2 2 2 2

    ' ' ( *) ( *) * *

    ' ' ( *) ( *) * *

    x a x b y x a x x b y y a x b y a x b y a x b y c

    y a x b y y a x x b y y a x b y a x b y a x b y c

  • 8/3/2019 N20122 Mathematical Economics II 1 141

    33/141

    33

    Example:

    ' 3

    ' 4 2

    x x y

    y x y

    ( 3 ) 0

    4 ( 2 ) 0

    r A B

    A r B

    In order to have a nontrivial solution forA

    B

    ,3 1

    04 2

    r

    r

    2 2

    2

    ( 3 )( 2 ) (4)(1) 0 5 6 4 0 5 2 0

    5 5 4(1)(2) 5 17

    2 2

    r r r r r r

    r

    1

    5 17

    2r

    1 1 1 1

    1 1 1 1

    5 17 1 17( 3 ) 0 0

    2 2

    5 17 1 174 (2 ) 0 4 0

    2 2

    A B A B

    A B A B

    1 1 1 1

    1 11 1

    1

    1

    1 17 1 17 1 17 1 170 4 0

    2 2 2 2

    1 171 17 4 04 0

    224 8

    01 17 1 17

    2

    A B A B

    A BA B

    B

    A

    2

    5 17

    2r

    2 2 2 2

    2 2 2 2

    5 17 1 17( 3 ) 0 0

    2 2

    5 17 1 174 (2 ) 0 4 0

    2 2

    A B A B

    A B A B

    2 2 2 2

    2 21 2

    2

    2

    1 17 1 17 1 17 1 170 4 02 2 2 2

    1 171 174 04 0

    22

    4 80

    1 17 1 17

    2

    A B A B

    A BA B

    B

    A

    rt

    rt

    x Ae

    y Be

    Both roots are real and

    negative node

  • 8/3/2019 N20122 Mathematical Economics II 1 141

    34/141

    34

    y

    ' 0x

    1

    1

    8 2.561 17

    BA

    ' 0y Node: Asymptotically stable

    x

    2

    2

    81.56

    1 17

    B

    A

    General solution:1 2

    1 2

    1 1 2 2

    1 1 2 2

    ( )

    ( )

    r t r t

    r t r t

    x t c A e c A e

    y t c B e c B e

    Also

    2 1

    1 2

    1 22 1

    ( )2 21

    1 1 2 2 1

    ( )2 21 1 2 21

    1

    ( )

    ( )

    r r t

    r t r t

    r t r t r r t

    c BB e

    c B e c B e cy t

    c Ax t c A e c A eA e

    c

    2 1

    2 1

    ( )2 21

    1 1

    ( )2 2 11

    1

    lim

    r r t

    t r r t

    c BB e

    c B

    c A AA e

    c

    as 2 1 0r r

    Suppose (0) 1 (0)x y

    1 1 2 20 0

    1 1 2 2

    0 01 1 2 21 1 2 2

    11 (0)

    8 811 (0)

    1 17 1 17

    c A c Ax c A e c A e

    c A c Ay c B e c B e

    1 2

    1

    1 2 2

    18 8

    11 17 1 17

    A Ac

    A A c

    2

    2 2

    1

    1 2

    1 2 1

    1 2

    1

    8 8 81 1 1

    1 17 1 17 1 17

    8 8 8 8

    8 8 1 17 1 17 1 17 1 17

    1 17 1 17

    A

    A A

    cA A

    A A A

    A A

  • 8/3/2019 N20122 Mathematical Economics II 1 141

    35/141

    35

    1

    1 1

    2

    1 2

    1 2 2

    1 2

    1

    8 8 81 1 1

    1 17 1 17 1 17

    8 8 8 8

    8 8 1 17 1 17 1 17 1 171 17 1 17

    A

    A A

    cA A

    A A A

    A A

    1 2

    1

    1 2

    1 2

    1

    1

    8 81 1

    1 17 1 17( )

    8 8 8 8

    1 17 1 17 1 17 1 17

    8 81 1

    81 17 1 17( )

    8 8 1 17

    1 17 1 17

    r t r t

    r t

    x t A e A e

    A A

    y t A e

    A

    2

    2

    2

    8

    8 8 1 17

    1 17 1 17

    r tA e

    A

    1 2

    1

    8 81 1

    1 17 1 17( )

    8 8 8 8

    1 17 1 17 1 17 1 17

    8 81 1

    81 17 1 17

    ( ) 8 8 8 81 17

    1 17 1 17 1 17

    r t r t

    r t

    x t e e

    y t e

    28

    1 17

    1 17

    r t

    e

  • 8/3/2019 N20122 Mathematical Economics II 1 141

    36/141

    36

    Example:

    ' 2 3

    '

    x x y

    y x y

    (2 ) 3 0

    (1 ) 0

    r A B

    A r B

    In order to have a nontrivial solution forA

    B

    ,2 3

    01 1

    r

    r

    2 2

    2

    (2 )(1 ) (3)(1) 0 3 2 3 0 3 1 0

    ( 3) ( 3) 4(1)( 1) 3 13

    2 2

    r r r r r r

    r

    1

    3 13

    2r

    1 1 1 1

    1 1 1 1

    3 13 1 13(2 ) 3 0 3 0

    2 2

    3 13 1 13(1 ) 0 0

    2 2

    A B A B

    A B A B

    1 1 1 1

    1 11 1

    1

    1

    1 13 1 13 1 13 3 3 133 0 3 0

    2 2 2 2

    1 131 13 00

    223 2

    0.4343 03 3 13 1 13

    2

    A B A B

    A BA B

    B

    A

    2

    3 13

    2r

    2 2 2 2

    2 2 2 2

    3 13 1 13(2 ) 3 0 3 0

    2 2

    3 13 1 13(1 ) 0 0

    2 2

    A B A B

    A B A B

    2 2 2 2

    2 22 2

    2

    2

    1 13 1 13 1 13 3 3 13

    3 0 3 02 2 2 2

    1 131 13 0022

    3 20.768 0

    3 3 13 1 13

    2

    A B A B

    A BA B

    B

    A

    The roots are real and of opposite signs saddle point

    rt

    rt

    x Ae

    y Be

  • 8/3/2019 N20122 Mathematical Economics II 1 141

    37/141

    37

    y

    1

    1

    20.4343

    1 13

    B

    A

    Saddle Point

    x

    2

    2

    20.768

    1 13

    B

    A

    When2

    2

    2 2 21

    22 2

    ( ) ( )0 , lim ( ) 0, lim ( ) 0, lim ( ) lim ( )

    ( )( )

    r t

    r t t t t t

    x t c A e By tc x t y t x t y t

    x t Ay t c B e

    When1

    1

    1 1 12

    11 1

    ( ) ( )0 , lim ( ) lim ( ) , lim ( ) 0, lim ( ) 0

    ( )( )

    r t

    r t t t t t

    x t c A e By tc x t y t x t y t

    x t Ay t c B e

    When1 2

    1 2

    1 1 2 2

    1 2

    1 1 2 2

    ( )0, 0 lim ( ) lim ( )

    ( )

    r t r t

    r t r t t t

    x t c A e c A ec c x t y t

    y t c B e c B e

    1 2

    1 2

    1 21 2

    ( )1 12

    1 1 2 2 2

    ( )1 11 1 2 22

    2

    ( )( )

    r r t

    r t r t

    r t r t r r t

    c Be B

    c B e c B e cy tc Ax t c A e c A e

    e Ac

    1 2

    1 2

    ( )1 12

    2 2

    ( )1 1 22

    2

    lim

    r r t

    t r r t

    c Be B

    c Bc A A

    e Ac

    as 1 2 0r r

    Also

    2 1

    1 2

    1 22 1

    ( )2 21

    1 1 2 2 1

    ( )2 21 1 2 21

    1

    ( )

    ( )

    r r t

    r t r t

    r t r t r r t

    c BB e

    c B e c B e cy t

    c Ax t c A e c A eA e

    c

    2 1

    2 1

    ( )2 21

    1 1

    ( )2 2 11

    1

    lim

    r r t

    t r r t

    c BB e

    c B

    c A AA e

    c

    as 2 1 0r r

    Suppose (0) 1 (0)x y

    1 1 2 20 0

    1 1 2 2

    0 01 1 2 21 1 2 2

    11 (0)

    2 211 (0)

    1 13 1 13

    c A c A x c A e c A e

    c A c Ay c B e c B e

    1 20r r

  • 8/3/2019 N20122 Mathematical Economics II 1 141

    38/141

    38

    1 2

    1

    1 2 2

    12 2

    11 13 1 13

    A Ac

    A A c

    2

    2 2

    1

    1 2

    1 2 1

    1 2

    1

    2 2 21 1 11 13 1 13 1 13

    2 2 2 2

    2 2 1 13 1 13 1 13 1 13

    1 13 1 13

    A

    A A

    cA A

    A A A

    A A

    1

    1 1

    2

    1 2

    1 2 2

    1 2

    1

    2 2 21 1 1

    1 13 1 13 1 13

    2 2 2 2

    2 2 1 13 1 13 1 13 1 13

    1 13 1 13

    A

    A A

    cA A

    A A AA A

    1 2

    1

    1 2

    1 2

    1

    1

    2 21 1

    1 13 1 13( )

    2 2 2 2

    1 13 1 13 1 13 1 13

    2 21 1

    21 13 1 13( )

    2 2 2 21 13

    1 13 1 13 1 13 1 13

    r t r t

    r t

    x t A e A e

    A A

    y t A e

    A

    22

    2

    2

    1 13r tA e

    A

    1 2

    1

    2 21 1

    1 13 1 13( )

    2 2 2 2

    1 13 1 13 1 13 1 13

    2 21 1

    2 21 13 1 13

    ( ) 2 2 2 21 13 1 13

    1 13 1 13 1 13 1 13

    r t r t

    r t

    x t e e

    y t e

    2r t

    e

  • 8/3/2019 N20122 Mathematical Economics II 1 141

    39/141

    39

    Suppose1 13

    (0) 1, (0)6

    x y

    0 01 1 2 21 1 2 2

    0 01 1 2 21 1 2 2

    11 (0)

    1 13 2 21 13 (0)6 1 13 1 136

    c A c A x c A e c A e

    c A c Ay c B e c B e

    1 2

    1

    1 2 2

    1

    2 2 1 13

    1 13 1 13 6

    A Ac

    A A c

    2

    22

    1

    1 2

    1 2 1

    1 2

    1

    1

    2 1 13 2 1 13 1 131 13 2

    6 61 13 1 13 1 136 1 132 2 2 2

    2 2 1 13 1 13 1 13 1 13

    1 13 1 13

    2(1 13) 1 13 2(1 13) 1 13

    1 13 6 12 6

    2 2 2 2

    1 13 1 13 1 13 1 13

    A

    AA

    cA A

    A A A

    A A

    A A

    1 1

    (1 13) 1 13

    6 6 02 2

    1 13 1 13A

    1

    11

    2

    1 2

    1 2 2

    1 2

    2

    11 13 2 1 13 22 1 13

    6 61 13 1 1361 13

    2 2 2 2

    2 2 1 13 1 13 1 13 1 13

    1 13 1 13

    ( 1 13) 1 13 2 6 (1 2 13 13) 12

    6 61 13 1 13 6(1 13)

    2 2 2

    1 13 1 13 1 1

    A

    AA

    cA A

    A A A

    A A

    A

    2 2

    2

    2 13 26

    6(1 13)

    2 2 2

    3 1 13 1 13 1 13

    13 13

    2 23(1 13)

    1 13 1 13

    A A

    A

  • 8/3/2019 N20122 Mathematical Economics II 1 141

    40/141

    40

    2 2

    2

    2

    2

    2

    2

    13 13 13 13( ) =

    2 2 2 23(1 13) 3(1 13)

    1 13 1 13 1 13 1 13

    13 13 2 13 13 2

    ( ) 2 2 2 21 13 13(1 13) 3(1 13)

    1 13 1 13 1 13 1 13

    r t r t

    r t

    x t A e e

    A

    y t A eA

    2

    13

    r

    e

    Note that as , ( ) 0 and ( ) 0t x t y t .

    In general, so long as the given point fulfill the condition( ) 1 13

    0.768( ) 6

    y t

    x t

    , then the path will

    converge to the critical point.

    The critical point is a SADDLE POINT.

  • 8/3/2019 N20122 Mathematical Economics II 1 141

    41/141

    41

    Example:

    ' 5 2

    ' 17 5

    x x y

    y x y

    (5 ) 2 0

    17 ( 5 ) 0

    r A B

    A r B

    In order to have a nontrivial solution forA

    B

    ,5 2

    017 5

    r

    r

    2 2(5 )( 5 ) (2)( 17) 0 25 34 0 9 0

    3

    r r r r

    r i

    General solution:

    1 1 2 2 1 2

    1 1 2 2 1 2

    ( ) ( cos3 sin 3 ) ( sin 3 cos3 )

    ( ) ( cos3 sin3 ) ( sin 3 cos3 )

    x t c A t A t c A t A t

    y t c B t B t c B t B t

    The roots are complex roots center

    rt

    rt

    x Ae

    y Be

  • 8/3/2019 N20122 Mathematical Economics II 1 141

    42/141

    42

    Taylor Expansion2"( *)( *) ( )( *)

    ( ) ( *) '( *)( *) ... ( , *)2! !

    n n f x x x f a x x

    f x f x f x x x a x xn

    2 2

    ( , ) ( *, *) ( *, *)( *) ( *, *)( *)

    ( *, *)( *) 2 ( *, *)( *)( *) ( *, *)( *)...

    2!

    x y

    xx xy yy

    f x y f x y f x y x x f x y y y

    f x y x x f x y x x y y f x y y y

    Example: Expand ( ) around 0x f x e x

    ( ) (0) 1

    '( ) '(0) 1

    ''( ) ''(0) 1

    ...

    x

    x

    x

    f x e f

    f x e f

    f x e f

    2 3

    2 3 4

    ''(0) '''(0)( ) (0) '(0)( 0) ( 0) ( 0) ...2! 3!

    1 ...2! 3! 4!

    f f f x f f x x x

    x x xx

    Example: Expand ( ) ln(1 ) around 0 f x x x .

    1

    2

    ( ) ln(1 ) (0) 0

    '( ) (1 ) '(0) 1

    ''( ) 1(1 )

    f x x f

    f x x f

    f x x

    3 3

    4 4 4

    ''(0) 1

    '''( ) ( 2)(1 ) =(2!)(1 ) '''(0) 2!

    ( ) 2( 3)(1 ) = (3!)(1 )

    f

    f x x x f

    f x x x

    4

    5 5 5 5

    (0) 3!

    ( ) (2)(3)( 4)(1 ) (4!)(1 ) (0) 4!

    ...

    f

    f x x x f

    2 3

    2 3 4 5 2 3 4 5 6

    ''(0) '''(0)( ) (0) '(0)( 0) ( 0) ( 0) ...

    2! 3!

    ( 1) (2!) ( 3!) (4!)( ) 0 ... ...

    2! 3! 4! 5! 2 3 4 5 6

    f f f x f f x x x

    x x x x x x x x x f x x x

  • 8/3/2019 N20122 Mathematical Economics II 1 141

    43/141

    43

    Phase diagram

    Shell Model of Inventive Activity and Capital Accumulation

    ( ) [ ( ), ( ), ( )]Y t F A t K t L t

    ( ) : stock of technical knowledge

    ( ) : capital stock

    ( ) : labor

    A t

    K t

    L t

    : output allocated for inventive activity

    (1 )(1 ) : output allocated for consumption

    (1 ) : output allocated for capital accumulation

    Y

    s Y

    sY

    success rate depreciation

    '( ) ( ) ( )

    '( ) (1 ) ( ) ( )

    A t Y t A t

    K t s Y t K t

    Let ( , ) where ( , ) is homogenous to degree 1Y AF K L F K L ( ) ( ) 0, ' 0, " 0, (0) 0, ( ) , '(0) , '( ) 0 y Af k Y ALf k f f f f f f f

    Let' ' ' ' ' '

    1 so that ( ); ; ' 'Y k K L K K K

    L Y Af k y Y k k K L k K L K K L

    ' ( ) (1)

    ' (1 ) (1 ) ( ) (2)

    A Y A Af k A

    k s y k s Af k k

    Constructing the ' 0A curve

    1' ( ) 0 ( ) 0 ( ) ( )S A Af k A f k f k k f

    A

    ' 0A

    I J

    1( )

    Sk f

    k

    Consider the points ( , ) and ( , ) I k A J k A I I J J

    .

    Since

    i) ( ) ( ) f k f k I J

    ii) ( ) 0Jf k

    ' ( ) 0I A f k

    Since andI Jare arbitrary ' 0A on the left of the' 0A curve.

  • 8/3/2019 N20122 Mathematical Economics II 1 141

    44/141

    44

    Constructing the ' 0k curve

    ' (1 ) ( ) 0(1 ) ( )

    kk s Af k k A

    s f k

    Differentiating

    2 2

    ' 0

    [ (1 ) ( )] ( )[ (1 ) '( )] [ ( ) '( )]with respect to 0[ (1 ) ( )] (1 )[ ( )]k

    dA s f k k s f k f k kf k A k dk s f k s f k

    The ' 0k is upward sloping.

    A ' 0k

    I

    J

    k

    A

    ' 0A ' 0k

    SA saddle point

    k

    Sk

    Consider the points ( , ) and ( , ) I k A J k A I I J J

    .

    Since and I J I J A A k k

    (1 ) ( ) (1 ) ( ) 0 I I I J J J s A f k k s A f k k

    Since andI Jare arbitrary ' 0k for the pointswhich lie above the ' 0k curve.

    Similarly, ' 0k all the points which lie below the' 0k curve.

  • 8/3/2019 N20122 Mathematical Economics II 1 141

    45/141

    45

    Stability

    Take a Taylor series expansion around ( , )S Sk A .

    ' ' ' '

    ' '( , ) ( ) ( ) ( ) ( )

    ' ' ' '' '( , ) ( ) ( ) ( ) ( )

    S S S S

    S S S S

    S S S S

    S S S S

    S S S S S S A A A A A A A Ak k k k k k k k

    S S S S S S A A A A A A A Ak k k k k k k k

    A A A A

    A A k A A A k k A A k k A k A k

    k k k k k k k A A A k k A A k k

    A k A k

    1

    '( ) 0

    S

    S

    SA Ak k

    A f k a

    A

    1

    ''( ) 0

    S

    S

    S SA Ak k

    A A f k b

    k

    2' (1 ) ( ) 0S

    S

    SA Ak k

    k s f k aA

    2

    '(1 ) '( ) (sign unknown)

    S

    S

    S SA Ak k

    ks A f k b

    k

    2 2

    1 2 1 2 1 2 2 1 2 2 2 1( ) ( ) 4( ) 4,

    1 2 2 2

    a b a b a b a b b b a br r

    2 2 2 2 22 2 2 1 2 2 2 1

    1 2 2 1

    ( 4 ) ( 4 )0

    4 4

    b b a b b b a br r a b

    1 2,r r are real and opposite sign

    saddle point

  • 8/3/2019 N20122 Mathematical Economics II 1 141

    46/141

    46

    Phase Diagram of'( ) '( ')

    " , convex functions, " 0, " 0"( ')

    g x rf x x f g f g

    f x

    We will construct a phase diagram with and 'x x as the 2 variables.

    Constructing ' 0x 'x

    ' 0x x

    Constructing " 0x " 0 '( ) '( ') 0 x g x rf x

    Total differential "( ) "( ') ' 0g x dx rf x dx

    ' 0

    ' "( )0

    "( ')x

    dx g x

    dx rf x

    'x

    B

    x

    A

    " 0x

    Phase diagram'x

    x

    x

    " 0x " 0x

    0x Tx

    Consider points A and B.

    ' ' , B A B A x x x x

    '( ' ) '( ' ) ( "( ') 0)B A

    rf x rf x f x

    '( ) '( ' ) '( ) '( ' ) 0 B B A Ag x rf x g x rf x

    Hence any point lying above the " 0x

    curve has the property that " 0 'x x

    The solution to the differential equation must

    be either single-peaked, monotonic, or

    single-troughed in ( )x t , '( )x t changes sign at

    most once.

    There is only 1 path going from0

    x to Tx and takes exactly T .

  • 8/3/2019 N20122 Mathematical Economics II 1 141

    47/141

    47

    Example

    1 2' { ( ) [ ( ), ] } 0, 0, [0, ] 0, [ ( ),0] ,

    ' [ ( ), ] ( ) '(.) 0, (0) 0

    k s f k A f k r nk A A A A f k

    A f k n f f

    :k capital-labor ratios : saving rate : debt per capita

    A : aid per capita

    : retirement of principal

    r: interest rate

    n : labor growth rate

    ' 0 curve

    ' [ ( ), ] ( ) 0 A f k n

    1 2

    1 2

    11 2

    ' 0 2

    '( ) ( ) 0'( ) ( ) 0

    '( )0 0, 0

    A f k dk A d n d A f k dk A n d

    A f k dA A

    dk A n

    ' 0

    I J

    k

    0 0k

    , I J J I k k

    '

    '

    [ ( ), ] ( )

    [ ( ), ] ( ) 0

    J J J J

    I I I I

    A f k n

    A f k n

  • 8/3/2019 N20122 Mathematical Economics II 1 141

    48/141

    48

    ' 0 curvek

    1 2

    1 2

    11

    ' 0 2

    ' { ( ) [ ( ), ] } 0

    { '( ) [ '( ) ] } 0

    { [ '( ) '( )] } [ ( ) ] 0

    [ '( ) '( )]0 iff '( )(1 ) 0

    ( )k

    k s f k A f k r nk

    s f k dk A f k dk A d rd d ndk

    s f k A f k n dk s A r d

    s f k A f k ndsf k A n

    dk s r A

    I

    J

    ' 0k

    k

    ' 0

    ' 0k

    k

    When k is small, '( )f k is large.

    , I J I J

    k k

    '

    '

    { ( ) [ ( ), ] }

    { ( ) [ ( ), ] } 0

    J J J J J J J

    I I I I I I I

    k s f k A f k r nk

    s f k A f k r nk k

  • 8/3/2019 N20122 Mathematical Economics II 1 141

    49/141

    49

    Stability

    Take a Taylor series expansion around ( , )S Sk .

    ' ' ' '

    ' '( , ) ( ) ( ) ( ) ( )

    ' ' ' '' '( , ) ( ) ( ) ( ) ( )

    S S S S

    S S S S

    S S S S

    S S S S

    S S S S S Sk k k k k k k k

    S S S S S Sk k k k k k k k

    k k k k

    k k k k k k k k k

    k k k k k k k

    1 1 1

    '{ '( ) '( )} '( )(1 ) 0

    S

    S

    S S Sk k

    ks f k A f k n sf k A n a

    k

    2 1

    '( ) 0

    S

    S

    k k

    ks A r b

    1 2' '( ) 0S

    S

    k k

    A f k ak

    2 2

    '( )

  • 8/3/2019 N20122 Mathematical Economics II 1 141

    50/141

    50

    Calculus of Variation

    Motivation

    Find the shortest distance in the plane between the points, ( , ) and ( , )a A b B .

    ds dx

    21

    2 2 2 22[( ) ( ) ] ( ) [1 ] 1 '( )dx

    ds dt dx dt x t dt dt

    dt1

    22min [1 '( ) ] s.t. ( ) , ( )

    b

    a

    x t dt x a A x b B

    General problem1

    0

    0 0 1 1( ) [ , ( ), '( )] s.t. ( ) , ( )

    t

    x tt

    optimize F t x t x t dt x t x x t x

    Necessary condition for an optimum (Eulers Equation): '[ , *( ), *'( )]

    [ , *( ), *'( )] xxdF t x t x t

    F t x t x t dt

    Example1

    22

    ( )min [1 '( ) ] s.t. ( ) , ( )

    b

    x ta

    x t dt x a A x b B 1

    2 2

    12 2

    ' 1

    2 2

    [ , ( ), '( )] [1 '( ) ]

    1 '0 and [1 '( ) ] [2 '( )]2

    [1 ' ]

    x x

    F t x t x t x t

    F xF F x t x t x

    x

    (Eulers Equation): '[ , *( ), * '( )]

    [ , *( ), * '( )] xx

    dF t x t x t F t x t x t

    dt

    1

    2 122 2 2 2 2 2 2 22

    1

    2 2

    2 22 2 2 2

    2 2

    '

    [1 ( ') ] '0 ' [1 ( ') ] ( ') [1 ( ') ] ( ') ( ')

    [1 ( ') ]

    (1 )( ') ( ') '( ) ( ) , are constants1 1

    xd

    x xc x c x x c x x c c x

    dtx

    c c dxc c x x x t k k x t kt h k h

    c c dt

    ( ) 1,

    ( ) 1

    x a ka h A a k A A B aB Abk h

    x b kb h B b h B a b a b

  • 8/3/2019 N20122 Mathematical Economics II 1 141

    51/141

    51

    Optimal control theory

    Problem:1

    0

    ( )[ , ( ), ( )] (1)

    t

    u tt

    Max f t x t u t dt

    s.t. '( ) [ , ( ), ( )] (2)x t g t x t u t dynamic equation/ state equation/ transition equation

    0 1

    0 0

    1

    , fixed

    ( ) fixed (3)

    ( ) free

    t t

    x t x

    x t

    [ , ( ), ( )]f t x t u t

    ( ) :x t state variable

    ( ) :u t control variable (piecewise continuous)

    ,f g continuously differentiable

    0t 1t

    Let ( )t be any continuously differentiable function on 0 1[ , ]t t .

    For any ( ), ( )x t u t satisfying (2) and (3), we have

    1 1

    0 0

    1

    0

    [ , ( ), ( )] [ , ( ), ( )] ( )[ ( , ( ), ( )) '( )]

    [ , ( ), ( )] ( ) [ , ( ), ( )] ( ) '( ) (4)

    t t

    t t

    t

    t

    f t x t u t dt f t x t u t t g t x t u t x t dt

    f t x t u t t g t x t u t t x t dt

    Integrating by part the last term of (4),

    1 1 1

    1

    0

    0 0 0

    1

    0

    1 1 0 0

    1 1 0 0

    ( ) '( ) ( ) ( ) ( ) '( ) ( ) ( ) ( ) ( ) ( ) '( )

    ( ) ( ) ( ) ( ) ( ) '( )

    t t tt

    t

    t t t

    t

    t

    t x t dt t x t x t t dt t x t t x t x t t dt

    t x t t x t x t t dt

    (5)

    1

    0

    1

    0

    1 1 0 0

    (5) (4) [ , ( ), ( )]

    [ , ( ), ( )] ( ) [ , ( ), ( )] ( ) '( ) ( ) ( ) ( ) ( ) (6)

    t

    t

    t

    t

    f t x t u t dt

    f t x t u t t g t x t u t x t t dt t x t t x t

    Let *( )u t be the optimal control which maximizes the integral1

    0

    [ , ( ), ( )]

    t

    t

    f t x t u t dt .

    Let ( ) *( ) ( )u t u t ah t where ( ) is an arbitrary "fixed" function and is a parameterh t a .

    Clearly, 0 ( ) *( )a u t u t .

    Find a path

    which maximize

    the area/integral.

  • 8/3/2019 N20122 Mathematical Economics II 1 141

    52/141

    52

    Let 0 1( , ),y t a t t t denotes the state variable generated by (2) and (3) with control ( )u t .

    This ( , ) y t a satisfies the following conditions: 0 0( , ) and ( ,0) *( )y t a x y t x t .

    Let

    1

    0

    ( ) [ , ( , ), *( ) ( )]

    t

    t

    J a f t y t a u t ah t dt

    Using (6), 1

    0

    ( ) [ , ( , ), *( ) ( )] ( ) [ , ( , ), *( ) ( )] ( , ) '( )

    t

    t

    J a f t y t a u t ah t t g t y t a u t ah t y t a t dt

    1 1 0 0( ) ( , ) ( ) ( , )t y t a t y t a

    Since *( )u t is the optimal control, ( )J a assumes its maximum at 0 '(0) 0a J .

    1

    0

    11 0

    '( ) [ , ( , ), *( ) ( )] ( , ) [ , ( , ), *( ) ( )] ( )

    ( ) [ , ( , ), *( ) ( )] ( , ) ( ) [ , ( , ), *( ) ( )] ( )

    (( , )( , ) '( ) ( ) ( )

    t

    y a u

    t

    y a u

    a

    J a f t y t a u t ah t y t a f t y t a u t ah t h t

    t g t y t a u t ah t y t a t g t y t a u t ah t h t

    dy tdy t a y t a t dt t t

    da

    0 , )a

    da

    As 00 0

    ( , )( , ) (initial condition) 0

    dy t ay t a x

    da

    1

    0

    1 1

    '( ) [ , ( , ), *( ) ( )] ( , ) [ , ( , ), *( ) ( )] ( )

    ( ) [ , ( , ), *( ) ( )] ( , ) ( ) [ , ( , ), *( ) ( )] ( )

    ( , ) '( ) ( ) ( , )

    t

    y a u

    t

    y a u

    a a

    J a f t y t a u t ah t y t a f t y t a u t ah t h t

    t g t y t a u t ah t y t a t g t y t a u t ah t h t

    y t a t dt t y t a

    1

    0

    1 1

    '(0) [ , ( ,0), *( )] ( ,0) [ , ( ,0), *( )] ( ) ( ) [ , ( ,0), *( )] ( ,0)

    ( ) [ , ( ,0), *( )] ( ) ( ,0) '( ) ( ) ( ,0)

    = [ , ( ), *( )

    t

    y a u y a

    t

    u a a

    x

    J f t y t u t y t f t y t u t h t t g t y t u t y t

    t g t y t u t h t y t t dt t y t

    f t x t u t

    1

    0

    1 1

    ] ( ) [ , ( ), *( )] '( ) ( ,0)

    [ , ( ), *( )] ( ) [ , ( ), *( )] ( ) ( ) ( ,0) 0

    t

    x a

    t

    u u a

    t g t x t u t t y t

    f t x t u t t g t x t u t h t dt t y t

    Since ( , 0), ( )a y t h t can be of any form, therefore the necessary conditions for '(0) 0J are

    i) ' 0x xf g

    ii) 0u uf g

    iii) 1( ) 0t

  • 8/3/2019 N20122 Mathematical Economics II 1 141

    53/141

    53

    Sum up:

    If the functions *( ), *( )u t x t maximizes (1) subject to (2) and (3), then there is a continuously

    differentiable ( )t such that

    i) state equation 0 0'( ) ( , ( ), ( )), ( )x t g t x t u t x t x

    ii) co-state equation 1'( ) [ , ( ), ( )] ( ) [ , ( ), ( )] , ( ) 0x xt f t x t u t t g t x t u t t

    iii) optimality condition 0 1[ , ( ), ( )] ( ) [ , ( ), ( )] 0 foru uf t x t u t t g t x t u t t t t

    Short-cut formulas:

    Problem:1

    0( )

    0 0

    ( , , )

    . . ' ( , , )

    ( )

    t

    u tt

    Optimize f t x u dt

    s t x g t x u

    x t x

    Set up a Hamiltonian function: [ , , , ] ( , , ) ( , , )H t x u f t x u g t x u

    Necessary conditions:

    i) 0 [ 0]u u uH

    H f gu

    ii) ' [ ' ]x xH f gx

    iii) 1( ) 0t transversality condition

    iv) ' ( , , )H

    H x g t x u

  • 8/3/2019 N20122 Mathematical Economics II 1 141

    54/141

    54

    Example1

    2

    0

    max ( ) . . ' 1 , (0) 1, (1) freeu

    x u dt s t x u x x

    2( , , , ) (1 )H t x u x u u

    Necessary conditions:

    2

    1 2 0 (1)

    1 ' (2)

    ' 1 (3)

    (1) 0

    uH u

    H u x

    H

    x

    (4)

    (3): '( ) 1 ( )t t t c Using (4) ( ) 1 (5)t t

    2

    12

    1 1 1(1) : ( ) ( )

    2 2(1 ) 2(1 )

    1 1(2) : '( ) 1 1 ( )

    4(1 ) 4(1 )

    u t u t t t

    x t u x t t ct t

    1 1

    1 5 1 5Using (0) 1 1 0 ( )

    4(1 0) 4 4(1 ) 4 x c c x t t

    t

  • 8/3/2019 N20122 Mathematical Economics II 1 141

    55/141

    55

    Example10

    2

    0

    max 5 s.t. ' , (0) 2, (10) freeu

    x dt x x u x x

    2( , , , ) 5 ( )H t x u x x u

    Necessary conditions:

    2

    2 0 (1)

    ' (2)

    ' (5 ) (3)

    (10) 0

    uH u

    H x u x

    H

    x

    (4)

    (1)

    10 10 10 10

    0

    5(3) : ' 5 ( ) 5

    1

    Using (10) 0 0 (10) 5 5 5 ( ) 5 5

    (1) ( ) 0

    (2) ' ( )

    Using (0) 2 2 (0) ( ) 2

    t t

    t

    t

    t

    t ce ce

    ce ce c e t e

    u t

    x x x t ke

    x x ke k x t e

    10

    2

    0

    max ( 5 ) . . ' , (0) 2, (10) freeu

    u x dt s t x x u x x

    2( , , , ) 5 ( )H t x u u x x u

    Necessary conditions:

    2

    1 2 0 (1)

    ' (2)

    ' (5 ) (3)

    (10) 0 (4)

    u

    HH u

    u

    H x H x u

    H

    x

    10 10 10 10

    5(3) ( ) 5

    1

    (4) 0 (10) 5 5 ( ) 5 (5 ) ( ) 5 5 (5)

    t t

    t t

    t ce ce

    ce c e t e e t e

    10 10

    1 1 1(5) (1) ( )

    2 ( ) 2( 5 5 ) 10 10t tu t

    t e e

    ' ( ) PtQ

    y Py Q y t ceP

  • 8/3/2019 N20122 Mathematical Economics II 1 141

    56/141

    56

    2 2

    10 10

    1 1(2) ' '

    10 10 10 10t t

    x x x xe e

    2 21 1

    10 10

    10

    10

    1 1( ) ( )

    10 10 10 10

    1( )

    10 10 10

    dt dt t t

    t t

    t

    t

    x t e e dt k x t e e dt k

    e e

    e x t e k

    e

    Using (0) 2x , we have10 10

    0

    10 0 10

    1 12 (0) 2

    10 1010 10 10 10

    e e x e k k

    e e

    10 10

    10 10

    1 1( ) 2

    10 10 10 10 10 10

    t

    t

    e e x t e

    e e

  • 8/3/2019 N20122 Mathematical Economics II 1 141

    57/141

    57

    5

    2 2

    1

    max ( )

    . . ' , (1) 2

    uux u x dt

    s t x x u x

    2 2

    ( ) H ux u x x u

    Necessary conditions:

    2 0 (1)

    ' ( 2 ) 2

    u

    X

    H x u

    H u x u x

    (2)

    (5) 0 (3)

    ' x x u

    (4)

    (1) 2 (5)x

    (1) 2u x (6)

    (4) ' (4')u x x

    (4') (6) 2( ' ) 2 ' 3 x x x x x (7)

    Differentiate (7) with respect to ' 2 " 3 't x x (8)

    (6) (2) ' 2 (2 ) 3 3u x u x x u (9)

    (8), (4) and (9) 2 " 3 ' 3 3( ' ) 2 " 3 ' 6 3 ' 2 " 6 0 " 3 0x x x x x x x x x x x x x

    Characteristic equation:2 3 0 3r r

    3 3

    1 2( ) t t x t c e c e (10)

    Differentiating (10) with respect to 3 31 2' 3 3t t

    t x c e c e

    (4): 3 3 3 31 2 1 2

    ' ( 3 3 ) ( )t t t t u x x c e c e c e c e 3 3

    1 2( 3 1) ( 3 1)t t

    u c e c e (11)

    (6) and (11)3 3 3 3

    1 2 1 22 2 ( 3 1) ( 3 1)t t t t u x c e c e c e c e

    3 3 3 3

    1 2 1 2( ) (2 3 2 1) (2 3 2 1) (2 3 3) (2 3 3)t t t t t c e c e c e c e

    Using (3), we have 5 3 5 31 2(5) (2 3 3) (2 3 3) 0c e c e (12)

  • 8/3/2019 N20122 Mathematical Economics II 1 141

    58/141

    58

    (5) and (10) 3 31 2

    (1) 2 x c e c e (13)

    (12) and (13)

    5 3 5 3

    1

    3 32

    (2 3 3) (2 3 3) 0

    2

    ce e

    ce e

    5 3

    3 5 3 5 3

    1 4 3 4 3 4 3 4 35 3 5 3

    3 3

    5 3

    3 5 3 5 3

    2 4 3 4 3 4 3 4 35 3 5 3

    3 3

    0 (2 3 3)2 2(2 3 3) 2

    (2 3 3) (2 3 3) (7 4 3)(2 3 3) (2 3 3)

    (2 3 3) 0

    2 2(2 3 3) 2

    (2 3 3) (2 3 3) (7 4 3)(2 3 3) (2 3 3)

    ee e e

    ce e e ee e

    e e

    e

    e e ec

    e e e ee e

    e e

    Solution:3 3

    1 2( )t t

    x t c e c e

    3 3

    1 2( ) ( 3 1) ( 3 1)t tu t c e c e

    3 3

    1 2( ) (2 3 3) (2 3 3)t tt c e c e

  • 8/3/2019 N20122 Mathematical Economics II 1 141

    59/141

    59

    Example: Find the shortest distance between a point ( , )At A and the line bt t .

    A x ds dx

    dt

    t

    A Bt t

    Problem:

    2

    2

    min min (1 ( ') s.t. ( )

    min (1 )

    s.t. '

    ( )

    ( ) free

    B B

    A A

    B

    A

    t t

    A A

    t t

    t

    ut

    A A

    B

    ds x dt x t X

    u dt

    x u

    x t X

    x t

    Hamiltonian:21 H u u

    Necessary conditions:

    20 (1)

    (1 )

    ' (2)

    ' 0 (3)

    ( ) 0 (4)

    u

    X

    B

    uH

    u

    x u

    H

    t

    (3) ( )t c (5)

    (4) and (5) ( ) 0t

    Substitute2

    ( ) 0 (1) 0 01

    ut u

    u

    0 (2) ' 0 ( )u x x t k ( )x t is a horizontal line.

    2 2 2 2 2( ) ( ) [1 ( ) ]( ) 1 ( ')dx

    ds dt dx dt x dt dt

  • 8/3/2019 N20122 Mathematical Economics II 1 141

    60/141

    60

    Example: Optimal price path

    ( )P t : price @ t

    ( )Q t : cumulative sales @ t

    ( )C Q : unit production cost '( ) 0C Q

    ( ) ( )f P g Q : the rate that a new product can be sold1

    '( ) 0; "( ) 0

    '( ) 0 for

    f P f P

    g Q Q Q

    Problem:

    T

    ( )0

    max [ ( )] ( ) ( )P t

    P C Q f P g Q dt

    s.t. ' ( ) ( )Q f P g Q

    0(0) 0Q Q

    ( , , , ) ( , , , ) [ ( )] ( ) ( ) ( ) ( ) ( ) ( )[ ( ) ]H t x u H t Q P P C Q f P g Q f P g Q f P g Q P C Q

    Optimal conditions:

    ( ) ( ) [ ( ) ] '( ) 0PH g Q f P P C Q f P (1)

    ' ( ) [ ( ) ] '( ) ( ) '( )

    ( ) ( ) '( ) [ ( ) ] '( )

    QH f P P C Q g Q g Q C Q

    f P g Q C Q P C Q g Q

    (2)

    ( ) 0T (3)

    ' ( ) ( )Q f P g Q (4)

    (1): ( )( ) [ ( ) ] '( ) 0 ( )'( )

    f Pf P P C Q f P P C Qf P

    ( )( ) ( )

    '( )

    f Pt C Q P

    f P (5)

    Differentiate (5) with respect to t:

    2

    2

    2 2

    '( ) '( ) '( ) ( ) "( ) '( )'( ) '( ) '( ) '( )

    '( )

    ' '( ) ( ) "( ) ' ( ) "( )' '( ) ' ' '( ) ' ' ''( ) '( )

    f P f P P t f P f P P t t C Q Q t P t

    f P

    P f P f P f P P f P f PC Q Q P C Q Q P P f P f P

    2

    ( ) "( )' '( ) ' ' 2

    '( )

    f P f PC Q Q P

    f P

    (6)

    : control variable

    : state variable

    P

    Q

  • 8/3/2019 N20122 Mathematical Economics II 1 141

    61/141

    61

    (5) (2) ' ( ) ( ) '( ) [ ( ) ] '( )

    ( )( ) ( ) '( ) ( ) ( ) '( )

    '( )

    ( )( ) ( ) '( ) '( )'( )

    f P g Q C Q P C Q g Q

    f Pf P g Q C Q P C Q C Q P g Q

    f P

    f P

    f P g Q C Q g Qf P

    (2')

    (2) and (6)

    2

    ( ) "( ) ( )'( ) ' ' 2 ( ) ( ) '( ) '( )

    '( )'( )

    f P f P f PC Q Q P f P g Q C Q g Q

    f Pf P

    2

    2

    2

    ( ) "( ) ( )' ( ) ( ) '( ) ( ) ( ) ' 2 ( ) ( ) '( ) '( )

    '( )'( )

    ( ) ( ) (+)

    ( ) "( ) '( )' 2 ( )

    '( )'( )

    f P f P f PQ f P g Q C Q f P g Q P f P g Q C Q g Q

    f Pf P

    f P f P g QP f P

    f Pf P

    ( )

    '( ) '( )sign P t sign g Q

    When the market is expanding (i.e. 1Q Q ), ( )P t is increasing.

    When the market is shrinking (i.e. 1Q Q ), ( )P t is decreasing.

  • 8/3/2019 N20122 Mathematical Economics II 1 141

    62/141

    62

    4 Interpretation of ( )t

    1

    0

    0 0

    0 0

    Define ( , ) max ( , , )

    s.t. '( ) ( , , )

    ( )

    t

    t

    V x t f t x u dt

    x t g t x u

    x t x

    (1)

    Let *( )u t be the optimal control and *( )x t be the optimal path of ( )x t .

    1 1

    0 0

    1

    0

    0 0( , ) ( , *, *) ( , *, *) [ ( , *, *) ']

    = ( , *, *) ( , *, *) '] (2)

    t t

    t t

    t

    t

    V x t f t x u dt f t x u g t x u x dt

    f t x u g t x u x dt

    where ( )t is the corresponding continuously differentiable multiplier function

    Integrate the last term of (2) by parts:

    1

    0

    1

    0

    0 0

    1 1 0 0

    ( , ) ( , *, *) ( , *, *) ']

    ( , *, *) ( , *, *) * '] ( ) * ( ) ( ) ( ) (3)

    t

    t

    t

    t

    V x t f t x u g t x u x dt

    f t x u g t x u x dt t x t t x t

    Now, using the same ( )t , define

    1

    0

    0 0

    0 0

    ( , ) max ( , , )

    s.t. '( ) ( , , )

    ( )

    t

    t

    V x a t f t x u dt

    x t g t x u

    x t x a

    1 1 1

    1

    0

    0 0 0

    1 1 0 0

    Integrate by parts:

    Let ( ) ( ) '( ) , ' ( ) ' ( )

    ' ( ) ( ) ' ( ) ( ) ( ) ( ) '

    t t tt

    t

    t t t

    udv uv vdu duv udv vdu uv duv udv vdu

    u t t du t dt dv x dt v t dv x dt x t

    x dt t x t x dt t x t t x t x dt

    0 0*( ) ( ) x t x t

  • 8/3/2019 N20122 Mathematical Economics II 1 141

    63/141

    63

    1 1

    0 0

    1

    0

    0 0

    1 1 0 0

    ( , ) ( , , ) ( , , ) ( , , ) ']

    ( , , ) ( , , ) '] ( ) ( ) ( ) ( ) (4)

    t t

    t t

    t

    t

    V x a t f t x u dt f t x u g t x u x dt

    f t x u g t x u x dt t x t t x t a

    where ( ) and ( ) are optimal for the new problem. x t u t

    1

    0

    1

    0

    0 0 0 0 1 1 0 0

    1 1 0 0

    0 1 1

    ( , ) ( , ) ( , , ) ( , , ) '] ( ) ( ) ( ) ( )

    ( , *, *) ( , *, *) * '] ( ) *( ) ( ) ( )

    [ ' * * ' *] ( ) ( )[ ( )

    t

    t

    t

    t

    V x a t V x t f t x u g t x u x dt t x t t x t a

    f t x u g t x u x dt t x t t x t

    f g x f g x dt t a t x t

    1

    0

    1*( )] (5)

    t

    tx t

    Expand ( , , ) ( , , ) around ( *, *)f t x u g t x u x u

    ( , , ) ( , , ) ( , *, *) ( , *, *) ( , *, *) ( , *, *) ( *)

    * * ( *) ...

    x x

    u u

    f t x u g t x u f t x u g t x u f t x u g t x u x x

    f g u u

    1

    0

    0 0 0 0

    0 1 1 1

    (5) ( , ) ( , ) [ * * ']( *) [ * *]( *)

    ( ) ( )[ ( ) *( )] (6)

    t

    x x u u

    t

    V x a t V x t f g x x f g u u dt

    t a t x t x t

    Note that

    1

    ' ( * *)

    *, *, and satisfy * * 0

    ( ) 0

    x x

    u u

    f g

    x u f g

    t

    0 0 0 0 0

    0 0 0 00

    0 0 0 0 0 00 0 0

    00

    (6) ( , ) ( , ) ( )

    ( , ) ( , )( )

    ( , ) ( , ) ( , )( ) lim ( , )

    xa

    V x a t V x t t a

    V x a t V x t t

    aV x a t V x t V x t

    t V x t a x

  • 8/3/2019 N20122 Mathematical Economics II 1 141

    64/141

    64

    Principle of optimality: If *( ) and *( )u t x t are optimal paths, then any sub-paths are also optimal.

    *( )x t

    #x

    t#

    0 1t t t

    Suppose we follow#*( ), * ( ) tox t u t t and stop. We then try to solve the following problem:

    1

    #

    # #max ( , , ) s.t. ' ( , , ) and ( )

    t

    t

    f t x u dt x g t x u x t x

    Let ( )x t be the solution to this problem.

    Claim; ( ) *( ) x t x t

    Suppose not.

    That is1

    #

    # #( ) maximizes ( , , ) s.t. ' ( , , ) and ( )

    t

    t

    x t f t x u dt x g t x u x t x so that

    1 1

    # #

    ( , , ) ( , *, *)

    t t

    t t

    f t x u dt f t x u dt

    Now define# #

    0 0

    # #

    1 1

    *( ) for [ , ] *( ) for [ , ]( ) and ( )

    ( ) for ( , ] ( ) for ( , ]

    x t t t t u t t t t x t u t

    x t t t t u t t t t

    Clearly

    # #1 1 1

    # #0 0 0

    ( , , ) ( , *, *) ( , , ) ( , *, *) ( , *, *)

    t t tt t

    t t tt t

    f t x u dt f t x u dt f t x u dt f t x u dt f t x u dt

    This implies that *( )x t cannot be the optimal path of the original problem. Contradiction.

    Note that

    #1 1

    #0 0

    ( , , ) ( , , ) ( , , )t tt

    t t t

    f t x u dt f t x u dt f t x u dt

    In general, # # #[ ( ), ] ( )xV

    V x t t t x

  • 8/3/2019 N20122 Mathematical Economics II 1 141

    65/141

    65

    Example:

    x : productive capital [which decays at a constant proportionate rate 0b ]( )P x : profit rate that can be earned with the stock of productive capital '(0) 0 and " 0P P

    u : gross investment rate

    ( )C x : cost of investment '(0) 0 and " 0C C

    Problem:

    0( )

    0

    max [ ( ) ( )] s.t. ' , (0) 0, 0

    T

    rt

    u te P x C u dt x u bx x x u

    [Note that as 0u and 0 0 ( ) 0 [0, ] x x t t T ].

    ( , , , ) [ ( ) ( )] ( )rtH t x u e P x C u u bx

    Necessary conditions:

    '( ) 0 (1)

    ' '( ) (2)

    ( ) 0 (3)

    '

    rt

    urt

    x

    H e C u

    H e P x b

    T

    x u bx

    (4)

    (1) '( ) ( )rtC u e t

    (2): ' '( ) ' '( )rt rt e P x b b e P x

    ( ) ( )

    ( ) ( )

    ( ) ( ) (

    ( ' ) '( ) [ '( ) ( )] '( ( ))

    ( ) '( ( )) ( ) ( ) '( ( ))

    ( ) '( ( )) ( )

    T T

    bt r b t bs r b s

    t t

    T TT

    bs r b s bT bt r b s

    tt t

    T

    bt r b s r b t bt r

    t

    e b e P x e s b s ds e P x s ds

    e s e P x s ds e T e t e P x s ds

    e t e P x s ds e e t e

    ) ( )

    ( )( )

    '( ( ))

    ( ) '( ( ))

    T

    b t r b s

    t

    T

    rt r b s t

    t

    e P x s ds

    e t e P x s ds

    Finally, we have ( )( )'( ( )) '( ( ))T

    r b s t

    t

    C u t e P x s ds

    marginal cost

    marginal cost of investment current value of the marginal value of capital

    Value @ t of a marginal unit of capital the discount stream of future marginal profits it generates

    The calculation reflects the fact that capital decays, and therefore at each time s t a unit of capitalcontributes only a fraction bse of what it contributed originally @ t.

  • 8/3/2019 N20122 Mathematical Economics II 1 141

    66/141

    66

    Sufficiency

    Problem:1

    0

    0 0

    max ( , , )

    . . ' ( , , ), ( )

    t

    ut

    f t x u dt

    s t x g t x u x t x

    Theorem: Suppose that

    i) ( , , )f t x u and ( , , )g t x u are both differentiable concave functions of ( , )x u ,

    ii) *( ), *( ), ( ) x t u t t satisfy the necessary conditions,

    iii) ( ) and ( ) x t t are continuous with ( ) 0t for all t if ( , , )g t x u is nonlinear in orx u , or both,

    then *( ), *( ) x t u t solve the problem.

    Note:

    i) If the function ( , , )g t x u is linear in ( , )x u , then ( )t may assume any sign.

    ii) If ( , , )f t x u is concave while ( , , )g t x u is convex and ( ) 0t , then the necessary conditionswill also be sufficient for optimality.

  • 8/3/2019 N20122 Mathematical Economics II 1 141

    67/141

    67

    6 Fixed endpoint problem

    1

    0

    ( )

    0 0

    1 1

    max ( , , )

    . . ' ( , , )( )

    ( )

    t

    u tt

    f t x u dt

    s t x g t x u x t x

    x t x

    We need to modify the equations on p. 46-47 in the notes.

    1

    0

    ( ) [ , ( , ), *( ) ( )] ( ) [ , ( , ), *( ) ( ) ( , ) '( )

    t

    t

    J a f t y t a u t ah t t g t y t a u t ah t y t a t dt

    1 1 0 0( ) ( , ) ( ) ( , )t y t a t y t a

    1

    0

    11 0

    '( ) [ , ( , ), *( ) ( )] ( , ) [ , ( , ), *( ) ( )] ( )

    ( ) [ , ( , ), *( ) ( )] ( , ) ( ) [ , ( , ), *( ) ( )] ( )

    (( , )( , ) '( ) ( ) ( )

    t

    y a u

    t

    y a u

    a

    J a f t y t a u t ah t y t a f t y t a u t ah t h t

    t g t y t a u t ah t y t a t g t y t a u t ah t h t

    dy tdy t a y t a t dt t t

    da

    0, )a

    da

    As 00 0

    ( , )( , ) (initial condition) 0

    dy t ay t a x

    da

    Also1

    1 1

    ( , )

    ( , ) (endpoint condition) 0

    dy t a

    y t a x da

    1

    0

    '(0) = [ , ( ), *( )] ( ) [ , ( ), *( )] '( ) ( ,0)

    [ , ( ), *( )] ( ) [ , ( ), *( )] ( ) 0

    t

    x x a

    t

    u u

    J f t x t u t t g t x t u t t y t

    f t x t u t t g t x t u t h t dt

    Since ( , 0), ( )a y t h t can be of any form, therefore the necessary conditions for '(0) 0J are

    i) ' 0x xf g

    ii) 0u uf g

    No transversality condition.

  • 8/3/2019 N20122 Mathematical Economics II 1 141

    68/141

    68

    Production planning problem

    Objective: produce B units of goods in a period of T in a way such that the sum of production

    cost and storage cost is minimized.

    Problem:2

    1 2( )

    0

    min ( ) s.t. '( ) , (0) 0, ( ) , 0

    T

    u tc u c x dt x t u x x T B u

    2

    1 2( , , , )H t x u c u c x u

    Necessary conditions:

    1

    2

    0 2 0 (1)

    ' (2)

    ' (3)

    u

    x

    H c u

    H c

    H x u

    (2) 2 2 1'( ) ( )t c t c t k

    2 1 2 1

    1 1 1 1

    ( )( )(1) ( )

    2 2 2 2

    c t k c t k tu t

    c c c c

    22 1 2 12

    1 1 1 1

    (3) '( ) ( )2 2 4 2

    c k c k x t u t x t t t k

    c c c c

    Using the initial condition and endpoint conditions,

    22 12 2 2

    1 1

    (0) 0 (0) (0) 04 2

    c k x k k k

    c c

    2 2

    22 1 2 1 1 2 2 12 1

    1 1 1 1 1 1

    2( ) ( ) ( )

    4 2 4 2 2 4 2

    c k c T k T k T c T c T Bc x T B T T k B B k

    c c c c c c T

    2 12 1 2

    2( )

    2

    c T Bct c t k c t

    T

    2 1

    2 1 2 2 2 2

    1 1 1 1 1 1 1

    2

    (2 )2( )2 2 2 2 2 4 4

    c T Bc

    c t k c t c t c T c t T B BTu tc c c c c c T c T

    2 1

    2 2 22 1 2 2 2 2

    2

    1 1 1 1 1 1 1

    2

    ( )2( ) (0)

    4 2 4 2 4 4 4

    c T Bc

    c k c c c T c t t T T B Bt x t t t k t t t t t

    c c c c c c T c T

    Note that we assume( ) 0, [0, ]u t t T

  • 8/3/2019 N20122 Mathematical Economics II 1 141

    69/141

    69

    Example:

    Two factors, capital ( )K t and extractive resource ( )R t are used to produce a good Q according to the

    production function1 a aQ AK R

    , where 0 1a .

    The output can be consumed, yielding utility ( ) lnU C C , or it may be invested.

    Problem:

    ( ), ( )0

    0

    1

    0

    max ln

    . . ' , (0) , ( ) 0

    ' , (0) , ( ) 0

    0, 0

    T

    C t R t

    a a

    C dt

    s t x R x x x T

    K AK R C K K K T

    C R

    2 state variables: ,x K

    2 control variables: ,C R

    Define( )

    ( )( )

    R ty t

    K t resource-capital ratio [ ( ) ( ) ( )]R t y t K t

    Problem:

    ( ), y( )0

    0

    0

    max ln

    . . ' , (0) , ( ) 0

    ' , (0) , ( ) 00, 0

    T

    C t t

    a

    C dt

    s t x Ky x x x T

    K AKy C K K K T C y

    1 2ln ( )a H C Ky AKy C

    Necessary conditions:

    2

    1

    1 2

    1

    2 1 2

    10 (1)

    0 (2)

    ' 0 (3)'

    C

    a

    y

    x

    a

    K

    HC

    H K a AKy

    H H y Ay

    (4)

    ' (5)

    ' (6)a

    x KY

    K AKy C

    Since 0 ( ) 0 MU C t t

    Since marginal product ofR as 0 0 ( ) 0 R R y t t

  • 8/3/2019 N20122 Mathematical Economics II 1 141

    70/141

    70

    (2): 11 2 ( 0) (2')a

    a Ay K

    1

    1 12 1

    1

    1 1 1

    2 1

    (7)

    [(1 ) '] ' (1 ) '' [ ' 0 by (3)]

    a

    a

    a a a

    y

    aAy aA

    a y y y a y y

    aA aA

    Using (7)

    1

    2

    1

    12

    (1 ) '

    ' (1 ) '(8)

    a

    a

    a y y

    a yaA

    y y

    aA

    1 22 2 22

    '(2 ') (4) ' (1 ) (9)a a a a aa Ay y Ay aAy Ay a Ay

    1 1

    1

    ' '(8) and (9) (1 ) (1 )

    1 1 (10)

    a

    a a

    a

    a

    a a

    y y dya a Ay A A dt

    y y y

    dy y A dt At k aAt ak y y a y aAt ak

    1

    ( ) 1( )

    ( )

    aR ty t

    K t aAt ak

    Also, the capital-output ratio

    ( ) 1is linear in , i.e. it is growing linearly at the rate

    ( ) a aK t K aAt ak ak

    at t aQ t AKy Ay A A

    2

    2 1

    ' 1 (1 )(10) (9) (1 ) (1 )a aa Ay aak at k

    atA

    2

    2 2

    22 1 2

    2 1

    1

    2 1

    1 1

    1 1

    (1 ) (1 )ln ( ) ln( )

    ( ) ( )

    1(1) ( ) ( ) ( )

    ( )

    ak