Top Banner
Better Algorithms and Hardness for Broadcast Scheduling via a Discrepancy Approach N. Bansal 1 , M. Charikar 2 , R. Krishnaswamy 2 , S. Li 3 1 TU Eindhoven 2 Princeton University 3 TTIC Midwest Theory Day, Purdue, May 3, 2014
32

N. Bansal 1, M. Charikar 2, R. Krishnaswamy 2, S. Li 3 1 TU Eindhoven 2 Princeton University 3 TTIC Midwest Theory Day, Purdue, May 3, 2014.

Dec 17, 2015

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: N. Bansal 1, M. Charikar 2, R. Krishnaswamy 2, S. Li 3 1 TU Eindhoven 2 Princeton University 3 TTIC Midwest Theory Day, Purdue, May 3, 2014.

Better Algorithms and Hardness for Broadcast Scheduling via a

Discrepancy Approach

N. Bansal1, M. Charikar2, R. Krishnaswamy2, S. Li3

1TU Eindhoven

2Princeton University

3TTIC

Midwest Theory Day, Purdue, May 3, 2014

Page 2: N. Bansal 1, M. Charikar 2, R. Krishnaswamy 2, S. Li 3 1 TU Eindhoven 2 Princeton University 3 TTIC Midwest Theory Day, Purdue, May 3, 2014.

Introduction

Discrepancy Problem

Broadcast Scheduling Problem

Our Results and Techniques

Negative Results

O(log1.5n)-Approximation

Outline

Page 3: N. Bansal 1, M. Charikar 2, R. Krishnaswamy 2, S. Li 3 1 TU Eindhoven 2 Princeton University 3 TTIC Midwest Theory Day, Purdue, May 3, 2014.

input

ground set U a family S of subsets of U

output: coloring minimize worst discrepancy:

Discrepancy Problem

U : {1,2,3,4,5,6}

S :

χ : 1 2 3 4 5 6

+1 -1χ : 1 2 3 4 5 6

{1,3,5,6}

{2,3,4,6}

{1,4,5,6}

{1,3,5,6} 0

{2,3,4,6} 0

{1,4,5,6} 0

{1,3,5,6} 0

{2,3,4,6} 0

{1,4,5,6} 2

Page 4: N. Bansal 1, M. Charikar 2, R. Krishnaswamy 2, S. Li 3 1 TU Eindhoven 2 Princeton University 3 TTIC Midwest Theory Day, Purdue, May 3, 2014.

S contains all subsets discrepancy = n/2 -disc. by randomized coloring -disc. (non-constructive) [Spencer 85] -disc. (constructive) [Bansal 10] [Lovett-

Meka 12] -lower bound

Interesting When |U| = |S| = n

Page 5: N. Bansal 1, M. Charikar 2, R. Krishnaswamy 2, S. Li 3 1 TU Eindhoven 2 Princeton University 3 TTIC Midwest Theory Day, Purdue, May 3, 2014.

Erdos’s Discrepancy

U = {0, 1, 2, 3, ......} S = {all arithmetic progressions starting at 0} open problem: is discrepancy bounded?

Rectangle Discrepancy U = {n points in a 2-D plane} S = {all axis-parallel rectangles} discrepancy? ( between Ω(log n) and O(log2.5n) )

Special Discrepancy Problems

Page 6: N. Bansal 1, M. Charikar 2, R. Krishnaswamy 2, S. Li 3 1 TU Eindhoven 2 Princeton University 3 TTIC Midwest Theory Day, Purdue, May 3, 2014.

give 3 permutations of [n] find a coloring χ : [n]{±1} minimize the maximum discrepancy over all

prefixes of the permutations

3-Permutation Discrepancy

5 6 3 1 4 26 3 1 4 2 51 5 2 3 4 6

χ : 1 2 3 4 5 6 5 6 3 1 4 26 3 1 4 2 51 5 2 3 4 6 discrepancy = 2

Page 7: N. Bansal 1, M. Charikar 2, R. Krishnaswamy 2, S. Li 3 1 TU Eindhoven 2 Princeton University 3 TTIC Midwest Theory Day, Purdue, May 3, 2014.

1 permutation : discrepancy=1, trivial 2 permutations : discrepancy=1, easy exercise 3 permutations?

upper bound : O(log n) lower bound [Newman-Nikolov 11]: Ω(log n)

l ≥ 3 permutations upper bound : O(l1/2 log n) lower bound : max{Ω(l1/2), Ω(log n)}

Why 3 Permutations?

Page 8: N. Bansal 1, M. Charikar 2, R. Krishnaswamy 2, S. Li 3 1 TU Eindhoven 2 Princeton University 3 TTIC Midwest Theory Day, Purdue, May 3, 2014.

Introduction

Discrepancy Problem

Broadcast Scheduling Problem

Our Results and Techniques

Negative Results

O(log1.5n)-Approximation

Outline

Page 9: N. Bansal 1, M. Charikar 2, R. Krishnaswamy 2, S. Li 3 1 TU Eindhoven 2 Princeton University 3 TTIC Midwest Theory Day, Purdue, May 3, 2014.

a server holding n pages requests come over time broadcast 1 page per time slot minimize average response time offline version

Broadcast Scheduling Problem

response time = 2

Time

1

23

4

5

response time = 3

1 3 5 34 2

135

245

345

124

Page 10: N. Bansal 1, M. Charikar 2, R. Krishnaswamy 2, S. Li 3 1 TU Eindhoven 2 Princeton University 3 TTIC Midwest Theory Day, Purdue, May 3, 2014.

Resource Allocation

Scheduling Theory

Page 11: N. Bansal 1, M. Charikar 2, R. Krishnaswamy 2, S. Li 3 1 TU Eindhoven 2 Princeton University 3 TTIC Midwest Theory Day, Purdue, May 3, 2014.

NP-hard [Erlebach-Hall] (1/α)-speed,1/(1-2α)-approximation, α ≤ 1/3

[Kalyanasundaram et al.] (1/α)-speed: broadcast a page only requires α time slots

(1+ε)-speed, O(1/ε) approximation, ε > 0[Bansal-Charikar-Khanna-Naor 05]

O(n)-approx: trivial, cyclic order O(n1/2)-approx [Bansal-Charikar-Khanna-Naor 05] O(log2n)-approx[Bansal-Coppersmith-Sviridenko 08]

Known Results

Page 12: N. Bansal 1, M. Charikar 2, R. Krishnaswamy 2, S. Li 3 1 TU Eindhoven 2 Princeton University 3 TTIC Midwest Theory Day, Purdue, May 3, 2014.

Introduction

Discrepancy Problem

Broadcast Scheduling Problem

Our Results and Techniques

Negative Results

O(log1.5n)-Approximation

Outline

Page 13: N. Bansal 1, M. Charikar 2, R. Krishnaswamy 2, S. Li 3 1 TU Eindhoven 2 Princeton University 3 TTIC Midwest Theory Day, Purdue, May 3, 2014.

previous best our results

approximation O(log2n) O(log3/2n)integrality gap 1 + tiny const Ω(log n)

hardness NP-hard Ω(log1/2 n)

Our Results and Techniques

negative results (integrality gap and hardness) connection to permutation discrepancy

positive result Lovett-Meka algorithmic framework for discrepancy

minimization

Page 14: N. Bansal 1, M. Charikar 2, R. Krishnaswamy 2, S. Li 3 1 TU Eindhoven 2 Princeton University 3 TTIC Midwest Theory Day, Purdue, May 3, 2014.

Introduction

Discrepancy Problem

Broadcast Scheduling Problem

Our Results and Techniques

Negative Results

O(log1.5n)-Approximation

Outline

Page 15: N. Bansal 1, M. Charikar 2, R. Krishnaswamy 2, S. Li 3 1 TU Eindhoven 2 Princeton University 3 TTIC Midwest Theory Day, Purdue, May 3, 2014.

Main Lemma

Negative Results

l-permutation instance Π

broadcast scheduling instance I

=“discrepancy” optimal response time

LP(I) = O(1)

Main + Ω(log n)-disc. for 3-perm. Ω(log n)-int. gap Main + Ω(l1/2)-hard. for l-perm.(new) Ω(log1/2 n)-hard.

Page 16: N. Bansal 1, M. Charikar 2, R. Krishnaswamy 2, S. Li 3 1 TU Eindhoven 2 Princeton University 3 TTIC Midwest Theory Day, Purdue, May 3, 2014.

Fractional Schedule from LP

integral schedule

fractional schedule

Time

response time0.4×1+0.6×2=1.6requests 1

35

345

124

245

Page 17: N. Bansal 1, M. Charikar 2, R. Krishnaswamy 2, S. Li 3 1 TU Eindhoven 2 Princeton University 3 TTIC Midwest Theory Day, Purdue, May 3, 2014.

Main Lemma

l-permutation instance Π

broadcast scheduling instance I

=“discrepancy” optimal response time

LP(I) = O(1)

proof steps: construction of BS instance from l permutations Θ(1) LP value small discrepancy small response time small response time small discrepancy

Page 18: N. Bansal 1, M. Charikar 2, R. Krishnaswamy 2, S. Li 3 1 TU Eindhoven 2 Princeton University 3 TTIC Midwest Theory Day, Purdue, May 3, 2014.

given 3 permutations π1 π2 π3 of size m

π1 = (5, 8, 4, 6, 3, 2, 1, 7)

π2 = (6, 7, 3, 8, 5, 1, 2, 4)

π3 = (7, 1, 3, 2, 8, 5, 6, 4)

Construction of BS Instance

π1 π2 π3

forbidden interval

P1 P2 P3 P4 P5 P6 P7

permutation interval

54318627Req: 5431

862763527814

63527814

73861254

73861254

m/2

Page 19: N. Bansal 1, M. Charikar 2, R. Krishnaswamy 2, S. Li 3 1 TU Eindhoven 2 Princeton University 3 TTIC Midwest Theory Day, Purdue, May 3, 2014.

average response time ≈ # bad requests new goal: minimize #bad requests a request in Pi is good if it is satisfied at Pi or Pi+1

otherwise, the request is bad

Good and Bad Requests

P1 P2 P3 P4 P5 P6 P7

54318627Req: 5431

862763527814

63527814

73861254

73861254

Brd: 3458 1276 8534 6721 4835 7216 34853

36

67

7

Page 20: N. Bansal 1, M. Charikar 2, R. Krishnaswamy 2, S. Li 3 1 TU Eindhoven 2 Princeton University 3 TTIC Midwest Theory Day, Purdue, May 3, 2014.

54318627Req: 5431

862763527814

63527814

73861254

73861254

LP solution each time slot, broadcast ½ fraction of each page requested P7: broadcast ½ fraction of the m pages arbitrarily

all requests are good: ½ of request in Pi is satisfied immediately

remaining ½ satisfied at Pi+1

Θ(1) LP Value

P1 P2 P3 P4 P5 P6 P7

request½ satisfied½ satisfied

Page 21: N. Bansal 1, M. Charikar 2, R. Krishnaswamy 2, S. Li 3 1 TU Eindhoven 2 Princeton University 3 TTIC Midwest Theory Day, Purdue, May 3, 2014.

How to Make All Requests Good in an Integral Schedule?

P1 P2 P3 P4 P5 P6 P7

all m pages requested in all intervals(except P7)

each P-interval has m/2 slots solution:

m/2 pages are broadcast in P1, P3, P5, P7

m/2 pages are broadcast in P2, P4, P6

giving a balanced ±1 coloring of the m pages

54318627Req: 5431

862763527814

63527814

73861254

73861254

Brd: 3421 5867 4312 6785 1324 7856 3421

Page 22: N. Bansal 1, M. Charikar 2, R. Krishnaswamy 2, S. Li 3 1 TU Eindhoven 2 Princeton University 3 TTIC Midwest Theory Day, Purdue, May 3, 2014.

enough to make all requests good? No! Broadcast may be before the request

no bad requests only if two requests at the same time have different colors

discrepancy of 3-permutation system is 1

How to Make All Requests Good in an Integral Schedule?

P1 P2 P3 P4 P5 P6 P7

54318627Req: 5431

862763527814

63527814

73861254

73861254

Brd: 3421 5867 4312 6785 1324 7856 3421

3 2 144312

Page 23: N. Bansal 1, M. Charikar 2, R. Krishnaswamy 2, S. Li 3 1 TU Eindhoven 2 Princeton University 3 TTIC Midwest Theory Day, Purdue, May 3, 2014.

suppose discχ(πi) = d

πi =(1, 10, 2, 6, 8, 7, 3, 11, 5, 12, 4, 9)

χ =(1, 10, 2, 6, 8, 7, 3, 11, 5, 12, 4, 9) order of red elements (1,6,3,5,4,9) right rotate by d-1=1 positions: (9,1,6,3,5,4) broadcast according to this ordering in P2i-1

#bad quests = d-1

Small DiscrepancyFew Bad Requests

requests = 1 2 8 3 5 4 10 6 7 11 12 9 broadcasts = 9 1 6 3 5 4

broadcast after request : goodbroadcast before request : bad

d = 2

Page 24: N. Bansal 1, M. Charikar 2, R. Krishnaswamy 2, S. Li 3 1 TU Eindhoven 2 Princeton University 3 TTIC Midwest Theory Day, Purdue, May 3, 2014.

“discrepancy” = average discrepancy of l

permutations size of BS instance is exponential in l

lengths of forbidden intervals grow exponentially

Remarks

P1 P2 P3 P4 P5 P6 P7

request good bad

Page 25: N. Bansal 1, M. Charikar 2, R. Krishnaswamy 2, S. Li 3 1 TU Eindhoven 2 Princeton University 3 TTIC Midwest Theory Day, Purdue, May 3, 2014.

Introduction

Discrepancy Problem

Broadcast Scheduling Problem

Our Results and Techniques

Negative Results

O(log1.5n)-Approximation

Outline

Page 26: N. Bansal 1, M. Charikar 2, R. Krishnaswamy 2, S. Li 3 1 TU Eindhoven 2 Princeton University 3 TTIC Midwest Theory Day, Purdue, May 3, 2014.

A Rm×n, x [0,1]n, b=Ax,

λ1, λ2, …, λm s.t.

output: y [0,1]n, s.t. ½ fraction of coordinates in y are integral

Lovett-Meka Framework

A x b× =m

n

A y b× =m

n±λ1||A1||

±λ2||A2||

±λ3||A3||

...±λm||Am||

“error”

Page 27: N. Bansal 1, M. Charikar 2, R. Krishnaswamy 2, S. Li 3 1 TU Eindhoven 2 Princeton University 3 TTIC Midwest Theory Day, Purdue, May 3, 2014.

we may broadcast more than 1 page at a time slot

tentative schedule of backlog b valid schedule, with additive b loss in the average response time

backlog discrepancy

Tentative Scheduling

6 time slots, 11 broadcast, backlog = 5

Page 28: N. Bansal 1, M. Charikar 2, R. Krishnaswamy 2, S. Li 3 1 TU Eindhoven 2 Princeton University 3 TTIC Midwest Theory Day, Purdue, May 3, 2014.

assumptions:

fractional schedule is ½-intergal every page is broadcast ≤ Δ = O(log n) times # timeslots ≤ 2Δ × n

locally consistent distributions

Goal

with probability 1/2

with probability 1/2

Page 29: N. Bansal 1, M. Charikar 2, R. Krishnaswamy 2, S. Li 3 1 TU Eindhoven 2 Princeton University 3 TTIC Midwest Theory Day, Purdue, May 3, 2014.

Locally Consistent Distribution

t10 2 5 643

f(t) = # broadcasts of p by time t

1

3

4

2

s

1+s

2+s

3+s

broadcast p at time 0, 1, 4, 5

randomly select a s (0,1) broadcast at time f -1(s), f -1(1+s), f -1(2+s),……

call (0,1,4,5) a shift for page p

Page 30: N. Bansal 1, M. Charikar 2, R. Krishnaswamy 2, S. Li 3 1 TU Eindhoven 2 Princeton University 3 TTIC Midwest Theory Day, Purdue, May 3, 2014.

Interesting Intervals

# time slots ≤ 2Δ × n

“error”

repeat log n times : backlog = O(log3/2n)

64Δ

……

λ= 0λ= 1λ= 2…

Page 31: N. Bansal 1, M. Charikar 2, R. Krishnaswamy 2, S. Li 3 1 TU Eindhoven 2 Princeton University 3 TTIC Midwest Theory Day, Purdue, May 3, 2014.

previous best our results

approximation O(log2n) O(log3/2n)integrality gap 1 + tiny const Ω(log n)

hardness NP-hard Ω(log1/2 n)

Summary

Open problems hardness for 3-permutation(implying the same

hardness for broadcast scheduling) discrepancy of l-permutation?

Page 32: N. Bansal 1, M. Charikar 2, R. Krishnaswamy 2, S. Li 3 1 TU Eindhoven 2 Princeton University 3 TTIC Midwest Theory Day, Purdue, May 3, 2014.

Thank you!

Questions?