Top Banner
Multidimensional Scaling
29

Multidimensional Scaling. Agenda Multidimensional Scaling Goodness of fit measures Nosofsky, 1986.

Dec 19, 2015

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Multidimensional Scaling. Agenda Multidimensional Scaling Goodness of fit measures Nosofsky, 1986.

Multidimensional Scaling

Page 2: Multidimensional Scaling. Agenda Multidimensional Scaling Goodness of fit measures Nosofsky, 1986.

Agenda

• Multidimensional Scaling

• Goodness of fit measures

• Nosofsky, 1986

Page 3: Multidimensional Scaling. Agenda Multidimensional Scaling Goodness of fit measures Nosofsky, 1986.

Proximities

Amherst Belchertown Hadley Leverett Pelham Shutesbury Sunderland

Amherst 0 9.94 4.32 7.29 6.81 9.94 7.81

Belchertown 0 14.06 14.94 8.25 13.96 17.66

Hadley 0 11.02 10.93 14.49 9.5

Leverett 0 12.57 7.45 5.18

Pelham 0 5.71 16.16

Shutesbury 0 11.04

Sunderland 0

pAmherst, Hadley

Page 4: Multidimensional Scaling. Agenda Multidimensional Scaling Goodness of fit measures Nosofsky, 1986.

Configuration (in 2-D)

xi

Page 5: Multidimensional Scaling. Agenda Multidimensional Scaling Goodness of fit measures Nosofsky, 1986.

Configuration (in 1-D)

Page 6: Multidimensional Scaling. Agenda Multidimensional Scaling Goodness of fit measures Nosofsky, 1986.

Formal MDS Definition

• f: pijdij(X)• MDS is a mapping from proximities to corresponding

distances in MDS space.• After a transformation f, the proximities are equal to

distances in X.

Amherst Belchertown

Hadley Leverett Pelham Shutesbury

Sunderland

Amherst 0 9.94 4.32 7.29 6.81 9.94 7.81

Belchertown

0 14.06 14.94 8.25 13.96 17.66

Hadley 0 11.02 10.93 14.49 9.5

Leverett 0 12.57 7.45 5.18

Pelham 0 5.71 16.16

Shutesbury

0 11.04

Sunderland

0

Page 7: Multidimensional Scaling. Agenda Multidimensional Scaling Goodness of fit measures Nosofsky, 1986.

Distances, dij

dAmherst, Hadley(X)

Page 8: Multidimensional Scaling. Agenda Multidimensional Scaling Goodness of fit measures Nosofsky, 1986.

Distances, dij

dAmherst,Hadley (X) = xAmherst,1 − xHadley,1( )2+ xAmherst,2 − xHadley,2( )

2

= −.5775 −−2.3076( )2+ −1.0928 −−7.1844( )

2

= 6.332

Page 9: Multidimensional Scaling. Agenda Multidimensional Scaling Goodness of fit measures Nosofsky, 1986.

Distances, dij

dAmherst, Hadley(X)=4.32

Page 10: Multidimensional Scaling. Agenda Multidimensional Scaling Goodness of fit measures Nosofsky, 1986.

Proximities and DistancesAmherst Belchertown Hadley Leverett Pelham Shutesbury Sunderland

Amherst 0 9.94 4.32 7.29 6.81 9.94 7.81

Belchertown 0 14.06 14.94 8.25 13.96 17.66

Hadley 0 11.02 10.93 14.49 9.5

Leverett 0 12.57 7.45 5.18

Pelham 0 5.71 16.16

Shutesbury 0 11.04

Sunderland 0

Proximities

Amherst Belchertown Hadley Leverett Pelham Shutesbury Sunderland

Amherst 0 10.0577 6.3325 7.4738 7.9313 7.8319 7.8328

Belchertown 0 12.0455 16.8332 6.7959 12.7215 17.6600

Hadley 0 12.0350 13.1492 14.1632 8.1892

Leverett 0 12.2097 7.3591 6.6429

Pelham 0 6.3360 15.4250

Shutesbury 0 12.7366

Sunderland 0

Distances

Page 11: Multidimensional Scaling. Agenda Multidimensional Scaling Goodness of fit measures Nosofsky, 1986.

The Role of f

• f relates the proximities to the distances.

• f(pij)=dij(X)

Page 12: Multidimensional Scaling. Agenda Multidimensional Scaling Goodness of fit measures Nosofsky, 1986.

The Role of f

• f can be linear, exponential, etc.

• In psychological data, f is usually assumed any monotonic function.– That is, if pij<pkl then dij(X)dkl(X).

– Most psychological data is on an ordinal scale, e.g., rating scales.

Page 13: Multidimensional Scaling. Agenda Multidimensional Scaling Goodness of fit measures Nosofsky, 1986.

Looking at Ordinal RelationsAmherst Belchertown Hadley Leverett Pelham Shutesbury Sunderland

Amherst 0 9.94 4.32 7.29 6.81 9.94 7.81

Belchertown 0 14.06 14.94 8.25 13.96 17.66

Hadley 0 11.02 10.93 14.49 9.5

Leverett 0 12.57 7.45 5.18

Pelham 0 5.71 16.16

Shutesbury 0 11.04

Sunderland 0

Proximities

Amherst Belchertown Hadley Leverett Pelham Shutesbury Sunderland

Amherst 0 10.0577 6.3325 7.4738 7.9313 7.8319 7.8328

Belchertown 0 12.0455 16.8332 6.7959 12.7215 17.6600

Hadley 0 12.0350 13.1492 14.1632 8.1892

Leverett 0 12.2097 7.3591 6.6429

Pelham 0 6.3360 15.4250

Shutesbury 0 12.7366

Sunderland 0

Distances

Page 14: Multidimensional Scaling. Agenda Multidimensional Scaling Goodness of fit measures Nosofsky, 1986.

Stress

• It is not always possible to perfectly satisfy this mapping.

• Stress is a measure of how closely the model came.

• Stress is essentially the scaled sum of squared error between f(pij) and dij(X)

Page 15: Multidimensional Scaling. Agenda Multidimensional Scaling Goodness of fit measures Nosofsky, 1986.

Stress

Dimensions

Str

ess “Correct” Dimensionality

Page 16: Multidimensional Scaling. Agenda Multidimensional Scaling Goodness of fit measures Nosofsky, 1986.

Distance Invariant Transformations

• Scaling (All X doubled in size (or flipped))

• Rotatation (X rotated 20 degrees left)

• Translation (X moved 2 to the right)

Page 17: Multidimensional Scaling. Agenda Multidimensional Scaling Goodness of fit measures Nosofsky, 1986.

Configuration (in 2-D)

Page 18: Multidimensional Scaling. Agenda Multidimensional Scaling Goodness of fit measures Nosofsky, 1986.

Rotated Configuration (in 2-D)

Page 19: Multidimensional Scaling. Agenda Multidimensional Scaling Goodness of fit measures Nosofsky, 1986.

Uses of MDS

• Visually look for structure in data.

• Discover the dimensions that underlie data.

• Psychological model that explains similarity judgments in terms of distance in MDS space.

Page 20: Multidimensional Scaling. Agenda Multidimensional Scaling Goodness of fit measures Nosofsky, 1986.

Simple Goodness of Fit Measures

• Sum-of-squared error (SSE)

• Chi-Square

• Proportion of variance accounted for (PVAF)

• R2

• Maximum likelihood (ML)

Page 21: Multidimensional Scaling. Agenda Multidimensional Scaling Goodness of fit measures Nosofsky, 1986.

Sum of Squared ErrorData Prediction (Data-Prediction)2

7 5.03 3.88

8 6.97 1.06

1 2.12 1.25

8 8.91 0.83

6 6.97 0.94

SSE 7.97

Page 22: Multidimensional Scaling. Agenda Multidimensional Scaling Goodness of fit measures Nosofsky, 1986.

Chi-Square

Data Prediction(Data-

Prediction)2

(Data - Prediction)2/Predictio

n

7 5 4 0.80

8 7 1 0.14

1 2 1 0.50

8 9 1 0.11

6 7 1 0.14

Chi-Square 1.70

Page 23: Multidimensional Scaling. Agenda Multidimensional Scaling Goodness of fit measures Nosofsky, 1986.

Proportion of Variance Accounted for

Data Mean Prediction Model Prediction

Mean Error Error2 Prediction Error Error2

7 6 1 1 5.03 1.97 3.88

8 6 2 4 6.97 1.03 1.06

1 6 -5 25 2.12 -1.12 1.25

8 6 2 4 8.91 -0.91 0.83

6 6 0 0 6.97 -0.97 0.94

SST 34 SSE 7.96

(SST-SSE)/SST = (34-7.96)/34 = .77

Page 24: Multidimensional Scaling. Agenda Multidimensional Scaling Goodness of fit measures Nosofsky, 1986.

R2

• R2 is PVAF, but…

Data Mean Prediction Model Prediction

Mean Error Error2 Prediction Error Error2

7 6 1 1 5.9 1.1 1.21

8 6 2 4 10.1 -2.1 4.41

1 6 -5 25 4 -3 9

8 6 2 4 5.9 2.1 4.41

6 6 0 0 1 5 25

SST 34 SSE 44.03

(SST-SSE)/SST = (34-44.03)/34 = -0.295

Page 25: Multidimensional Scaling. Agenda Multidimensional Scaling Goodness of fit measures Nosofsky, 1986.

Maximum Likelihood

• Assume we are sampling from a population with probability f(Y; ).

• The Y is an observation and the are the model parameters.

Y

=[0]

N(-1.7; [=0])=0.094

Page 26: Multidimensional Scaling. Agenda Multidimensional Scaling Goodness of fit measures Nosofsky, 1986.

Maximum Likelihood• With independent observations, Y1…Yn,

the joint probability of the sample observations is:

g(Y1,...,Yn ) = f (Yi;θ)i=1

n

Y1

=[0]

0.094 x 0.2661 x .3605 = .0090Y2Y3

Page 27: Multidimensional Scaling. Agenda Multidimensional Scaling Goodness of fit measures Nosofsky, 1986.

Maximum Likelihood

• Expressed as a function of the parameters, we have the likelihood function:

• The goal is to maximize L with respect to the parameters, .€

L(θ) = f (Yi;θ)i=1

n

Page 28: Multidimensional Scaling. Agenda Multidimensional Scaling Goodness of fit measures Nosofsky, 1986.

Maximum Likelihood

Y1

=[0]

0.094 x 0.2661 x .3605 = .0090Y2Y3

Y1

=[-1.0167]

0.3159 x 0.3962 x .3398 = .0425Y2Y3

(Assuming =1)

Page 29: Multidimensional Scaling. Agenda Multidimensional Scaling Goodness of fit measures Nosofsky, 1986.

Maximum Likelihood• Preferred to other methods

– Has very nice mathematical properties.– Easier to interpret.– We’ll see specifics in a few weeks.

• Often harder (or impossible?) to calculate than other methods.

• Often presented as log likelihood, ln(ML).– Easier to compute (sums, not products).– Better numerical resolution.

• Sometimes equivalent to other methods. – E.g., same as SSE when calculating mean of a distribution.