Top Banner
Multi-Scale Simulations of the Growth and Assembly of Colloidal Nanoscale Materials Kristen A. Fichthorn Department of Chemical Engineering Department of Physics Penn State University DE-FG0207ER46414
38

Multi-Scale Simulations of the Growth and Assembly of Colloidal Nanoscale Materials Kristen A. Fichthorn Department of Chemical Engineering Department.

Dec 17, 2015

Download

Documents

Blaise Tucker
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Multi-Scale Simulations of the Growth and Assembly of Colloidal Nanoscale Materials Kristen A. Fichthorn Department of Chemical Engineering Department.

Multi-Scale Simulations of the Growth and Assembly of Colloidal

Nanoscale MaterialsKristen A. Fichthorn

Department of Chemical EngineeringDepartment of PhysicsPenn State University

DE-FG0207ER46414

Page 2: Multi-Scale Simulations of the Growth and Assembly of Colloidal Nanoscale Materials Kristen A. Fichthorn Department of Chemical Engineering Department.

Complex Nanostructures in Colloidal Crystal Growth: How Do They Form?

Ostwald Ripening

Cluster-ClusterAggregation

OrientedAttachment

How Does OA Happen?

Page 3: Multi-Scale Simulations of the Growth and Assembly of Colloidal Nanoscale Materials Kristen A. Fichthorn Department of Chemical Engineering Department.

Complex Nanostructures in Colloidal Crystal Growth: Oriented Attachment

Oriented Attachment of TiO2:Intrinsic Crystal Forces

Oriented Attachment andthe Mesocrystal State:The Role of Solvent

R. Penn and J. Banfield, Geochim.Cosmochim. Acta 63, 1549 (1999).

M. Alimohammadi and K. Fichthorn, Nano Lett. 9, 4198 (2009).

V. Yuwano, N. Burrows, J. Soltis, and R. Penn, JACS 132, 2163 (2010).

Page 4: Multi-Scale Simulations of the Growth and Assembly of Colloidal Nanoscale Materials Kristen A. Fichthorn Department of Chemical Engineering Department.

Complex Nanostructures in Colloidal Crystal Growth: Capping Agents

Y. Sun, B. Mayers, T. Herricks, andY. Xia, Nano Lett. 3, 955 (2003).

Page 5: Multi-Scale Simulations of the Growth and Assembly of Colloidal Nanoscale Materials Kristen A. Fichthorn Department of Chemical Engineering Department.

Polyol ProcessSolvent: Ethylene Glycol

Salt: AgNO3

“Stabilizer”: PVP

What Happensin the Pot?

B. Wiley,…Y. Xia, Chem. Eur. J. 11, 454 (2005).

“One-Pot” Solution-Phase Synthesis of Nanostructured Metal Materials

N,N-DMF ReductionSolvent: N,N-DMF

Salt: AgNO3

“Stabilizer”: PVP

All Kinds ofNano-Shapes

Heat at ~400 K

Page 6: Multi-Scale Simulations of the Growth and Assembly of Colloidal Nanoscale Materials Kristen A. Fichthorn Department of Chemical Engineering Department.

B. Wiley,…Y. Xia, Chem. Eur. J. 11, 454 (2005).

Reductionof Ag

Nucleation

Growth

Nanostructure Formation:General Aspects

Determined bySalt and…Solvent or PVP? Probably Determined

by PVP…

SeedFormation

Page 7: Multi-Scale Simulations of the Growth and Assembly of Colloidal Nanoscale Materials Kristen A. Fichthorn Department of Chemical Engineering Department.

Does PVP Prefer Ag(100) Over Ag(111)?

Nanowires from Multiply-Twinned DecahedralSeeds

Nanocubes from Single-Crystal Cubo-OctahedralSeeds

One Possible Role of PVP: Surface-Sensitive Binding

G. Grochola, I. Snook, and S. Russo, J. Chem. Phys. 127, 194707 (2007).

Y. Sun, B. Mayers, T. Herricks, and Y. Xia, Nano Lett. 3, 955 (2003).

Page 8: Multi-Scale Simulations of the Growth and Assembly of Colloidal Nanoscale Materials Kristen A. Fichthorn Department of Chemical Engineering Department.

Interaction of PVP with Ag(100) and Ag(111):First-Principles Challenges

Direct Bonding +van der Waals (vdW)

vdW

Historically DFT Described Direct Bonds,Including vdW Interactions is New…

S. Grimme, J. Comput. Chem. 27, 1787 (2006).M. Dion,…, D. C. Langreth, B. I. Lundqvist, Phys. Rev. Lett. 92, 246401 (2004).A. Tkatchenko and M. Scheffler, Phys. Rev. Lett. 102, 073005 (2009).K. Lee, …, D. C. Langreth, B. I. Lundqvist, Phys. Rev. B 82, 081101 (2010).

L. Delle Site, K. Kremer, Int. J. Quant. Chem. 101, 733 (2005).

nCoarse-Grained

Model

Page 9: Multi-Scale Simulations of the Growth and Assembly of Colloidal Nanoscale Materials Kristen A. Fichthorn Department of Chemical Engineering Department.

Interaction of PVP with Ag(100) and Ag(111): VASP 5.2.11

• (4×4×14) Super Cell• Slab: 6 layers• Vacuum: 8 layers

• PAW-PBE (GGA) ± DFT-D2 ± TS*• Assess the Influence of

vdW Interactions

• Cut-off: 29.4 Ry

• k-points: (4×4×1)

• Ab-initio Molecular Dynamics

• Static Total-Energy Calculations*Implemented in VASP by Wissam Al-Saidi

Page 10: Multi-Scale Simulations of the Growth and Assembly of Colloidal Nanoscale Materials Kristen A. Fichthorn Department of Chemical Engineering Department.

van der Waals Interactions in DFT: How Do We Describe Ag??

aS. Grimme, J. Comput. Chem. 27, 1787 (2006).bA. Tkatchenko and M. Scheffler, Phys. Rev. Lett. 102, 073005 (2009) .cE. Zaremba and W. Kohn, Phys. Rev. B 13, 2279 (1976).dS. Eichenlaub, C. Chan, and S. P. Beaudoin, J. Coll. Int. Sci. 248, 389 (2002).eA. Khein, D. J. Singh, and C. J. Umrigar, Phys. Rev. B 51, 4105, (1995).fH. Li, et al., Phys. Rev. B 43, 7305 (1991).gF. R. De Boer, et al., Cohesion in Metals, Amsterdam, (1988).hM. Chelvayohan and C.H.B. Mee, J. Phys. C: Solid State Phys.15, 2305 (1982).

BA AB

ABdampvdW R

CfE

,6

6

)]1(exp[1

1),(

)(

0

0

AB

AB

Rf

RABABdamp dRRf

PBE DFT-D2a TS+ZKb+c Experiment

C6

(J nm6 mol-1)--- 24.67 6.89 6.25d

R0(Å) --- 1.64 1.34 ---

aAg (Å) 4.16 4.15 4.02 4.07e

D12 Ag(100) (%) -2.05 1.3 -1.75 ±1.5f,g

D12 Ag(111) (%) -0.3 1.61 -0.32 0.5 ± 0.8h

Page 11: Multi-Scale Simulations of the Growth and Assembly of Colloidal Nanoscale Materials Kristen A. Fichthorn Department of Chemical Engineering Department.

Binding Conformations:No vdW Interactions

Experimental IR and XPS:PVP Binds to Ag via the O and/or N Atom.

Ag(100)

Top

Hollow

BridgeAg(111)

Top

fccHollow

hcpHollow

Bridge

Trial & Error:Bonding with O Atom Down

F. Bonet et al., Bull. Mater. Sci. 23, 165 (2000).Z. Zhang et al., J. Solid State Chem. 121, 105 (1996).H. H. Huang et al., Langmuir 12, 909 (1996).

Page 12: Multi-Scale Simulations of the Growth and Assembly of Colloidal Nanoscale Materials Kristen A. Fichthorn Department of Chemical Engineering Department.

Binding Energies: No vdW Interactions

Adsorption site Ethane 2-Pyrrolidone(100) Hollow 0.0 0.19

(100) Bridge 0.0 0.22

(100) Top - 0.21

(111) fcc Hollow 0.0 0.19

(111) hcp Hollow - 0.16

(111) Bridge - 0.20

(111) Top - 0.26

Bond Strength (eV)

Predominantly vdW

Ag(100)

Top

Hollow

Bridge

Ag(111)

Top

fccHollow

hcpHollow

Bridge

Preference for Ag(111): Contrary to Expectations

) ( surfacemoleculesurfacemoleculebind EEEE

Ethane Binds:X.-L. Zhou and J. M. White, J. Phys. Chem. 96, 7703 (1992).

Page 13: Multi-Scale Simulations of the Growth and Assembly of Colloidal Nanoscale Materials Kristen A. Fichthorn Department of Chemical Engineering Department.

)( surfacemoleculesurfacemoleculebind EEEE

vdW Interactions Support Structure-Directing Hypothesis

Site PBE PBEDFT-D2

PBETS+ZK

(100) Hollow 0.19 1.05 0.59

(100) Bridge 0.22 1.34 0.77(100) Top 0.21 1.05 0.60

(111) fcc 0.19 0.61 0.58

(111) hcp 0.16 0.80 0.58

(111) Bridge 0.20 0.70 0.62

(111) Top 0.26 0.79 0.64

Bond Strength (eV)

Why Such Big Differences Between Methods??

Page 14: Multi-Scale Simulations of the Growth and Assembly of Colloidal Nanoscale Materials Kristen A. Fichthorn Department of Chemical Engineering Department.

DFT-D2: Ag(100) Reconstructs

eV 27.0 )100(

EEE hexhex

Ag(100) Reconstruction has not been Observed Experimentally…

Page 15: Multi-Scale Simulations of the Growth and Assembly of Colloidal Nanoscale Materials Kristen A. Fichthorn Department of Chemical Engineering Department.

TS+ZK:2-Pyrrolidone on Ag(100)

HollowEbind = 0.59

Bridge Ebind = 0.77

Top Ebind = 0.60

Hollow || Ebind = 0.77Bridge ||

Ebind = 0.81

Top ||Ebind = 0.78

Lots of Options!Binding via O and N

F. Bonet et al., Bull. Mater. Sci. 23 (2000).Z. Zhang et al., J. Solid State Chem. 121 (1996).H. H. Huang et al., Langmuir 12 (1996).

Page 16: Multi-Scale Simulations of the Growth and Assembly of Colloidal Nanoscale Materials Kristen A. Fichthorn Department of Chemical Engineering Department.

KTkTEP

P400 );/exp(139

)111(

)100(

PVP ~139 Times More Likely to Bind toAg(100) “Sides” than Ag(111) “Ends”

Page 17: Multi-Scale Simulations of the Growth and Assembly of Colloidal Nanoscale Materials Kristen A. Fichthorn Department of Chemical Engineering Department.

TS+ZK EnergiesTS+ZK Geometries

PBE Energies TS+ZK Geometries D

Site Ebind EPauli+Edirect bond EvdW

(100) Hollow || 0.78 0.36 0.42

(100) Bridge || 0.81 0.32 0.48

(100) Top || 0.77 0.30 0.47

(111) Top ┴ 0.64 0.12 0.51

(111) Bridge ┴ 0.62 0.09 0.53

(111) Bridge || 0.63 -0.19 0.82

TS+ZK Method: Break-Downof Binding Energy

bonddirectPaulivdWbind EEEE

Page 18: Multi-Scale Simulations of the Growth and Assembly of Colloidal Nanoscale Materials Kristen A. Fichthorn Department of Chemical Engineering Department.

TS+ZK EnergiesTS+ZK Geometries

PBE Energies TS+ZK Geometries D

Site Ebind EPauli+Edirect bond EvdW

(100) Hollow || 0.78 0.36 0.42

(100) Bridge || 0.81 0.32 0.48

(100) Top || 0.77 0.30 0.47

(111) Top ┴ 0.64 0.12 0.51

(111) Bridge ┴ 0.62 0.09 0.53

(111) Bridge || 0.63 -0.19 0.82

TS+ZK Method: Break-Downof Binding Energy

bonddirectPaulivdWbind EEEE

Ag(100): vdW and Direct Bonding Synergize

Page 19: Multi-Scale Simulations of the Growth and Assembly of Colloidal Nanoscale Materials Kristen A. Fichthorn Department of Chemical Engineering Department.

TS+ZK EnergiesTS+ZK Geometries

PBE Energies TS+ZK Geometries D

Site Ebind EPauli+Edirect bond EvdW

(100) Hollow || 0.78 0.36 0.42

(100) Bridge || 0.81 0.32 0.48

(100) Top|| 0.77 0.30 0.47

(111) Top ┴ 0.64 0.12 0.51

(111) Bridge ┴ 0.62 0.09 0.53

(111) Bridge || 0.63 -0.19 0.82

TS+ZK Method: Break-Downof Binding Energy

bonddirectPaulivdWbind EEEE

Ag(111): vdW is the Dominant Attractive Force

Sometimes the only Attractive Force

Page 20: Multi-Scale Simulations of the Growth and Assembly of Colloidal Nanoscale Materials Kristen A. Fichthorn Department of Chemical Engineering Department.

• We Observed Stronger Binding to Ag(100) when we Include vdW As Inferred by Experiment

Conclusions• We Studied Surface-Sensitivity of PVP Binding to Ag(111) and Ag(100)

• DFT-D2 Reconstructs Ag(100)

• Ag(100) Preference from Synergy Between vdW Attraction and Direct Bonding

Page 21: Multi-Scale Simulations of the Growth and Assembly of Colloidal Nanoscale Materials Kristen A. Fichthorn Department of Chemical Engineering Department.

Oriented Attachment in Crystal Growth:Role of Intrinsic Crystal Forces

See Also:M. Niederberger and H. Cölfen, Phys. Chem. Chem. Phys. 8, 3271 (2006). Q. Zhang, S. Liu, and S. Yu, J. Mater. Chem. 19, 191 (2009).

HRTEM: Oriented Attachment of TiO2 NanoparticlesR. Penn and J. Banfield, Geochim. Cosmochim.Acta 63, 1549 (1999).

Page 22: Multi-Scale Simulations of the Growth and Assembly of Colloidal Nanoscale Materials Kristen A. Fichthorn Department of Chemical Engineering Department.

Dipole-Dipole Interactions May Assemble Nanoparticles

T. Zhang, N. Kotov, and S. Glotzer, Nano Lett. 7, 1670 (2007).

Z. Tang and N. Kotov, Adv. Mater. 17, 951 (2005); Z. Tang, N. Kotov, M. Giersig, Science 297, 237 (2002).

CdTe Nanoparticle Chains

+ - + -

Page 23: Multi-Scale Simulations of the Growth and Assembly of Colloidal Nanoscale Materials Kristen A. Fichthorn Department of Chemical Engineering Department.

Two WulffNanocrystals

(001) TruncatedNanocrystals

(112) TruncatedNanocrystals

i

iiq rm=35 D

m=0

m=250 D

m=75 D

TiO2 (Anatase) NanocrystalsMatsui-Akaogi Force FieldMol. Sim. 6, 239, 1991.*

Page 24: Multi-Scale Simulations of the Growth and Assembly of Colloidal Nanoscale Materials Kristen A. Fichthorn Department of Chemical Engineering Department.

Aggregation of Wulff Nanocrystals

Page 25: Multi-Scale Simulations of the Growth and Assembly of Colloidal Nanoscale Materials Kristen A. Fichthorn Department of Chemical Engineering Department.

Nanocrystal Aggregation:The Hinge Mechanism

Initial Contact of Edges:The “Hinge”

Rotation About the “Hinge”

Page 26: Multi-Scale Simulations of the Growth and Assembly of Colloidal Nanoscale Materials Kristen A. Fichthorn Department of Chemical Engineering Department.

Nanocrystal Aggregation:Driven by Electrostatic Forces

M. Alimohammadi and K. Fichthorn, Nano Lett. 9, 4198 (2009).

Page 27: Multi-Scale Simulations of the Growth and Assembly of Colloidal Nanoscale Materials Kristen A. Fichthorn Department of Chemical Engineering Department.

Nanocrystal Aggregation: Driven by Multipoles from Under-CoordinatedSurface Atoms

M. Alimohammadi and K. Fichthorn, Nano Lett. 9, 4198 (2009).

Page 28: Multi-Scale Simulations of the Growth and Assembly of Colloidal Nanoscale Materials Kristen A. Fichthorn Department of Chemical Engineering Department.

HRTEM Image Showing Oriented Attachment of 5 TiO2 NanoparticlesR. Penn and J. Banfield, Geochim. Cosmochim. Acta 63, 1549 (1999).

Simulation vs. Experiment: Still Have a Way to Go

Aqueous EnvironmentHour (or longer) Times

Vacuum EnvironmentNanosecond Times

Page 29: Multi-Scale Simulations of the Growth and Assembly of Colloidal Nanoscale Materials Kristen A. Fichthorn Department of Chemical Engineering Department.

Nanocrystal Aggregation is Driven by Local Interactions.

We Should Re-Think the Dipole Idea…

Conclusions

P. Schapotschnikow et al., Nano Lett. 10, 3966 (2010).

Also found this for capped and uncapped PbSe…

Page 30: Multi-Scale Simulations of the Growth and Assembly of Colloidal Nanoscale Materials Kristen A. Fichthorn Department of Chemical Engineering Department.

1D Nanostructures form via Mesocrystals and Oriented Attachment

M. Giersig, I. Pastoriza-Santos, L. Liz-Marzan,J. Mater. Chem. 14, 607 (2004).

Ag Nanowires

V. Yuwano, …, and R. Penn,JACS 132, 2163 (2010).

Goethite Nanowires

Page 31: Multi-Scale Simulations of the Growth and Assembly of Colloidal Nanoscale Materials Kristen A. Fichthorn Department of Chemical Engineering Department.

Solvent Ordering and Solvation Forces

Solvent Density Profile

Solvent ordering around solvophilic nanoparticles

Y. Qin and K. A. Fichthorn, J. Chem. Phys. 119, 9745 (2003).

Y. Qin and K. A. Fichthorn, Phys. Rev. E 73, 020401 (2006).

Page 32: Multi-Scale Simulations of the Growth and Assembly of Colloidal Nanoscale Materials Kristen A. Fichthorn Department of Chemical Engineering Department.

MD: Aggregation of a Small, Isotropic*Crystal with a Larger, Anisotropic Crystal

*Relatively

RectangularCuboid

SquarePlate

2

1

32

1

● Generic Anisotropic fcc Nanoparticles● Solvophilic Nanoparticles● Strong vdW Attraction (Ag)● Isotropic Organic Solvent

Page 33: Multi-Scale Simulations of the Growth and Assembly of Colloidal Nanoscale Materials Kristen A. Fichthorn Department of Chemical Engineering Department.

Aggregation of Small and Large Nanocrystals: Mesocrystal States

Mesocrystal State 1One Solvent Layer

Mesocrystal State 1One Solvent Layer

Mesocrystal State 2Two Solvent Layers

Page 34: Multi-Scale Simulations of the Growth and Assembly of Colloidal Nanoscale Materials Kristen A. Fichthorn Department of Chemical Engineering Department.

Mesocrystal States: Free-Energy Minima

Escape-Time Distribution

Aggregation Probability

kTGeR

eRtf/

Rt

~

)(

RA eP 1)(

Aggregation of Small and Large Nanocrystals: Mesocrystal States

Mesocrystal State 1One Solvent Layer

Mesocrystal State 1One Solvent Layer

Mesocrystal State 2Two Solvent Layers

Page 35: Multi-Scale Simulations of the Growth and Assembly of Colloidal Nanoscale Materials Kristen A. Fichthorn Department of Chemical Engineering Department.

Aggregation:Fastest at End of RectangleSlowest on Face of SquareEven on SidesMesocrystal State 1

Most FrequentMesocrystal State 2Occurs on SquareMesocrystal State 3

DissociationNot Typically FrequentDissociation

Nanocrystal Encounters:Frequency of Outcomes

3

1

2

1

2

Aggregation is the Most FrequentOn the Smallest Facets,Perpetuating 1D Growth

Page 36: Multi-Scale Simulations of the Growth and Assembly of Colloidal Nanoscale Materials Kristen A. Fichthorn Department of Chemical Engineering Department.

Disruption Solvent Ordering at EdgesLeads to Fast Aggregation on Small Facets

Square Plate

Rectangle

7.26.66.05.44.84.23.63.02.41.81.20.60

/r rb

Rectangle

Page 37: Multi-Scale Simulations of the Growth and Assembly of Colloidal Nanoscale Materials Kristen A. Fichthorn Department of Chemical Engineering Department.

Conclusions

Solvent Ordering Around Nanocrystal SurfacesPromotes Growth of 1D Nanostructures

Leads to Mesocrystal States

Faster Aggregation on Smaller Facets

Page 38: Multi-Scale Simulations of the Growth and Assembly of Colloidal Nanoscale Materials Kristen A. Fichthorn Department of Chemical Engineering Department.

Collaborators

FundingNSF DMR-1006452, NIRT CCR-0303976, CBET-0730987DOE DE-FG0207ER46414ACS, EPA, NCSA

Mozhgan AlimohammadiHaijun FengAzar ShahrazJin Pyo HongDr. Ya ZhouDr. Yangzheng Lin

AlumsDr. Yong QinDr. Rajesh SathiyanarayananDr. Leonidas Gergidis

Fritz Haber InstituteAlexander TkatchenkoVictor Gonzalo Ruiz LopezMatthias Scheffler

Univ. of PittsburghDr. Wissam Al-Saidi